
Implementing Sets for Reversible Computation

Bill Stoddart and Frank Zeyda

School of Computing and Mathematics

University of Teesside, North Yorkshire, U.K.

August 17, 2002

Abstract

Sets provide a very general tool for representing information and mod-

elling the behaviour of systems. We consider their implementation and

associated problems of garbage collection in the context of reversible com-

putation. We describe our implementation technique, which uses ordered

arrays, and discuss scalability of performance.

1 Introduction

Sets provide a very general tool for representing information and modelling the
behaviour of systems. We can use well de�ned mathematical operations to con-
struct sets and extract information from them, and can call on the mathematics
of set theory to reason about such systems. On the other hand, the implementa-
tion of sets cannot directly take advantage of the sequential nature of computer
memory, and can result in the generation of garbage. Thus a programming
language which uses sets is generally more easy to analyse but less eÆcient to
implement that a language whose data structures follow patterns suggested by
the sequential physical organisation of computer memory.

We consider these issues in the context of a reversible Forth which is be-
ing developed to act as an intermediate language for a compiler. The high level
source language for the compiler is based on GSL, Jean-Raymond Abrial's \Gen-
eralised Substitution Language", which is the basis of the B Method, a technique
for developing high integrity software supported by mathematical proof [1] and
based on set theory [3].

Reversibility brings backtracking and other techniques for constraint resolu-
tion [5], [4] and is easily incorporated within the mathematical analysis used by
the method.

We remind the reader that sets are collections of elements, in which order
and repetition have no signi�cance f1; 2; 3g represents the set containing the
numbers 1, 2 and 3. Exactly the same set can be written as f3; 2; 1g or f1; 2; 2; 3g
and in many other ways.

In this paper we consider the implementation of sets of primitive objects
(numbers and strings) and also structured sets, which may contain ordered pairs
of objects and sets of objects in arbitrary combinations. Ordered pairs, written
(x ; y), allow us to model associations between data (relations). For example
here is part of the relation between authors and articles for 16th EuroForth.

1

f (\S Pelc"; f \The VFX optimiser"; \DOCGEN" g);
(\A Ertl"; f\CONST-DOES"g); ::: g

The relation is given between authors and sets of articles, e.g. S Pelc has
written two articles, "The VFX Optimiser" and "DOCGEN".

Sets can be used to model and manipulate data of arbitrary complexity
and the formal description of operations performed on this data will usually be
simpler than if any other representation is used. On the other hand execution
eÆciency may be compromised.

2 Set literals, set operations and garbage

Consider for a moment what happens during the interaction:
1 2 + . 3 ok

The literal values 1 and 2 are created on the stack and consumed by the addition,
which leaves no trace of their existence. Now let us consider what is di�erent
in the following set calculation:

f 1 , 2 g f 2 , 3 g UNION .SET f 1 , 2 , 3 g ok

Here we have two set literals which are combined by the set union operation to
form another set as a result. However, because we do not in general know the
amount of memory that will be required to represent an arbitrary set, we create
sets on the heap, and leave pointers to them on the stack. Thus the UNION

operation expects two sets on the stack (represented by pointers) and leaves a
pointer to the result of the union operation.

Similarly we can calculate the intersection of two sets:
f 1 , 2 g f 2 , 3 g INTER .SET f 2 g ok

The problem of garbage arises because the heap space occupied by sets may still
remain allocated after we have �nished using them. Simple solutions, such as
specifying that set operations release the space occupied by the arguments they
consume, are too restrictive because these sets may still be referenced elsewhere.
For example consider:

f 1 , 2 g f 2 , 3 g 2DUP UNION -ROT INTER

The usual implementation choices for handling garbage are between main-
taining reference counts for each set literal, or just maintaining a record of allo-
cations and using a \conservative garbage collector". Reference counts provide
the best memory discipline but complicate the use of simple stack manipulation
words like DUP on sets, since if a pointer is duplicated we must also increment its
reference count. Conservative garbage collection works by scanning memory for
references to each allocated region and releasing the region if no references are
found. False references may be found, e.g. a literal value which just happens to
match an allocated address. The \conservative" aspect of the technique arises
from the cautious approach adopted when this occurs.

3 Reversible computation, garbage collection and

backtracking

Our virtual machine implementation is capable of reversible execution, by which
it can undo the internal e�ects of previously executed code. To make use of this
we augment Forth with two new constructs, choice and guard.

2

Choice is represented as:
<CHOICE <operations1> [] <operations2> ... CHOICE>

This provides a choice between executing <operations1> or <operations2>
(and possibly other choices).

The guard, represented as --> , removes a
ag from the stack. If true,
execution continues ahead. If false, execution reverses to the most recent choice.
If at that point there is still an unused choice, this choice is now made and
execution once again continues ahead. If no untried choices remain, backtracking
continues to the previous choice, or perhaps to the start of the operation. In the
latter case the whole operation is infeasible, and if invoked from the keyboard
will provoke a response of \ko" instead of \ok". Other forms of choice are also
implemented, e.g. choice of an element from a set.

Reversible execution reduces the problem of garbage collection, and with
some programming styles can eliminate it altogether, since during reverse exe-
cution any space allocated for heap objects is de-allocated automatically.[2].

4 Implementing Sets

We have experimented with a number of forms of implementation, but here we
describe the one in which we have taken the most extreme design decisions.
These are minimum concern for garbage generation, limitation to homogeneous
sets, and maximum regularity of set representation.

Sets are held as ordered arrays of elements. Each element occupies one cell
of memory. In the case of sets of numbers, each elements will just be the actual
number represented. In all other cases it will be a pointer to a representation of
the element. In addition to a list of elements, each set representation contains
a cell which holds a count of the elements, and a cell which holds a comparison
function, required to maintain the elements as an ordered array.

5 Technical Notes

EÆciency has been one of the criteria that governed our choice on how sets were
represented and implemented on a concrete target machine. In principle, di�er-
ent possible solution for their data representation could have been considered.

5.1 Data Representation of Sets

A naive approach towards representation of sets of arbitrary objects is to utilize
linked lists. Whereas enumeration could be done reasonably fast, indexed access
would involve iteration through (in the worst case all) list elements. To improve
this matter, a second approach may use arrays to represent set objects. This
allows indexed access in constant time and moreover enforces a more compact
data representation. The crucial disadvantage of both models is the complexity
of testing whether an object is contained in a given set or not. Since no assump-
tions can be made about the order of set elements the complexity of such an
operation is of linear order O(n) with respect to the set cardinality. Depending

on their precondition, the same overhead arises when invoking the insert and

3

delete operations, e.g. if we allow to call these operations for objects that may
already be contained in the set.

The model that �nally has been chosen and implemented represents sets as
ordered arrays. An ordering of the array elements proves useful as binary search
can be applied to determine if an element is contained in the set, and if so, to
obtain its position within the array. An implication of this approach is that
a comparison function has to be provided to order the elements of a set. The
function has to be unique for each possible form of set (i.e. numbers, strings,
pairs or sets themselves). Clearly, the function has to impose a total ordering
on all potential elements that might be entered into the set.

The following diagram summarises the composition of sets as memory ob-
jects:

Comparison Function 4 Bytes Reference

Cardinality 4 Bytes Value

1: Element (least) 4 Bytes Reference or Value

2: Element 4 Bytes Reference or Value

...

n: Element (greatest) 4 Bytes Reference or Value

A crucial design decision is re
ected by this model, in particular to restrict
ourselves to typed sets. In Typed Set Theory we can assume that all elements
of a given set are of the same mathematical type. Therefore, type information
only needs be recorded for the set elements as a whole (in form of a comparison
function) and not for each element individually.

5.2 Complexity of Set Operations

To determine the index of a given element within the ordered array a logarithmic
time complexity O(log n) can be assumed. A variant of this operation (with the
same complexity) can be created to enquire whether a given element is contained
in a set.

The insert and remove operations �rst have to determine the position within
the array where the element in question has to be inserted. This is necessary
since any operation that modi�es the set data structure has to maintain its
integrity, e.g. the ordering of elements. The second part of both operations
moves respective areas of memory, to make space for the new element in case
of the insert operation or to overwrite the old set element in case of the remove

operation. Indeed, this is a theoretical weak point of the model since moving
memory blocks still demands a complexity of linear order, which yields to a total
complexity of O(n)+O(log n) = O(n+log n) = O(n). However, memory moves

4

are highly optimised operations in advanced processor systems and therefore
probably wouldn't make up the bulk of the execution time.

Two important operations on sets are union and intersection. In our model,
these operation become particularly eÆcient yielding to a complexity of the
order O(n + m) if n and m are the cardinalities of both sets. The following
algorithm in pseudo code has been formulated to evaluate the intersection of
two sets. A similar algorithm can be obtained for set union.

int i := 1, j := 1, k := 1;

element1 = {Element at the i-th position of 1st Set};

element2 = {Element at the j-th position of 2nd Set};

while (i <= {Cardinality of 1st Set} and j <= {Cardinality of 2nd Set})

{

if (element1 = element2)

{

{Insert element1 at position k into the resulting Set}

i := i + 1; j := j + 1; k := k + 1;

element1 = {Element at the i-th position of 1st Set};

element2 = {Element at the j-th position of 2nd Set};

}

else {

if (element1 < element2)

{

i := i + 1;

element1 = {Element at the i-th position of 1st Set};

}

else {

j := j + 1;

element2 = {Element at the j-th position of 2nd Set};

}

}

}

A question that has been delayed so far is the complexity for comparing
two set elements. The previous considerations have been made under the quiet
assumption that comparison can be performed in constant time. This can cer-
tainly be justi�ed if the set elements are integers. In case of pairs of elements,
sets or other types a comparing algorithm has to be designed. We propose the
following algorithm to compare two given sets:

� If two sets consist of di�erent numbers of elements, compare them
due to their cardinality and return the result.

� If two sets have the same cardinality, compare the last element of
the �rst set with the last element of the second set according to their
ordering. If they are not equal return the result of the comparison.
Otherwise,

� proceed with the second last element of both sets and repeat the last
step. The whole process continues until the �rst element of both sets
is reached.

5

� If consequently the �rst elements of both sets are equal, return equal-
ity of both sets as the result of the comparison.

This algorithm involves recursive invocation if the contained elements of the
two given sets to be compared are sets themselves. The complexity is therefore
diÆcult to estimate since it depends on the anatomy of sets used in a particular
invocation, e.g. what is the expectation of comparing two sets that have the
same cardinality and agree in the last n elements. Our argument for constant
complexity of set comparison is based on the assumption that this case is rather
unlikely. Indeed, a mathematical elaboration of this problem could be done but
shouldn't be the concern of this report.

5.3 Integration of Pairs

Pairs are an essential set theoretical concept which can be used to model asso-
ciations between data in the form of functions and relations. The integration of
pairs into our model will be done in such a way that each element of a pair can
itself be of arbitrary complexity. Pairs have to be accessed by reference from a
given set since their size exceeds the minimum size of 4 byte reserved for one
set element. Another problem facing pairs as set elements is that the set itself
wouldn't know about the type if each component of a pair object, since this is
not apparent from the pair components themselves: further type information
has to be incorporated into pair data object. We do this by additional com-
parison functions. The following diagram illustrates the composition of the pair
data structure:

1st Comparison Function 4 Bytes Reference

1st Pair Element 4 Bytes Reference or Value

2nd Comparison Function 4 Bytes Reference

2nd Pair Element 4 Bytes Reference or Value

The comparison function for pairs within sets orders pairs according to their
�rst component. If the �rst components of two pairs are equal, they are ordered
by their second component. This has a particular advantage when pairs are used
in partial function de�nitions. Since all maplets are ordered respectively to their
domain values in the set representing the function, retrieving the function value
can be done as well in logarithmic time by applying binary search to �nd the
index of the according maplet.

5.4 Reversibility of Set Operations

Sets as described so far will be used as part of a reversible machine architec-
ture. This implies that all set modifying operations ought to be reversible.
Fortunately, there are only two operation which modify set objects: The insert
and delete operation to insert and remove objects from a given set, respectively.

Previously, the complexity of these operations was identi�ed to be determined

6

by a procedure to �nd the position at which the new element was to be inserted
(or removed). In a reversible environment this index is stored on a history
stack while the machine runs in forward execution mode. As soon as reverse
execution is entered, these operations merely have to fetch the index from the
history stack. In case of the delete operation further information has to be kept
concerning the element, which was deleted form the set. We can conclude that
all set operations have complexities of constant order when reverse execution is
enabled.

6 Set Integration into Forth

The model of presentation so far has been quite independent from any partic-
ular programming language. Nevertheless, some ideas about how sets can be
integrated into a standard Forth system will follow.

The �rst issue to be considered is memory allocation. Three options are
available, namely creating of set objects on the stack, on the heap or within the
dictionary memory area of a Forth system. Due to the dynamic nature of set
objects, creation on the stack, as well as in the dictionary memory area, has
been be excluded. This leaves us with the decision to treat sets as objects in
heap memory. The second problem which needs to be solved is the parsing and
creation of sets from the source input stream of a Forth system. We consider
both of the following alternatives to be feasible:

� De�nition within a specialised context of appropriate words for struc-
turing symbols in set expressions, such as \ f ", \ g " or \ ; ". The
execution time behaviour of those words will perform memory allo-
cations and initialisation of the allocated areas.

� Utilization of a Set Parser which is activated upon reading of a \ f "
bracket and invoked having read the �rst balanced \ g " bracket.

7 Conclusions

Fast processors and large memory space suggest that less eÆcient but more
abstract data representations could be of value in an executable program. Sets
are the ultimate choice of abstract data representation. Reversible computing
reduces our concern for garbage collection, allowing a very regular representa-
tion to be used in which each element occupies one cell of memory. Elements
may be numbers, or pointers to more complex forms of element. Our imple-
mentation can handles sets of numbers, sets of strings, sets of pairs and sets of
sets, where the afore-mentioned pairs and sets may themselves be of arbitrary
complexity. The more complex element forms are created on the heap dur-
ing forward execution and removed during reverse execution. This automatic
memory management will be supplemented by a conservative garbage collector.

References

[1] Jean-Raymond Abrial. The B Book. Cambridge University Press, 1996.

7

[2] H G Baker. The Thermodynamics of Garbage Collection. In Y Bekkers and
Cohen J, editors, Memory Management: Proc IWMM'92, number 637 in
Lecture Notes in Computer Science, 1992. See www.pipeline.com/ hbaker1.

[3] N Bourbaki. Th�eorie des ensembles. Masson, Paris, 1970.

[4] W J Stoddart. A Virtual Machine Architecture for Constriant Based
Programming. In P J Knaggs, editor, 16th EuroForth Conference, ISBN

9525310 x x, Lecture Note in Computer Science, 2000.

[5] W J Stoddart. An Execution Architecture for B-GSL. In Bowen J and
Dunne S E, editors, ZB2000, Lecture Notes in Computer Science, 2000.

8

