
EÆcient \reversibility" with guards and choice

Bill Stoddart

School of Computing and Mathematics

University of Teesside, North Yorkshire, U.K.

August 17, 2002

Abstract

We describe reversibility mechanisms incorporated into a native code

Forth used an an intermediate language for a B-GSL compiler. In con-

trast to our previous work, information preservation is limited to what is

needed to implement the B-GSL semantics for non-deterministic choice

and guard. Design choices are discussed with reference to the Pentium

architecture. The use of guards and choice in Forth is illustrated with the

Knight's Tour.

1 Introduction

The work reported here is part of a project to integrate backtracking into the

formal software development method B.[1]. B originated in the Programming

Research Group at Oxford University in the 1980's. It provides a language for

describing systems at various levels of abstraction. At the most abstract level,

which is used for speci�cation, the language is not generally executable, being

able to describe the e�ects of an operation implicitly. At the implementation

level it provides simple integer programming language, B0. Users write both a

speci�cation and an implementation. Proofs must be discharged to show that

implementations satisfy their speci�cations and to ensure the preservations of

invariant data properties. When integrating code from an already implemented

module, formal analysis is done using the speci�cation of the imported mod-

ule, not its implementation. Commercial toolkits are available which generate

the necessary proof obligations, attempt to discharge them automatically, and

translate the execution level language, B0, into C, ADA or assembler accord-

ing to customer requirements. A notable industrial application of B is was the

complete control system of the Paris Metro line 14, which uses driverless trains.

B was used to generate 100,000 lines of Ada. No errors were detected in this

code at any stage of its testing by the French railway authorities, and as a result

of this experience these authorities now accept proved B developments without

acceptance testing.

A major problem with B arises from proof obligations not discharged auto-

matically by the in-built prover. Keeping these to a minimum and using manual

intervention to discharge the remaining ones requires time and skill. We are in-

vestigating whether this situation can be eased, for certain kinds of application,

by increasing the expressive power of B0 to include the constructs \choice" and

\guard". These provide a form of backtracking.

1

In [10] we showed how semantics of reversibility are incorporated in the

mathematical apparatus of B and suggested a reversible stack based virtual

machine as an implementation vehicle. Reversibility was obtained by using

multiple code �eld threading to e�ectively obtain three virtual machines in one,

capable respectively of normal, conservative and reverse execution.

In this paper we turn our attention to the design of a reversible virtual ma-

chine where eÆciency considerations favour a native code implementation. An

implementation mechanism is described in detail for the Intel Pentium archi-

tecture. We use the term reversibility rather than backtracking in the title of

this paper since our approach is based on designing a virtual machine which

preserves information during computation. Reversibility provides mechanisms

to guarantee the return of the system to any pre-selected previous state and

deals automatically with the collection of any garbage generated during the

corresponding forward computation. [2] [11]

The rest of the paper is organised as follows. In section 2 we brie
y men-

tion related work in Forth. In section 3 we present a simple case study: the

Knight's Tour, in which we illustrate the use of the choice and guard constructs

in Forth. In section 4 we give the formal semantics of backtracking. In section

5 we discuss the Intel architecture and attempt to justify the choice of a native

code implementation. In section 6 we describe our virtual machine organisa-

tion for forward execution and discuss optimization. In section 7 we discuss

reverse execution and guards. In section 8 we discuss the implementation of

non-deterministic choice. In section 9 we draw our conclusions.

2 Backtracking and Reversible Computing in

Forth

As an extensible language Forth has a long history of proposed techniques and

extensions to handle backtracking. Most of these involve manipulation of the

return stack, which is no longer permissible under ANS Forth. Brad Rodriguez

described a backtracking Forth in his Masters Dissertation and also published a

top down backtracking BNF parser [8]. Gordon Charlton wrote FOSM, a Forth

String Matcher in which the Forth Data stack is used to hold pertinent events

and recovery data which are used during backtracking [3].

Michael Gassanenko has explored the control mechanisms, including back-

tracking, which can be constructed within a model based Forth language, and

has developed this work into a speci�cation for an open standard for return

stack semantics.[7]

Henry Baker has advocated Forth as a language for reversible computation

and has drawn the connections between reversibility, information loss, thermo-

dynamics and garbage collection [2]. Peter Bishop at Adelard, in work funded

under the UK nuclear research program, has investigated using a reversible

Forth to achieve fail-safety.

Some the above work builds on properties of a particular implementation

of the Forth virtual machine. For example Michael Gassanenko assumes the

correctness of the de�nition : BRANCH R> @ >R ; ANSForth, by abstracting

away from any particular implementation, removes our ability to conjure a sim-

2

ple backtracking mechanism from existing primitives.1.

In this work we have chosen to incorporate reversibility at the level of virtual

machine design, partly for eÆciency reasons, and partly because reversibility

gives us exactly the correct semantics for choice and guard.

3 An Example: The Knights Tour

We use reversibility to add choice and guards to Forth. In B, Communicating

Sequential Processes, and many other formal notations a choice between A and

B is written A []B . In Forth we need to bracket the choice construct and we

use:

<CHOICE A [] B ... CHOICE>

At a choice construct execution makes a provisional choice, but may later reverse

back to this point and make a di�erent choice.

The guard --> removes a
ag from the stack. If true, execution continues

ahead. Otherwise execution reverses to the most recent choice still having an

unexplored alternative. If no such choice the user is given a response of \ko"

rather than \ok" to signify an impossible request.

We also need reversible versions of words which change memory. The re-

versible version of ! is named ! and so on.

We now present a simple example in which we use guard and choice to

help solve the Knight's Tour problem. Our algorithm takes as input a starting

position and attempts to �nd a path by which a knight can visit all the remaining

squares of a chessboard without visiting any square twice. We use numbers

0..63 to represent the squares of the board. A brute force approach is used. The

method is to code a loop in which the loop body proposes, checks and records

a move. The loop terminates when a path which covers the whole board has

been found.

VARIABLE POSN \ holds the current position of the knight

CREATE VISITS 256 ALLOT \ records visited squares

CREATE ROUTE 64 ALLOT \ holds the route

VARIABLE MOVES \ counts moves 0 .. 64

: INIT (--)

VISITS 64 CELLS ERASE

ROUTE 64 ERASE

0 MOVES ! ;

: VISIT (n -- record a visit to square n)

CELL * VISITS + -1 SWAP !_ ;

: ?VIRGIN (n -- f return true iff n has been visited)

1But see the communication fromA Ertl at www.computing.tuwien.ac.at/forth/backtracking-

in-ansforth

3

CELL * VISITS + @ NOT ;

(Obtaining rank and file of a given square)

: RANK (n1 -- n2) POSN @ 2/ 2/ 2/ ;

: FILE (n1 -- n2) POSN @ 7 AND ;

: SELECT-MOVE (-- n)

(choose a valid move from current posn, n is new posn)

<CHOICE

RANK 6 < FILE 7 < AND --> 16 1 +

[]

RANK 6 < FILE 0 > AND --> 16 1 -

[]

RANK 7 < FILE 6 < AND --> 8 2 +

[]

RANK 7 < FILE 1 > AND --> 8 2 -

[]

RANK 0 > FILE 6 < AND --> -8 2 +

[]

RANK 0 > FILE 1 > AND --> -8 2 -

[]

RANK 1 > FILE 7 < AND --> -16 1 +

[]

RANK 1 > FILE 0 > AND --> -16 1 -

CHOICE> POSN @ + ;

: CHECK-MOVE (n -- n reverse if square n has been visited)

DUP ?VIRGIN --> ;

VARIABLE TOTAL-MOVES

: RECORD-MOVE (n --)

DUP POSN !_

DUP VISIT

ROUTE MOVES @ + C!_

1 MOVES +!_ ;

: KTOUR (n -- construct a knight's tour from square n)

INIT RECORD-MOVE

BEGIN

SELECT-MOVE

CHECK-MOVE RECORD-MOVE

MOVES @ 64 =

UNTIL ;

(Example run)

63 KTOUR ROUTE 64 OCTAL DUMP 07 EMIT

77 65 73 61 53 74 66 54 75 67 55 76 64 72 60 52

71 63 51 70 62 50 42 34 46 27 35 56 44 36 57 45

4

37 16 24 43 31 10 2 23 4 12 0 21 40 32 20 41

33 14 6 25 17 5 13 1 22 30 11 3 15 7 26 47 ok

In the top level word we enter a loop in which we choose a move, check its

valiidity and record it in the path. The loop terminates when we have a path of

64 moves (counting the initial placement of the knight as a move). The example

solution is found after 17,739,768 provisional moves.

4 Reversible Computing and Program Seman-

tics

Logical analysis of programs for correctness implies some way of expressing the

meaning of program operations in a logical form. We do this in B using the

method of predicate transformers. When reading this forget C. x = 3 is nothing

to do with assignment. Rather it is a predicate whose truth is based on the

value of x . x := x + 1 is an assignment operation which, by changing x , can

transform the truth of a predicate based on x .

Write [S]Q for the condition that operation S will establish predicate Q .

For example:

[x := x + 1]x = 3

is the condition that executing x := x+1 will establish x = 3. That condition

is x = 2, so:

[x := x + 1]x = 3, x = 2

i.e. the operation x := x + 1 will establish x = 3 if and only if x = 2.

Mechanically we can calculate this by substituting x + 1 for x in x = 3 giving

x +1 = 3 i.e. x = 2. The whole semantics can be thought of as an extension of

the idea of substitution, which gives us the \Generalised Substitution Language"

and \B-GSL".

Non-deterministic choice between operations S and T is written S []T . Using

^ for logical and it has the rule:

[S []T]Q = [S]Q ^ [T]Q

Meaning: if a non deterministic choice must establish some condition, both

branches of the choice must be sure to do so. We are protecting ourselves against

demonic choice, also known as sods law.

Another primitive construct is the guard. g �! S (\ g guards S") will

mean, in our reversible world, do S if g is true, otherwise reverse. Its logical

rule is:

[g �! S]Q , g) [S]Q

Choice is governed by guards. Using : for logical not, consider:

g �! S []: g �! T

5

this construct must do S if g is true and T otherwise. It is equivalent to:

if g then S else T end

We name the operation that does nothing skip. We need it for the logical

analysis of:

if g then S end

which is analysed as:

g �! S []: g �! skip

An interesting operation is false �! skip. Using the given rules we have:

[false �! skip]Q ,

false) Q ,

true (since false implies anything)

So this operation will establish any condition we may wish for. Of course it

is not a real operation, except in reversible computation. In out language it will

either be a choice which is never taken, or, if it is presented as the only choice,

it causes execution to reverse. For its logical properties it has long been known

as MAGIC .

The rule for sequential composition S ; T is:

[S ; T]Q , [S][T]Q

We now have all the rules required for a semantics of reversibility. Consider

the \program":

S b= (x := 1 [] x := 2); x = 2 �! skip

According to our rules this will assign x := 2. The operational interpretation

is that if the choice x := 1 is made the guard will be false and execution will

reverse to the choice construct and take the remaining choice x := 2. Now the

guard is true and the program terminates with x = 2. The formal proof has

two parts. The �rst is to show [S]x = 2. The second is to show the result is not

due to \magic". For the second part we must show there is something S cannot

establish: : [S]false.

5 Intel Pentium Architecture

Many Forth systems for the Pentium have opted for a native code style of

implementation with subroutine threading and in-lining of short de�nitions.

E.g. Chuck Moore's ColorForth, Bernd Paysan's BigForth, and commercial

Forths from Forth Inc and MPE. In this section we brie
y review the current

generation Pentium architecture[4] [5] [6] and attempt to justify having taken

the same implementation decision.

The Pentium family inherits the i386 instruction set, itself a lightly modi�ed

32 bit form of the 8086 instruction set dating from 1976. The instruction set is

compact, with many 8 bit instructions, but unlike RISC instruction sets it was

6

not designed with the idea that opcode bits would drive processor logic in a fairly

direct way. For this reason Pentium machine code instructions are processed

via a pipeline which �rst translates them into micro operations: \�ops". For

example a call is converted int 4 �ops. The �ops are executed by a dispatch unit

capable of handling up to 5 �ops in parallel. Where logical dependencies allow

it the dispatch unit may permit out of order execution. Results are then written

back to memory or registers by a \retirement unit". In total this constitutes a

20 stage pipeline. The processor is connected to separate data and code caches,

and assuming code being executed is available in the level 0 cache the pipeline

is fed by fetches which bring 32 bytes at a time from the cache2. Whether this is

all usable machine code will depend on branches. If branching to code at the last

byte of a 32 byte cache line, the fetch obtain only one byte of executable code.

Correspondingly if executable code from the cache line contains a branch, the

code beyond the branch will not be used unless it follows a conditional branch

which is not taken. Thus branches disrupt the
ow of code through the pipeline

and the �rst rule of Pentium optimisation is to avoid them[4]. Least disruptive

is a return from a matching call. This is because the processor maintains a 16

entry shadow return stack. When a call is executed one of the actions is to push

its return address on to this internal stack. When a return occurs the internal

return stack is used to predict the return address.

Subroutine threading is the implementation technique of choice since it ex-

ploits return prediction and allows us to remove branches altogether: most Forth

primitives are short enough to compile in line. We can also apply simple but

e�ective peephole optimisations. To consider this in more detail we need to

describe the organisation of the virtual machine.

6 Machine organisation during forward execu-

tion

The virtual machine architecture has return and parameter stacks, a frame

pointer for local variables, and a history stack. The allocation of physical to

logical registers is not �xed but there is a canonical form which is taken at any

transfer or branch. The canonical allocation of virtual machine stack pointers to

hardware components is as follows (note that %esp and %esi are i386 registers

and hsp is simply a memory location labelled with that name)

Forth i386

parameter stack %esi

return stack %esp

frame pointer %edi

history stack hsp (memory)

The code de�nition of + is written as follows:3.

CODE + (n1 n2 -- n3 \n3 = n1 + n2)

xchg %esp,%esi

pop %eax

2Speci�c �gures refer to the P4
3Our meta-compiler level code de�nitions are written in Gnu i386 assembler, with the the

meta-compiler handling headers and control structures. Unlike Intel's own assembler, the

source operand of a two operand instruction is to the left.

7

pop %edx

add %edx,%eax

push %eax

xchg %esp,%esi

ret

ENDCODE

This generates 9 bytes of code, including a 1 byte return.

It is very common for code de�nitions to begin and end with an exchange

of stack pointers, as we see here. Long de�nitions are invoked via a call. Short

de�nitions (the user speci�es the meaning of short) are compiled in-line, and

peephole optimisation is applied at the joins. If + + were to be compiled, opti-

misation would remove the following operations at the join:

push %eax

xchg %esp,%esi

xchg %esp,%esi

pop %eax

This is a saving of 6 bytes, so in line compilation of + + generates 10 bytes of

code, exactly the same as two calls. Also note that it results in the top element

of the virtual machine stack being transferred between the two operations via

the %eax register.

The coding style we have adopted for primitives is not always optimal for in-

dividual operations, but optimises nicely for sequences of primitives. We expect

such sequences will occur more often in the Forth generated by our compiler

than they do in Forth written by a human expert.

7 Reverse execution: restoring changed mem-

ory

! performs the normal Forth store function, but also records the address of

the store, and the previous value at that address, on the history stack. Reverse

execution will restore the overwritten memory value. Words such as ! whose

e�ects are to be undone during reverse execution, achieve this e�ect, in part,

by depositing on the history stack the information needed to restore state, and

the execution address of the operation that is going to perform the restoration.

A series of gnu assembler macros have been provided to assist the process. For

example, the following transfers three values (which may be any immediate,

register or memory operands) to the history stack:

.macro hpush3 rm1 rm2 rm3

pushes rm1 rm2 rm3 to hstack, rm3 will be top

xchg hsp,%esp

push \rm1

push \rm2

push \rm3

xchg hsp,%esp

.endm

8

This macro is used in ! 4

CODE !_ (x addr -- "store_")

xchg %esp,%esi

pop %eax # address for store

mov (%eax),%edx #get current contents

hpush3 %eax %edx $STORE_r

pop (%eax)

xchg %esp,%esi

ret

ENDCODE

The values pushed onto the history stack are the data required to restore the

original machine state and the address of the operation which will perform the

reverse execution.

Machine organisation during reverse execution takes the following form:
Forth i386

parameter stack %esi

return stack hsp

history stack %esp

The switch to reverse computation is exempli�ed by MAGIC which always

forces it to occur:

CODE MAGIC (--)

xchg hsp,%esp #point %esp at hstack

ret #enter the most recently deposited reverse operation

noop

ENDCODE MUST-IN-LINE

All that is needed is to exchange stacks and return into the code of the most

recently deposited reverse operation.5 The usual way in which execution is

reversed is at a guard. --> removes and tests a parameter stack
ag. If zero,

it switches to reverse execution, otherwise allows execution to continue ahead.

CODE --> (f -- "guards")

lodsl # pop %eax from the parameter stack

i.e. %eax := f || %esi := %esi+4

test %eax,%eax

if zero; # reverse

xchg hsp,%esp #point %esp at hstack

ret #enter the most recently deposited reverse operation

endif

noop

ENDCODE MUST-IN-LINE

Reverse operations �nd their parameters on the i386 stack, and after consuming

them they return into the following reverse operation (return threading!). Note

4gnu assembler detail, brackets denote indirection. mov (%eax),%edx moves the contents

of the location pointed to by %eax into %edx.
5Additional details: MUST-IN-LINE tells the compiler that the most recent de�nition

must always be compiled as in line code. The noop placates the optimiser, which would

otherwise remove the ret when compiling this code in line.

9

that they are never \called", but only returned to. Here is an example: the

restore operation for store. Its coding relies on the way the history stack is

primed during the execution of a matching ! .

STORE_r:

pop %edx #old contents

pop %eax #address

mov %edx,(%eax) #restore old contents

ret # return into the next reverse computation

Unlike our previous model[9] we no longer record the e�ects of pure stack

operations for subsequent reverse execution. This does impose some limitations,

e.g. given:

: 1[]2 <CHOICE 1 [] 2 CHOICE> ;

10 1[]2 + cannot be reversed because the value 10 will not be re-established

on the stack. Where we need to pass a value across a choice and that value is

going to be consumed prior to possible backtracking, we must use a variable.

We can however use 10 1[]2 OVER + since that leaves the original stack values

unchanged, and the stack pointer is re-established by reverse execution.

8 Choice

The speci�cation of the choice construct does not detail which choice should

be taken �rst, but we make the implementation choice that the �rst choice

will be the �rst chosen. Consider the choice construct <CHOICE A [] B [] C

CHOICE>. We begin our explanation by describing the corresponding assembler

code generated by the meta compiler. In the following, A, B and C represent the

assembler code corresponding to A, B and C respectively. The automatically

generated labels would di�er depending on the point in the application where

the code was compiled, but would have the same inter-relationship. Bearing

this in mind, the code would appear as follows:

<CHOICE

choice_prefix _L226

A

jmp _L228

[]

_L226

choice_prefix _L227

B

jmp _L228

[]

_L227

final choice, no choice prefix needed

C

CHOICE>

_L228

10

For all choices except the last, we may, following the choice, at some point

backtrack to the choice construct. In that case we need to restore the value of

the parameter stack and frame pointers. The history stack is primed to achieve

this by the choice prefix macro. This takes one argument: the label of the

following choice.

.macro choice_prefix label

This code prefixes each of the choices in a choice

construct (except the last). It primes the history

stack so that reverse execution will hand control to

the given label, which the meta-compiler will arrange to

be the following choice in the choice construct.

hpush4 %esi %edi $\label $choice_r

.endm

The values pushed onto the history stack by the choice pre�x code are the

parameter and frame stack pointers, the label of the following choice, and the

address of the code fragment choice r. This primes the return stack so that

backtracking to this point will pass control to the code fragment choice r.

That code fragment must restore the parameter stack and frame pointer and

re-enter forward execution at the following choice.

choice_r: #reverse execution code for bounded choice

pre: continuation address and saved parameter stack

#pointer are on the history stack.

pop %eax #next choice addr to %eax

pop %edi #restore stack frame pointer

pop hsp #restore stack pointer

xchg hsp,%esp #set stacks for forward execution

jmp *%eax #jump to next choice

Note that we restore the parameter stack pointer but not the parameter

stack elements. We will comment further on this in the conclusions. For the

moment let us turn our attention to the return stack, which we will have to

restore in full. Consider the execution of the following test routine:

: TEST1 1[]2 ; (assume 1[]2 is called, not in-lined)

: TEST2 TEST1 1[]2 .S MAGIC ;

Assuming the �rst choice in a choice construct is the �rst chosen, the �rst time

.S is reached the stack will contain 1 1. MAGIC will force backtracking to

be invoked. Forward execution will start again from the next choice within 1[]2

and will then return. We need a mechanism to ensure, among other things, that

the return stack pointer and top return stack value are restored to the state they

were in when the previous choice was made, so that the return from 1[]2 will

be correctly performed. This is achieved by the following code which the meta

compiler appends to every compiled de�nition containing a choice construct.

mov %esp,%eax #return stack pointer

mov (%esp),%edx #top of return stack

hpush3 %edx %eax $has_choice_r

ret

11

Thus we give has choice r the task of restoring the return stack pointer and

top of stack. When has choice r subsequently runs, it can restore the return

tos location immediately, but the return stack pointer must, for the moment,

be saved in hsp, recalling that it will ultimately be restored when the operation

xchg hsp,%esp is executed in choice r.

#has_choice_r restores the return stack pointer and

#top return stack element. It is deposited on hstack

#just before exit from any secondary with the

#"has_choice" attribute

#pre: top of hstack is old return stack pointer value

next of hstack is old top element

has_choice_r:

pop %eax #the old rsp

pop %edx #the old tos

mov %edx,(%eax) #restore old tos location

mov %eax,hsp #restore the old stack pointer

Finally we need to consider what happens when backtracking returns to the

�rst occurrence of 1[]2 , i.e the one which is invoked by a call from within

TEST1 . When this occurs, the return address for TEST1 must be restored.

The mechanism used is similar to the one just described, except that we must

not alter the return stack pointer. That will be restored as described above. We

designate TEST1 as a word which inherits choice. The set of such words is

de�ned recursively as the words which invoke a word which has choice, together

with the words which invoke a word which inherits choice. The following code

is appended to words which inherit choice:

mov %esp,%eax #return stack pointer

mov (%esp),%edx #top of return stack

hpush3 %edx %eax $inherits_choice_r

ret

and the inherits choice r code fragment is:

#inherits_choice_r restores the return addr slot of

#the operation that deposited it on the hstack. It is

#deposited on hstack just before leaving any word with

#inherited_choice" attribute.

#pre: top of hstack is the addr within the return stack

where the retn addr for the operation that

deposited inherits_choice_r was held.

next of hstack is the return address itself.

inherits_choice_r:

pop %eax # return stack slot

pop %edx # return address

mov %edx,(%eax) # put it back

ret

12

9 Conclusions and Future Work

By including some degree of reversibility in the execution mechanism of a virtual

machine we can implement choice and guard constructs, which allow unobtrusive

backtracking with a procedural rather than declarative style.

We are currently adding sets to the language. At the same time we are

developing the formal semantics for a construct that provides the set all of

possible answers that can be generated by a non-deterministic program.

In the current work we have sought to maximise eÆciency by taking careful

account of the underlying physical machine architecture. However the mecha-

nisms described should be readily adaptable to other Forth implementations.

References

[1] Jean-Raymond Abrial. The B Book. Cambridge University Press, 1996.

[2] H G Baker. The Thermodynamics of Garbage Collection. In

Y Bekkers and Cohen J, editors, Memory Management: Proc IWMM'92,

number 637 in Lecture Notes in Computer Science, 1992. See

ftp://ftp.netcom.com/pub/hb/hbaker/ReverseGC.html.

[3] G Charlton. FOSM a Forth string matcher. In EuroFORML9, Marianbad,

1991.

[4] Intel Corporation. Intel Architecture Optimization Reference Manual. Intel,

1999.

[5] Intel Corporation. Desktop Performance and Optimization for Intel Pen-

tium 4 Processor. Available from www.intel.com, 2001.

[6] Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization.

Intel developer.intel.com, 2002.

[7] M L Gassenenko. Formalisation of return address manipulations and con-

trol transfers. In EuroForth, St Petersburg, 1996.

[8] B R Rodrigues. Pattern forth. Master's thesis, Bradley Univ, USA,

1989. This dissertation and other articles by the author are available at

www.zetetics.com/bj/papers.

[9] W J Stoddart. A Virtual Machine Architecture for Constraint Based

Programming. In P J Knaggs, editor, 16th EuroForth Conference, ISBN

9525310 x x, 2000.

[10] W J Stoddart. An Execution Architecture for B-GSL. In Bowen J and

Dunne S E, editors, ZB2000, Lecture Notes in Computer Science, 2000.

[11] W J Stoddart and F Zeyda. Implementing sets for reversible computation.

In A ERTL, editor, 18th EuroForth, Technical University of Vienna, 2002.

13

