
1

A Windows driver program written in Forth

N.J. Nelson

__

Abstract
We have a company policy of writing all our software in Forth, from tiny
programs for 8 pin PIC chips, up to major networked Windows applications.
There was just one area where we were still obliged to use "C", and that was
driver programs for interfacing between Windows and hardware. A solution has
now presented itself, which works in 95% of cases.

N.J. Nelson B.Sc., C.Eng., M.I.E.E.
Micross Electronics Ltd.,
Units 4-5, Great Western Court,
Ross-on-Wye, Herefordshire.
HR9 7XP U.K.
Tel. +44 1989 768080
Fax. +44 1989 768163
Email. njn@micross.co.uk

2

Introduction to driver programs

As you browse through the Windows directory of your Personal Computer, you
will come across lots of small files with extensions such as .drv or .sys. For
example, on a Windows 2000 PC running our commercial laundry automation
system "Tracknet", in the directory \WINNT\System32\Drivers, there will be a
file called Vplc.sys. The purpose of this program is to act as an interface
between the Tracknet program and a PCI circuit card called the "Virtual
Programmable Logic Controller" which does the actual control of the whole
laundry.

There are two reasons why we need this interface program. First, the PCI
system has dynamically assigned addresses, so the Tracknet program doesn't
know where to read and write when it needs to access the I/O or memory space
of the circuit card. Second, even if it knew, it wouldn't be allowed to. In
Windows 2000, applications programs are not allowed to access directly the I/O
space or fixed memory space.

There are similar interface programs for every hardware facility on the PC. In
addition to resolving dynamic resource assignments, and providing protection of
the hardware from badly behaved programs, they have a further key function in
Windows, which is that of hardware abstraction. For example, when an
applications program wants to write a character to a serial communications port,
it does not need to know what sort of a UART is fitted to the port. It simply
calls a Windows Applications Programming Interface function, which in turn
calls the correct driver program for the selected device.

In addition, driver programs are necessary to implement the "Plug and Play"
system, in which hardware is identified automatically as it is added to the PC,
and the corresponding software to support it is loaded.

The Vplc.sys, and another similar program for interfacing with the Data Logger
Card on our "Rabit" microbiological testing system, are the only two programs
by Micross that are not written in Forth.

3

Types of driver programs

There are three types of driver programs that an applications programmer may
need to get involved with. The older Virtual Device Drivers have the extension
.vxd and can be used with Windows 95 and 98. Windows NT required a
completely different type of driver program with the extension .sys. This meant
that all hardware manufacturers had to provide two programs for every device.
To overcome this problem, Microsoft came up with the "Windows Driver
Model" or WDM specification. This also has the extension .sys and is in some
ways a development of the NT driver model. However, WDM drivers can be
used only on Windows 2000 and 98 systems and their successors ME and XP.

How Microsoft think driver programs should be written

To assist programmers in writing drivers, Microsoft have provided a succession
of Device Driver Kits or DDKs. If you have ever wondered why your printer or
modem didn't work properly straight out of the box, and you had to download
umpteen bug fixes from the manufacturer's website, then don't immediately
come to the conclusion the Hewlett-Packard et. al. employ incompetent
software engineers. Simply try examining a Microsoft DDK.

To add insult to injury, the DDK library files support only Microsoft C. There
are not even any C++ abstractions supplied. (This did not stop Microsoft from
issuing one version of their Visual C/CPP with a critical bug that prevented all
driver programs from compiling.)

More practical ways of writing driver programs

It is not a practical proposition for even the most experienced Windows
programmer to write a driver program using only the documentation in the
DDK. The books written by a handful of specialist practitioners are an absolute
necessity. All of these books recommend the need for additional third-party
tools. Most of these work by providing C libraries or C++ classes. These either
completely hide the more esoteric requirements of the driver specifications, or
at least provide intelligibly documented interfaces.

4

Why would we want to use Forth

We successfully wrote two driver programs to the VxD specification, and
subsequently updated both of them to the WDM specification, using C and with
the help of the DriverStudio tool from Compuware Corporation. However, we
require on average only one new driver program per year, so there is no
accumulation of experience in the company. Every new program has a new
learning curve. Clearly, the ability to write drivers using our normal
programming language, with which everyone in the company is familiar, would
be a great advantage.

The "Windriver" system

About six months ago, we became aware of a new concept in driver program
development, Windriver, by Jungo Ltd., an Israeli company. The concept
behind this program is that of a completely universal driver, which is configured
by and interacts with ones own application in user mode, either directly or via a
dynamic link library (DLL). Not only does this completely eliminate the need
for the Microsoft DDK, it also means that the interface is language independent.
Jungo even provide a set of wizards for generating interface code, although
these generate only C. However, they do also provide samples in other
languages.

A simple device

We decided to try this concept first on a very simple interface card. This
"legacy" ISA card is intended to count pulses on a set of up to 16 industrial type
24V input signals, and has a small amount of on-board intelligence so as to
eliminate the need for reliable polling from the Windows program to avoid
losing counts. (Reliable timed operations cannot be achieved in Windows in
user mode.) The interface occupies a single byte in the I/O space of the PC, with
the applications program writing a command byte and the card replying with
count or status data. In Windows 9x, this could be achieved directly from the
applications program. In Windows 2000, however, the I/O space of the PC is
protected from applications programs, and a device driver must be used.

5

Implementing a Windriver interface in Forth

Accessing the Windriver system using Forth proved to be quite straightforward,
using the sample code provided in several other languages. I would be happy to
supply source code for all the standard Windriver functions to anyone
interested. Briefly, this contains

a) The required Windriver constants
b) The I/O control codes, generated according to the defined Windows formula,

e.g.

38200 CONSTANT WD_TYPE \ File type of Windriver

: WD_CTL_CODE (wFuncNum---n) \ Construct IO control codes for Windriver
 WD_TYPE SWAP METHOD_NEITHER FILE_ANY_ACCESS CTL_CODE ;

$901 WD_CTL_CODE CONSTANT IOCTL_WD_DMA_LOCK
$902 WD_CTL_CODE CONSTANT IOCTL_WD_DMA_UNLOCK
$903 WD_CTL_CODE CONSTANT IOCTL_WD_TRANSFER

c) The required Windriver structures, e.g.

STRUCT WD_CARD \ Card details
 DWORD WC.DWITEMS \ Number of items
 WD_CARD_ITEMS WD_ITEMS ARRAY-OF WC.ITEM \ Details of each item
END-STRUCT

STRUCT WD_CARD_REGISTER \ Card registration details
 WD_CARD FIELD WCR.CARD \ Card to register
 DWORD WCR.FCHECKLOCKONLY \ Only check if card is

\ lockable, return hCard=1
\ if OK

 DWORD WCR.HCARD \ Handle of card
 DWORD WCR.DWOPTIONS \ Should be zero
 32 FIELD WCR.CNAME \ Name of card
 100 FIELD WCR.CDESCRIPTION \ Description
END-STRUCT

STRUCT ISACARD_STRUCT \ Card details
 INT CCS.HWD \ Windriver handle
 WD_CARD_REGISTER FIELD CCS.CARDREG \ Card registration data
END-STRUCT

6

d) The basic functions for opening and closing the access to the driver program

: WD-OPEN (---hwd) \ Open Windriver
 Z"" \\.\WINDRVR"
 GENERIC_READ
 FILE_SHARE_READ FILE_SHARE_WRITE OR
 NULL
 OPEN_EXISTING
 FILE_FLAG_OVERLAPPED
 NULL
 WINCREATEFILE
;

: WD-CLOSE { hwd -- } \ Close Windriver
 hwd WINCLOSEHANDLE DROP
;

e) The generalised interface function

VARIABLE WD-OUTCOUNT \ Place to put bytes returned

: WD-FUNCTION { wfuncnum hwdin pparam dwsize fwait | hwd -- rc }
\ Generalised IO function call
 fwait IF WD-OPEN ELSE hwdin THEN -> hwd \ Use input handle, or get

\ new, according to waitflag
 hwd INVALID_HANDLE_VALUE = IF \ Invalid handle
 -1 \ Error exit
 ELSE \ Handle OK
 hwd wfuncnum \ hdevice,dwiocontrolcode
 pparam REL>ABS dwsize \ lpinbuffer,ninbuffersize
 NULL 0 \ lpoutbuffer,noutbuffersize
 WD-OUTCOUNT REL>ABS NULL \lpbytesret,lpoverlapped
 WINDEVICEIOCONTROL
 fwait IF hwd WD-CLOSE THEN \ If a wait function,

\ close instance
 THEN
;

f) The individual command functions, e.g

: WD-CARDREGISTER { hwd pCard -- }
 IOCTL_WD_CARD_REGISTER hwd pCard WD_CARD_REGISTER FALSE WD-FUNCTION DROP
;

: WD-TRANSFER { hwd pTransfer -- }
 IOCTL_WD_TRANSFER hwd pTransfer WD_TRANSFER FALSE WD-FUNCTION DROP ;

7

Using the Forth Windriver to access the simple ISA card

A single instance of the Windriver can be used to provide access to any number
of ISA, PCI or other types of card. The example below is for the simplest
possible card as described above.

a) Necessary constants and variables

1 CONSTANT ISACARD_TOTAL_ITEMS \ Number of items

1 CONSTANT ISACARD_IORange0_BYTES

: ISACARD_IORange0_ADDR (---addr) \ Address of counter card
 CTRADDR @ \ Actually comes from the registry
;

VARIABLE HISACARD \ "Handle" of "card"
\ - actually base address of card group data

b) Describing the card to the Windriver

: ISACARD-SETCARDELEMENTS { | pitem -- } \ Set card item data
 ISACARD_TOTAL_ITEMS HISACARD @
 CCS.CARDREG WCR.CARD WC.DWITEMS ! \ Set number of items
 HISACARD @ CCS.CARDREG WCR.CARD
 0 WC.ITEM -> pitem \ Calculate address of item details
 ITEM_IO pitem WI.ITEM ! \ Set item type
 TRUE pitem WI.FNOTSHAREABLE ! \ Set not shareable flag
 ISACARD_IORange0_ADDR pitem
 WI.I WI.IO WIO.DWADDR ! \ Set base address
 ISACARD_IORange0_BYTES pitem
 WI.I WI.IO WIO.DWBYTES ! \ Set range
;

c) Opening access to the card

: ISACARD-OPEN { | ver[WD_VERSION] -- f }
\ True if address of card structure placed in phisacard
 HISACARD OFF \ Assume failure
 ISACARD_STRUCT ALLOCATE 0= IF \ Memory allocated for card details
 HISACARD !
 HISACARD @ ISACARD_STRUCT ERASE \ Clear card structure
 WD-OPEN HISACARD @ CCS.HWD ! \ Try to open Windriver
 HISACARD @ CCS.HWD @
 INVALID_HANDLE_VALUE <> IF \ Windriver opened OK
 ver[WD_VERSION ERASE \ Clear version structure
 HISACARD @ CCS.HWD @
 ver[WD-VERSION \ Get version information
 ver[WV.DWVER @ WD_VER U>= IF \ Version number OK
 ISACARD-SETCARDELEMENTS \ Set card item data
 HISACARD @ CCS.CARDREG
 WCR.FCHECKLOCKONLY OFF \ Clear check lock only flag
 HISACARD @ CCS.HWD @
 HISACARD @ CCS.CARDREG
 WD-CARDREGISTER \ Attempt to register card

8

 HISACARD @ CCS.CARDREG
 WCR.HCARD @ 0<> IF \ Card registered OK
 TRUE \ Success
 ELSE \ Card failed to lock
\ ide-drivers cr ." Card failed to lock"
 FALSE
 THEN
 ELSE \ Incorrect Windriver version
\ ide-drivers cr ." Incorrect Windriver version"
 FALSE
 THEN
 ELSE \ Failed to open Windriver
\ ide-drivers cr ." Failed to open Windriver"
 FALSE
 THEN
 ELSE \ Failed to allocate memory
\ ide-drivers cr ." Failed to allocate memory"
 DROP FALSE
 THEN
 DUP FALSE = IF \ Something went wrong
 ISACARD-CLOSE \ Close everything
 THEN
;

d) Transferring data to and from the card

: CCARD-TRANSFER { pbuf fread | trans[WD_TRANSFER] -- }
\ IO transfer on counter card
 trans[WD_TRANSFER ERASE
 fread IF RP_SBYTE ELSE WP_SBYTE THEN
 trans[WT.CMDTRANS !
 ISACARD_IORange0_ADDR trans[WT.DWPORT !
 TRUE trans[WT.FAUTOINC !
 ISACARD_IORange0_BYTES trans[WT.DWBYTES !
 pbuf REL>ABS trans[WT.DATA !
 HISACARD @ CCS.HWD @ trans[WD-TRANSFER
;

e) Reading and writing the card

These words replace the direct port I/O words used in the Windows 9x versions
of the applications program.

: CCARD@ { | pbuf[1] -- byte } \ Read data from counter card
 HISACARD @ pbuf[TRUE CCARD-TRANSFER
 pbuf[C@
;

: CCARD! { byte | pbuf[1] -- } \ Write data to counter card
 byte pbuf[C!
 pbuf[FALSE CCARD-TRANSFER
;

9

More sophisticated systems – Forth within a driver

There is one serious restriction to the method described above. Each I/O
transaction requires a user mode function. Even when handling a hardware
interrupt, the Windriver will simply queue a request to be serviced later by the
applications program. This greatly restricts the usefulness of the driver in
machine control applications such as a soft Programmable Logic Controller
(PLC) where deterministic behaviour is required.

Recently Jungo tried to address this issue by providing a duplicate set of
interface functions, but designed for use in kernel mode. The idea is to debug
the basic operation of your program in user mode, then recompile the time-
critical sections in kernel mode, with no essential change in the source code.
The complex parts of the interface continue to be handled by the standard
Windriver, with the card-specific functions only in a dedicated driver file,
running at full kernel-mode priority.

For example, it would be possible to respond to an interrupt by creating a fully
interactive instance of Forth, capable of being called every 10us.

Summary

The Windriver system offers the possibility of opening one of the last areas of
software development previously inaccessible to Forth.

10

References

http://www.jungo.com/windriver
Full information on Windriver, including functional demonstration for
download.

http://www.compuware.com/products/numega/drivercentral/driverstudio.htm
The next most practical way to write a driver, using C++.

http://www.microsoft.com/ddk/
Paradise for nerds.

"Writing Windows VxDs &Device Drivers" by Karen Hazzah
2nd ed. 1997 CMP Books, ISBN 0879304383 $49.95
The best guide to the old style 9x drivers

http://www.oneysoft.com
Homepage of Walter Oney, leading consultant on the newer WDM style
drivers, including review of his book "Programming the Windows Driver
Model", which is essential reading. Also essential are the downloadable errata.

