
CONST-DOES>

M. Anton Ertl

Institut f�ur Computersprachen
Technische Universit�at Wien

Argentinierstra�e 8, A-1040 Wien
anton@mips.complang.tuwien.ac.at

http://www.complang.tuwien.ac.at/anton/

Tel.: (+43-1) 58801 18515
Fax.: (+43-1) 58801 18598

Abstract

A frequent use of the create...does> construct is to provide some
constants at de�nition time that are then used at execution time (a
constant-style use). However, create...does> also supports a value-
style use, where the data is not constant and can change at any time.
This additional functionality inhibits optimization. This paper pro-
poses const-does>, which can only be used to de�ne constant-style
words, and thus makes optimization possible.

This paper is written in the form of a proposal like those on

http://www.complang.tuwien.ac.at/forth/ansforth/proposals.html.

1 Problem

Many uses of create...does> are just for shifting data from the create time

to the execution time of the code after does>; i.e., after the word is fully

de�ned, the data remains constant. A prototypical example of this use is

the de�nition

: constant (n "name" --)

create ,

does> (-- n)

@ ;

42 constant answer

Here, n is just shifted from create time to name execution time.

It would be nice if a native-code compiler could optimize a use of answer

in the same way that it would optimize a use of 42. However, this is not

possible, because the compiler has to consider the following possibility:

M. A. Ertl Const-does>

5 ' answer >body !

I.e., the data in a create...does>-de�ned word can change at almost

any time. So at best a compiler can compile answer to the same code as

[' answer >body] literal @.

The e�ects of this di�erence on the resulting code depend on the context.

E.g., consider the code answer cells + @: If the compiler could optimize

answer to 42, it could compile this sequence to one instruction on the MIPS

architecture:

lw v0,168(a0) ; 42 cells + @

Without this optimization, it needs at least �ve instructions:

lui v1,... ; [' answer >body] literal

lw v0,...(v1); @

sll v0,v0,2 ; cells

addu v0,v0,a0 ; +

lw v0,0(v0) ; @

2 Proposal

CONST-DOES> \const-does" core

Interpretation: Interpretation semantics for this word are unde�ned.

Compilation: (C: colon-sys1 { colon-sys2)

Append the run-time semantics below to the current de�nition. Whether

or not the current de�nition is rendered �ndable in the dictionary by

the compilation of const-does> is implementation de�ned.

Run-time: (u1*x u2*r u1 u2 \name" R: nest-sys1 {)

Create a word name with execution semantics given below. Return

control to the calling de�nition speci�ed by nest-sys1. The u1 cells

and u2
oats can be interleaved in any order.

name execution: (... { ...)

Perform initiation semantics below. Transfer control to the code right

after the const-does>.

Initiation: ({ u1*x u2*r R: nest-sys2)

Save information next-sys2 about the calling de�nition. After pushing

the u1 cells and u2
oats, they are in the same order as they were at

the start of the run-time semantics.

M. A. Ertl Const-does>

3 Typical use

: constant (n "name" --)

1 0 const-does> (-- n)

;

: fconstant (r "name" --)

0 1 const-does> (-- r)

;

: simple-field (n "name" --)

1 0 const-does> (addr1 -- addr2)

+ ;

Note that the stack comments after const-does> re
ect the total stack

e�ect of name (including initiation semantics), not the stack e�ect of the

following code.

4 Remarks

The ANS-Forth-style formal proposal may be a bit hard to penetrate, so

here are the essentials: Const-does> de�nes a word (the role of create)

and its behaviour (the role of does>). The main other thing it does is to

shift u1 cells and u2
oats from the de�nition time of name to its execution

time. As a consequence, a simple de�nition like constant speci�es just how

many cells and
oats it wants to shift, and needs to do nothing else.

Note that this works for both separate and combined data/FP stacks:

On a system with separate stacks const-does> shifts u1 cells and u2
oats

from de�nition to execution. On system with a combined stack is just shifts

as many cells as these cells and
oats take.

An optimizing native code compiler could compile a word de�ned with

const-does> by compiling the u1 cells and u2
oats as literals, and then

compiling (and possibly inlining) a call to the code behind the const-does>.

The compiler would know that these literals are constant, and could optimize

accordingly.

An alternative way to create de�ning words that de�ne optimizable de-

�ned words is to use colon de�nitions and literals. E.g.:

M. A. Ertl Const-does>

: constant (n "name" --)

\ name execution: (-- n)

>r : r> POSTPONE literal POSTPONE ; ;

: fconstant (r "name" --)

\ name execution: (-- r)

\ environmental dependency: separate FP stack

: POSTPONE fliteral POSTPONE ; ;

: simple-field (n "name" --)

\ name execution: (addr1 -- addr2)

>r : r> POSTPONE literal POSTPONE + POSTPONE ; ;

A good compiler could inline the resulting colon de�nitions and optimize

the results.

The downside of this approach is that it is hard to read (even with]]...[[

to eliminate the POSTPONEs). And to avoid the environmental dependency

for passing
oats, we would have to save them in global variables, which

would make the code even harder to read.

An alternative syntax would make const-does> behave like does>, but

it would remove the ability to apply >body to the execution token of words

it is applied to. Advantage: The syntax would be familiar and thus easier

to learn. Disadvantages: Optimizing this would require a more complex

compiler. The de�ning word is cluttered with code for saving and restoring

the data to be shifted between de�nition and execution, making the code

harder to read. Simple implementations would not enforce the restriction on

not applying >body, leading to portability bugs (in contrast, the proposed

const-does> does not expose the placement of the data, so a programmer

cannot even access the data without learning implementation details).

One implementation issue for this proposal is that u1 and u2 are supplied

at run-time. If the numbers were supplied at compile-time (with a syntax

like [1 0]does-code>), a native-code compiler using this for optimization

could be slightly simpler (and the reference implementation below could

be faster). However, a native-code compiler probably can use the same

mechanism here that it uses for optimizing PICK, and supplying the number

at run-time is easier for the user (both syntactically and mentally) and more

exible.

M. A. Ertl Const-does>

5 Reference implementation

This reference implementation of const-does> behaves as it should, but of

course does not give you the performance advantages (rather to the con-

trary).

: const-does>-prelude (u1*x u2*r u1 u2 ``name'' --)

\ create name and store u1*x u2*r there

create 2dup 2,

over cells allot here >r

falign dup floats allot here (u1*x u2*r u1 u2 addr2)

swap 0 ?do

-1 floats + dup f!

loop

drop r> (u1*x u1 addr1)

swap 0 ?do

-1 cells + tuck !

loop

drop ;

: const-does>-postlude (addr -- u1*x u2*r)

\ fetch u1*x u2*r from addr

dup 2 cells +

swap 2@ >r

0 ?do

dup @ swap cell+

loop

faligned

r> 0 ?do

dup f@ float+

loop

drop ;

: const-does> (compilation: colon-sys1 -- colon-sys2)

\ run-time: (u1*x u2*r u1 u2 ``name'' R: nest-sys1 --)

\ name initiation: (-- u1*x u2*r R: nest-sys2)

POSTPONE const-does>-prelude

POSTPONE does>

POSTPONE const-does>-postlude

; immediate

6 Experience

Only the implementation and uses in this paper exist.

