
Implementation Issues for Superinstructions in Gforth

M. Anton Ertl∗

TU Wien

David Gregg

Trinity College Dublin

Abstract

Combining Forth primitives into superinstructions pro-
vides nice speedups. Several approaches to superin-
structions were explored in the Gforth project. This
paper discusses the effects of these approaches on
performance, compilation time, implementation effort,
and on programming tools such as the decompiler and
backtracing.

1 Introduction

Traditionally, Forth has been implemented using an
interpreter for indirect threaded code. However, over
time programs have tended to depend less on spe-
cific features of this implementation technique, and an
increasing number of Forth systems have used other
implementation techniques, in particular native code
compilation.

One of the goals of the Gforth project is to provide
competetive performance, another goal is portability
to a wide range of machines. To meet the portability
goal, we decided to stay with a threaded-code engine
compiled with GCC [Ert93]; to regain ground lost on
the efficiency front, we decided to combine sequences
of primitives into superinstructions.

This technique has been proposed by Schütz [Sch92]
and implemented by Wil Baden in this4th [Bad95] and
by Marcel Hendrix in a version of eforth. Superinstruc-
tions are also used as the main optimization method in
SwiftForth (a native-code compiler).

This paper covers all the work we have done on su-
perinstructions in Gforth. Some aspects have been
discussed in detail elsewhere [EG01, EGKP02, Ert02,
EG03], and are only mentioned superficially here, with
a little new material here and there: Section 2 gives
an overview of primitive-centric code and dynamic and
static superinstructions. Section 3 looks at the basic
performance effects of superinstructions. Section 5 dis-
cusses the related work.

Other aspects are discussed here for the first time, in-
cluding different ways of selecting static superinstruc-
tions (Section 4.2) and the interaction with dynamic
superinstructions (Section 4.4), image file format issues
(Section 4.5 and 4.6) and decompilation (Section 4.8–
4.10).

∗Correspondence Address: Institut für Computersprachen,
Technische Universität Wien, Argentinierstraße 8, A-1040 Wien,
Austria; anton@mips.complang.tuwien.ac.at

header of foo

header of x
body

@ code

;s code

lit

@
;s

lit code

variable x
: foo x @ ;

Figure 1: A piece of Forth code and its representation
as primitive-centric direct threaded code

2 Superinstructions

This section explains the basic concepts of static and
dynamic superinstructions.

2.1 Primitive-centric threaded code

Unless otherwise noted, we assume in this paper that
we are using primitive-centric direct threaded code
[Ert02]. I.e., threaded code where every use of a non-
primitive (like colon definitions or variables) is com-
piled to a primitive with an immediate parameter; e.g.
a reference to a variable is compiled to a lit primitive
with the PFA (body address) of the variable as inline
parameter (see Fig. 1).

The reason for using primitive-centric code instead
of classical indirect threaded code (or some direct-
threaded variant of it) is that we can combine all prim-
itives into superinstructions, whereas we cannot com-
bine a non-primitive in classical indirect-threaded code;
e.g., consider the sequence x @, where x is a variable;
if we wanted to combine this sequence into a superin-
struction in classical code, we would need to have a
CFA for x @ in the head of x (in addition to the CFA
for x alone, which may be needed elsewhere).

Alternatively, we could change x into primitive-
centric code when creating the superinstruction, but
that is both harder to explain (so we do not do it in
this paper) and to implement (so we do not do it in
Gforth).

2.2 Dynamic superinstructions

The simplest way to construct superinstructions is to
concatenate the code of their component primitives,

ebx=IP ecx=TOS esi=SP eax=tmp

no superinstructions dynamic superinstructions static superinstructions

Code lit Code lit+

mov dword ptr [esi], ecx mov dword ptr [esi], ecx mov eax, dword ptr [ebx]

mov ecx, dword ptr [ebx] mov ecx, dword ptr [ebx] add ebx, # 8

add esi, # -4 add esi, # -4 add ecx, eax

add ebx, # 8 add ebx, # 8 jmp dword ptr -4[ebx]

jmp dword ptr -4[ebx] end-code

end-code

Code +

mov eax, dword ptr 4[esi] mov eax, dword ptr 4[esi]

add esi, # 4 add esi, # 4

add ebx, # 4 add ebx, # 4

add ecx, eax add ecx, eax

jmp dword ptr -4[ebx] \ append next primitive

end-code

Figure 2: The native code of static and dynamic superinstructions

leaving away the dispatch jump (see Fig. 2, middle).

This way of constructing superinstructions is so easy
that we can do it while the Forth system compiles the
Forth program to threaded code, i.e., at run-time of the
Forth system (dynamically), with very little machine-
specific code:

We just have to set up a memory region for the na-
tive code of the superinstructions. When the Forth sys-
tem compiles a primitive, it copies the native code of
the currently-compiled primitive without the dispatch
jump to the end of the current superinstruction. Af-
ter each branching primitive (including, e.g., ;s com-
piled by exit) a dispatch jump is appended. On the
threaded-code side the Forth compiler compiles point-
ers to this dynamically generated native code instead
of pointers to the original primitives.

This approach has been proposed by Piumarta and
Riccardi [PR98], with improvements proposed by us
[EG03]. Gforth 0.6 uses dynamic superinstructions by
default on most architectures.

2.3 Static superinstructions

In the code of a dynamic superinstruction, there are
a lot of optimization opportunities, in particular for
the stack accesses: many stores to and loads from the
stacks can be eliminated by keeping the stack item in a
register, and several stack pointer updates for one stack
can be combined into one update or even eliminated.
E.g., consider the lit+ superinstruction in Fig. 2: It
eliminates the data stack store of lit and the data
stack load of +, and eliminates the data stack pointer
updates of both; as a result, this superinstruction is
shorter than either lit or +.

Unfortunately, these optimizations cannot be per-
formed at run-time with less effort (and lack of porta-
bility) than it would take to build an optimizing native-

code compiler of the calibre of VFX [Pel98] (or, if we
are content with optimizing only the simple cases, big-
Forth [Pay91]); and if we were willing invest that effort,
there would be not much point to think in terms of su-
perinstructions at all.

However, we can decide in advance that we want
to use specific superinstructions, and optimize them.
Then, at Forth system run-time, when compiling Forth
code, use the optimized superinstruction whenever the
appropriate sequence of primitives comes up.

Optimizing the superinstructions in advance is often
done manually, e.g., in SwiftForth. Vmgen [EGKP02],
the generator used to build Gforth’s engine, supports
optimizing superinstructions automatically, and also
helps determining which sequences occur frequently,
thus supporting the selection of profitable superin-
structions.

Selecting a good set of static superinstructions is an
interesting topic that we have explored earlier [GW02]
and will not discuss further here.

Gforth 0.6.2 uses a set of 27 static superinstructions
in the gforth-fast engine.

3 Basic Performance

In this section we look at the basic performance effects
of various forms of superinstructions.

The performance effects of superinstructions depend
very much on the microarchitecture of the processor, in
particular on the cost of a branch misprediction, on the
indirect branch predictor, and on the store bandwidth.

On most popular general-purpose processors today
(e.g., the Pentium 4, the Athlon family, the Pentium III
family, and the Alpha 21264 family) the cost of a
branch misprediction is high (≥ 10 cycles), they have a
branch target buffer (BTB) or similar feature for pre-
dicting indirect branches, and store bandwidth is not

an issue in our context. We will concentrate on such
processors in this section, because we have most expe-
rience and measurements with such processors.

Common properties of other processors are:

• Branch mispredictions are relatively expensive (≥
5 cycles) and they always mispredict indirect
branches (most PowerPCs and the Alpha 21164).

• Branches are relatively cheap (2 cycles) and there
is no branch prediction (R3000, StrongARM).

• The processor has limited store bandwidth due
to a write-through L1 cache and limited band-
width to outer layers of the memory hierarchy
(microSPARC II, 486DX2/66, 21164PC, 21064a,
XScale).

Such processors are often used in embedded systems.
The following intermediate effects have very different
performance effects on the different processor classes.

3.1 Indirect Branch Prediction

Processors with BTBs mispredict 50%–60% of the in-
direct branches for typical threaded-code interpreters
[EG01]. Since the branch mispredict penalty is quite
high on such processors, they can spend 60% of their
time (for Athlon and Celeron on Gforth running bench-
gc) in branch mispredictions [EG03].

Nearly all of these mispredictions can be eliminated
with a technique called dynamic replication [EG03],
where each instance of a primitive in the threaded code
gets its own copy of the native code for the primi-
tive and, in particular, its dispatch indirect branch.
This leads to speedups by up to a factor of 2.39 on a
Celeron 800 [EG03].

Superinstructions also have a replication effect (they
introduce more different dispatch branches), and this is
their dominant performance effect on processors with
BTBs.

In particular, dynamic superinstructions as imple-
mented in Gforth perform dynamic replication as well
(if the same dynamic superinstruction occurs twice, its
native code is generated and used twice), and therefore
have the same effect on indirect branch prediction as
dynamic replication.

Static superinstructions alone have less replication
effect, reducing the misprediction rate to 20%–30%
[EG03]. As a result, static superinstructions alone pro-
vide less of a speedup than dynamic superinstructions
alone, in spite of the reduction in executed instructions
that static superinstructions provide.

However, static superinstructions can be combined
with dynamic superinstructions (see Section 4.4) to
gain all the branch prediction benefits of dynamic su-
perinstructions and the other benefits of static superin-
structions.

Of course, on processors without BTBs, there is no
benefit to replication and the replicative effects of su-
perinstructions.

3.2 Reducing indirect branches

The benefit of dynamic superinstructions (with repli-
cation) over dynamic replication alone is the reduc-
tion in dispatch branches (and maybe other parts of
NEXT). On processors with BTBs correctly predicted
branches are relatively cheap (e.g., 2.2 cycles or less
on the Athlon), so the benefit of this optimization is
relatively small on such processors (a factor 1.18–1.32
on the Celeron, for a total speedup from dynamic su-
perinstructions over ordinary threaded code of a factor
of up to 3.09 [EG03]).

On processors without a BTB and relatively expen-
sive indirect branches this benefit is higher: factor
1.36–1.61 on a PPC604e, 1.30-1.52 on a 21164a.

Dynamic superinstructions always eliminate all but
one of the dispatch branches within a basic block
(straight-line code sequence). This typically reduces
the number of executed dispatch branches by a factor
of about 3 on Gforth code; optimizations that increase
the basic block length (in particular, inlining) would
enhance this effect.

By contrast, static superinstructions alone reduce
the number of dispatch branches only by about a factor
of about 1.5. Again, the combination of dynamic and
static superinstructions offers the same reduction in
dispatch branches as dynamic superinstructions alone,
while gaining all of the other benefits of static superin-
structions.

Reducing dispatch branches has no performance ef-
fect on processors that are store bandwidth limited
most or all of the time (e.g. MicroSPARC II).

3.3 Reducing other instructions

The main benefit of static superinstructions over dy-
namic superinstructions is the reduction in stack loads,
stack stores, and stack pointer updates. In some cases,
additional optimizations are possible (e.g., combining
the main computation of cells + @ into one instruc-
tion on the 386 architecture).

We can isolate this benefit by comparing dynamic su-
perinstructions alone with the combination of dyamic
and static superinstructions. Both variants have the
same behaviour with respect to branch prediction and
the number of dispatch branches, so the only differ-
ences are the optimizations that static superinstruc-
tions have. Also, these two variants are the two vari-
ants we would commonly expect to be used on general-
purpose machines.

The results on the Athlon are relatively disappoint-
ing. For a realistic selection of superinstructions we see
only speedups by factors around 1.1.

We then checked what is possible in the best case
(better than realistically possible), and selected su-
perinstructions to cover the 300 most frequently ex-
ecuted basic blocks of the benchmark brainless, and
then used them on a run of the same benchmark. As
a result, we saw speedups of 1.22 on a Pentium 4,
1.25 on a Pentium III, and 1.20 on an Athlon. Per-

formance counters measurements revealed a reduction
by a factor of 1.6 in the number of executed (retired)
instructions. Further investigations with the perfor-
mance counters did not turn up a good explanation yet
why the speedup is so much lower than the reduction
in the number of executed instructions.

On other kinds of processors the speedups may be
better. In particular, we expect better speedups on
simple processors with more uniform instruction exe-
cution times like the R3000 and the StrongARM, and
on processors that are store bandwidth limited, like
the microSPARC II. However, we have yet to perform
these measurements.

3.4 Instruction cache misses

Many people expect that instruction cache misses be-
come a problem with dynamic dynamic superinstruc-
tions as implemented in Gforth (with replication). In
our benchmarking only on one benchmark (brainless)
on the Celeron-800 (but not on the Athlon) the effect
of the increase in I-cache misses was larger than the ef-
fect of the reduction in branch mispredictions [EG03].
We think that I-cache misses are not a big problem for
most applications.

One way to think about this is that the native code
produced by dynamic superinstructions is similar to
the code produced by a native code compiler (larger
only by a small constant factor). If I-cache misses are
not a big issue for native-code compilers, they are not
a big issue for dynamic superinstructions, either.

3.5 Compile time

Some people worry about the cost of the code copying
taking place with dynamic superinstructions. When
loading the Gforth image for the 386 (containing about
15000 words of threaded code (plus immediate argu-
ments, headers, etc.), with about 200KB of native
code generated, this takes about 5 ms on a Celeron-
800. Moreover, the speedup over plain threaded code
amortizes this overhead already during the Forth-level
startup code, leading to the same total startup times
(17 ms on a Celeron-800).[EG03]

4 Details

4.1 Threaded-code slots

In the original proposals for both dynamic superin-
structions [PR98] and for static superinstructions
[EGKP02] there were no threaded-code slots for
optimized-away primitives (see Fig. 3, left). This was
also the case for the first implementation of static su-
perinstructions in Gforth.

However, the dynamic superinstruction implemen-
tation in Gforth and the new static superinstruction
implementation leave slots for these primitives (Fig. 3,
right). This has a number of advantages, and a few
minor disadvantages. Most of them are discussed

lit@lit+
a
5

lit@lit+
a

5
@

+

Figure 3: Threaded code for the superinstruction for a
@ 5 + without and with slots for the optimized-away
primitives

in subsequent sections; here we will discuss only the
threaded-code size issue.

The most obvious disadvantage is that superinstruc-
tions no longer reduce the threaded-code size. How
much threaded code would we save? The Gforth im-
age for the 386 architecture contains 181KB of Forth
code and data. Of that, 60KB is in threaded code
words (without inline parameters). By eliminating the
unused slots of static superinstructions, we could elim-
inate about 20KB (depending on the set of static su-
perinstructions). By eliminating the unused slots of
dynamic superinstructions, we could eliminate about
40KB of threaded code.

4.2 Static superinstruction selection

variants

The first implementation of static superinstructions
used a very simple greedy peephole optimization algo-
rithm for selecting superinstructions: It always looked
if the current primitive can be combined with the last
one compiled. If it could, the last one was updated in
place, otherwise the current one was compiled with ,.

For longer superinstructions, this method requires
that all prefixes are present. I.e., lit@lit+ would
require the prefixes lit@lit and lit@, otherwise it
would never optimize a sequence into lit@lit+.

Another disadvantage of this method is that it may
miss the optimal solution. E.g., if there are superin-
structions AB and BCDEF (and its prefixes), then the
greedy method will compile A B C D E F into AB C D

E F, whereas A BCDEF would probably be better.
It is possible to eliminate the prefix requirement

and use optimal superinstruction selection with var-
ious metrics for optimality, such as minimum native
code size, minimum number of loads, stores and stack
pointer updates, or minimum number of static su-
perinstructions. This superinstruction selection algo-
rithm uses dynamic programming[BCW90], as usual
in shortest-path algorithms:

We start by compiling the code in the usual way
(without any superinstruction selection), but in addi-
tion we record the address of each threaded-code word.
When we reach the end of a basic block (i.e., some
control-flow word, e.g., a call), we compute the opti-
mal solution (see below), then rewrite the threaded-
code words in the basic block to use the instructions in
the optimal solution. Since the slots for the optimized-
away instructions stay where they are, we can leave the

cycles

max. superinst length
2 4 6 8 10

200

250

300

Figure 4: Additional compile time per primitive for
optimal superinstruction selection on an Athlon-1200

immediate arguments in the code just where they are.
Computing the optimal solution starts from the end

of the basic block, goes backwards, and always com-
putes the best solution from the current position to
the end of the basic block. At each position it looks at
all the superinstructions possible in this position, and
computes which of them is cheapest when you add the
cost of the superinstruction and the optimal cost from
the end of the superinstruction to the end of the ba-
sic block (we have computed these costs before). This
algorithm takes O(nm) time, where n is the length of
the basic block, and m is the length of the longest su-
perinstruction.

Preliminary results indicate that this optimal su-
perinstruction selection does not buy a significant
speedup over the greedy scheme, at least for the sets
of superinstructions that we have tried.

Given that the performance effect of this optimal al-
gorithm is small, what are its costs? On a 1200MHz
Athlon, it costs 199–315 cycles per compiled primitive,
depending on the length of the longest superinstruc-
tion, see Fig. 4; the line flattens for longer superin-
structions because there are fewer basic blocks of that
length. The total additional cost is 2.5ms–4ms when
loading the Gforth image. This code is not very opti-
mized, and could be sped up significantly, e.g., by using
an automaton for the shortest-path search [Pro95a].

4.3 Superinstructions across basic

blocks

There is no reason to limit superinstructions to basic
blocks. There are two kinds of basic block boundaries:

Entry points: We have slots for all original primi-
tives, and they are filled with correct code. There-
fore, any slot is a correct entry point, even if it
is skipped by some superinstructions (see Fig. 5,
left).

ABCD
BCD
CD
D

entry:

?branchB
target

B

 ...
 test TOS
 jne nottaken
 mov ip, ...
 NEXT
nottaken:
 add ip, #4
 \ no NEXT
 native code for B

Figure 5: Superinstructions across entry points and
across conditional branches

Branches: Unconditional branches end a superin-
struction, because dealing with threaded-code
control flow changes within a superinstruction
would be too complicated. But for the not-taken
path of a conditional branch primitive the superin-
struction can continue. For dynamic superinstruc-
tions the native code ?branch (and other condi-
tional branch primitives) must be arranged such
that the dispatch branch of the fall-through path
through the primitive is last. Then it can be
left away to continue the dynamic superinstruc-
tion (see Fig. 5, right).

Gforth 0.6.2 supports static and dynamic superin-
structions across entry points, and dynamic superin-
structions across conditional branches.

The speedups from this improvement are relatively
small (up to 1.11 for brainless on the Celeron-800
[EG03]). The reason for this is that most dynamically
occuring basic block boundaries in Forth are calls, re-
turns, and the corresponding entry and return points;
conditional branches and entry points joining another
path are only a minority.

One benefit of being able to use superinstructions
across entry points is that it simplifies the image loader:
We do not need to scan the images for entry points.

4.4 Combining static and dynamic su-

perinstructions

Implementing only dynamic superinstructions is easy:
just append the native code of the currently compiled
primitive at the end of the native code region, some-
times without, sometimes with the dispatch branch at
the end.

The addition of static superinstructions complicates
this slightly. Static superinstructions skip some in-
struction slots during execution, and this should be
reflected during dynamic superinstruction generation.
Dynamic superinstruction generation is performed dur-
ing the rewriting step of static superinstruction selec-
tion. We just keep track of which slot is the next one
that should not be skipped.

As a result, in the end the threaded code contains
a mixture of references to statically and dynamically
generated native code (see Fig. 6). If you start ex-
ecuting the sequence at the start, you will only exe-

a
b
c
d
e

abc
bcd

c
de
e

ABCDE
bcd

c
DE
e

original static static+
dynamic

code for ABC
code for DE

dynamic
native code

Figure 6: Superinstructions generated by combining
static and dynamic superinstructions. Case distin-
guishes references to statically and dynamically gen-
erated native code.

cute dynamically generated code (with its advantages
in branch prediction and dispatch branch elimination).
However, if you enter the sequence somewhere else, you
might execute one or more statically generated superin-
structions or primitives before hitting dynamically gen-
erated native code.

One way to avoid this would be not to allow sta-
tic superinstructions across entry points. This would
allow us to gain more of the advantages of dynamic
superinstructions, but foregoes some of the advantages
of static superinstructions.

Currently we have implemented only one variant
(static superinstructions across entry points, because
there is no easy way to determine all entry points in
an image), so we cannot say which variant performs
better.

4.5 Image format

One of the goals in Gforth development is to have a
relatively stable image file format. If superinstructions
were represented in the image file, we would have a
much harder time to adapt the set of static superin-
structions in the engine to new insights or to the in-
dividual capabilities of the platform (in particular, the
amount of RAM for compiling the engine).

The first implementation of static superinstructions
required representing superinstructions in the image
file: there was only one threaded code slot for the su-
perinstruction, so we needed to encode the whole su-
perinstruction there, or information would be lost.

In contrast, in the current implementation (0.6.2),
we can encode the original primitives in the image file,
and combine them into superinstructions at image load
time.

4.6 Image generation

A related issue is the way the images are generated.
There are two ways of generating Gforth images: using
the cross compiler (mainly used for building a kernel),
and using the Forth compiler (used for extending the
system beyond the kernel).

If superinstructions were represented in the image,
both compilers would have to be extended to generate
superinstructions in order to make full use of them. In
the first implementation, only the Forth compiler was

extended, so superinstructions were not used in the
kernel.

In the Gforth 0.6.2 the superinstruction generation
(for the static and dynamic superinstructions) is im-
plemented only once, and called by both the image
loader and the Forth compiler; the cross compiler does
not have the slightest idea if and what kind of superin-
structions will be used for the images it generates.

A minor disadvantage (for Forth fans) of this design
is that superinstruction generation is not implemented
in Forth, because it is used by the image loader, and
that runs before Forth code can be run.

4.7 Superinstruction primitives

There are some primitives in Gforth that would serve
nicely as static superinstructions: These primitives in-
clude lit+ and lit@ used by the cross compiler to
implement non-primitives in a uniform way (one prim-
itive with one immediate argument); and words like
?dup-?branch, ?dup-0=-?branch, under+, nip, tuck,
-rot etc., where users often use equivalent sequences
of primitives.

Unfortunately, these primitives cannot be used as
static superinstructions in the current implementation:
the superinstruction implementation leaves slots for
the component primitives, but these primitives do not
expect such slots.

So these primitives are not used as superinstructions.
Instead, there are superinstructions for some of the
equivalent sequences (e.g., lit @). A consequence of
this is that a static superinstruction containing either
lit@ or lit @ can be applied in fewer cases, or equiva-
lently, we need more static superinstructions to achieve
the same amount of optimization. This can be partially
addressed by changing at least the Forth compiler to
generate lit @ instead of lit@ (then lit@ occurs only
in code produced by the cross compiler). We have not
yet evaluated the effect of this change.

Another way to address this problem would be to
put a small greedy peephole optimizer into compile,

that combines such sequences of primitives into equiv-
alent primitives before passing them on to static and
dynamic superinstruction generation.

Alternatively, these words could be expanded to the
equivalent sequences by compile,, and static superin-
struction selection would combine them again (possibly
with other primitives). Once we integrate an inliner
into Gforth, we would get this solution for free.

In conclusion, keeping the original primitive slots has
some disadvantages, but overall the advantages out-
weigh the disadvantages.

4.8 Decompiler

The decompiler is a variation of the original threaded-
code decompiler. In its original form, it steps through
the threaded code, looks at the code addresses present
there, looks up the corresponding primitive name and

prints it (for simple-see), or does additional process-
ing to recover the control structure and the non-
primitives (for see).

For accommodating superinstructions, the decom-
piler stays essentially the same, except for a few well-
placed calls to decompile-prim, which takes the code
address pointing to a superinstruction and returns the
code address of the first primitive in the superinstruc-
tion.

Internally, decompile-prim takes a look at the start
of the code pointed to by the code address, and searches
among the primitives and the static superinstructions
for the longest match1. If decompile-prim finds a
primitive, it just returns its code address; if it finds
a static superinstruction, it returns the code address
of the first component primitive of the static superin-
struction.

Here, keeping the original primitive slots provides a
significant advantage: Without them, the decompiler
would have to know about superinstructions and keep
track of how much of a superinstruction it has already
processed.

4.9 Backtracer

If the Forth program produces an uncaught exception,
Gforth prints a backtrace. The backtrace is generated
by recording the return stack when the first exception
happens. For exceptions produced by primitives (e.g.,
accessing the wrong address with @), the engine pushes
the current IP (instruction pointer) on the return stack
before throwing the exception. The backtracer then
produces the name of the primitive just like the de-
compiler, using decompile-prim.

One complication is that, with static superinstruc-
tions, the current IP is not precisely known, as the ex-
ception may have happened at any of the components
of the static superinstruction.

Our approach to this problem is to use static su-
perinstructions only in the gforth-fast engine, which
cannot produce full backtraces for exceptions caused
by primitives anyway. In the gforth engine for de-
bugging and for programs that are not time critical,
we use only dynamic superinstructions; since only the
dispatch jumps are optimized away by dynamic su-
perinstructions in Gforth, each component primitive
still records the IP when it starts executing.

Moreover, optimizing away stack accesses as hap-
pens in static superinstructions would be of question-
able utility for the debugging engine, as it might cover
up some stack overflow errors. We have already dis-
abled keeping the TOS in a register in the gforth en-
gine in order to catch all stack underflows. Therefore
we might just as well go a little slower again to catch
all stack overflows right when they happen.

1If it just searches for any match, this could match a primi-
tive that is a prefix of some other primitive (depending on the
placement of the IP update), so searching for the longest match
is safer. E.g., on the 386 architecture the code for lit is a prefix
of the code for lit@.

On the other hand, stack overflows are less likely
to be missed completely, and more likely to occur at
some other place than the cause of the error; and in
the absense of TOS caching, static superinstructions
might provide more speedup.

4.10 Debugger

While many people advocate other debugging meth-
ods, some users still like to have stepping or tracing
debuggers. In Gforth there is such a debugger that is
based on patching the threaded code.2 Here are the
issues that such a debugger has in the presence of su-
perinstructions:

Since such a debugger works by potentially patch-
ing the threaded code of each executed primitive, it
requires that all the dispatches through the threaded
code are actually performed. This means that there
must be no superinstructions at all. Gforth actually
provides such options (--no-super for disabling dy-
namic superinstructions, --ss-number=0 for disabling
static superinstructions), which still gives the user dy-
namic replication, which provides most of the speedup
on processors with BTBs anyway.

Alternatively, the debugger could be modified to
work by patching only threaded code that is guaran-
teed to be used in a dispatch; i.e. all the branch targets
in a sequence of code. The debugger could show each
sequence as one step, or use other methods to provide
stepping within the sequence.

5 Related work

Superinstructions have been used in interpreters for a
long time without leaving much trace in the published
literature. The first publication we are aware of is on
the related but more complex topic of superoperators
[Hug82] in the context of combinator graph reduction
for implementing lazy functional languages.

In the Forth community, the first publication we are
aware of is by Schütz [Sch92]. Wil Baden [Bad95] also
proposes using superinstructions, with a simple, greedy
peephole optimization (called pinhole optimization by
Baden).

Proebsting proposes a related scheme called superop-
erators for a C interpreter [Pro95b]. With superopera-
tors a part of an expression tree is combined, instead of
a sequence of instructions. Both schemes can do things
that the other scheme cannot do, so it is unclear which
one performs better.

Rossi and Sivalingam sketch dynamic superinstruc-
tions [RS96]. Piumarta and Riccardi discuss and eval-
uate them in more detail [PR98].

We propose automatic generation of optimized static
superinstructions, originally with greedy superinstruc-

2In Gforth 0.6, this debugger does not work, because it has
not been kept up to date with the changes since 0.5.0 like
primitive-centric threaded code and branches with absolute tar-
get addresses.

tion selection [EGKP02]. Gregg and Waldron eval-
uated strategies for selecting superinstructions from
profile runs [GW02]. Primitive-centric threaded code
is an enabling technology for using superinstructions
[Ert02] (that paper also contains some superinstruc-
tion results).

Recently, we evaluated various techniques for re-
ducing indirect branch mispredictions [EG03], among
them dynamic and static superinstructions and their
combination, providing the first empirical comparison
of these techniques.

A classical method of generating native code for
Forth is to inline the primitives [Ros86]; this corre-
sponds to using dynamic superinstructions. SwiftForth
combines this with using static superinstructions. The
difference between a threaded-code interpreter employ-
ing dynamic (and maybe static) superinstructions and
such a native-code compiler is that the interpreter still
takes all the immediate arguments of the primitives
(e.g., the target address of a call) from the threaded
code, whereas the native-code compiler usually com-
piles these arguments directly into the native code.

6 Conclusion

Superinstructions can speed up Forth interpreters. For
modern desktop processors, the biggest speedup comes
from improved indirect branch prediction, resulting in
a total speedup of up to a factor of 3.17 (a factor of 2
is more typical, though).

There are a number of implementation issues and
design decisions when dealing with superinstructions
that we have looked at in this paper: Selecting sta-
tic superinstructions for a given sequence of primi-
tives, where to end superinstructions, combining sta-
tic and dynamic superinstructions, image format and
cross-compilation issues, decompilation, backtracing,
and debugging.

One apparently minor design decision is to keep slots
for the original primitives in the threaded code for the
superinstruction; this is helpful for most of the other
implementation issues (static superinstruction selec-
tion, extending superinstructions across entry points,
image format stability and cross-compiler simplicity,
decompilation, and backtracing) and has only a few
drawbacks (larger threaded-code size, and the inabil-
ity to use existing primitives as superinstructions).

References

[Bad95] Wil Baden. Pinhole optimization. Forth
Dimensions, 17(2):29–35, 1995.

[BCW90] Timothy C. Bell, John G. Cleary, and
Ian H. Witten. Text Compression.
Prentice-Hall, 1990.

[EG01] M. Anton Ertl and David Gregg. The
behaviour of efficient virtual machine in-
terpreters on modern architectures. In

Euro-Par 2001, pages 403–412. Springer
LNCS 2150, 2001.

[EG03] M. Anton Ertl and David Gregg. Optimiz-
ing indirect branch prediction accuracy in
virtual machine interpreters. In SIGPLAN
’03 Conference on Programming Language
Design and Implementation, 2003.

[EGKP02] M. Anton Ertl, David Gregg, Andreas
Krall, and Bernd Paysan. vmgen — a
generator of efficient virtual machine in-
terpreters. Software—Practice and Expe-
rience, 32(3):265–294, 2002.

[Ert93] M. Anton Ertl. A portable Forth engine.
In EuroFORTH ’93 conference proceedings,
Mariánské Láznè (Marienbad), 1993.

[Ert02] M. Anton Ertl. Threaded code vari-
ations and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002.

[GW02] David Gregg and John Waldron. Prim-
itive sequences in general purpose Forth
programs. In M. Anton Ertl, editor, 18th
EuroForth Conference, pages 24–32, 2002.
Refereed.

[Hug82] R. J. M. Hughes. Super-combinators. In
Conference Record of the 1980 LISP Con-
ference, Stanford, CA, pages 1–11, New
York, 1982. ACM.

[Pay91] Bernd Paysan. Ein optimierender Forth-
Compiler. Vierte Dimension, 7(3):22–25,
September 1991.

[Pel98] Stephen Pelc. The MPE VFX Forth code
generator. In EuroForth ’98, 1998.

[PR98] Ian Piumarta and Fabio Riccardi. Optimiz-
ing direct threaded code by selective inlin-
ing. In SIGPLAN ’98 Conference on Pro-
gramming Language Design and Implemen-
tation, pages 291–300, 1998.

[Pro95a] Todd A. Proebsting. BURS automata gen-
eration. ACM Transactions on Program-
ming Languages and Systems, 17(3):461–
486, May 1995.

[Pro95b] Todd A. Proebsting. Optimizing an
ANSI C interpreter with superoperators.
In Principles of Programming Languages
(POPL ’95), pages 322–332, 1995.

[Ros86] Anthony Rose. Design of a fast 68000-based
subroutine-threaded Forth with inline code
& an optimizer. Journal of Forth Appli-
cation and Research, 4(2):285–288, 1986.
1986 Rochester Forth Conference.

[RS96] Markku Rossi and Kengatharan
Sivalingam. A survey of instruction dis-
patch techniques for byte-code interpreters.
Technical Report TKO-C79, Faculty of In-
formation Technology, Helsinki University
of Technology, May 1996.

[Sch92] Udo Schütz. Optimierung von Fadencode.
In FORTH-Tagung, Rostock, 1992. Forth
Gesellschaft e.V.

