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Abstract

As programming environments and operating systems grow in com-
plexity, students of computer science find it increasingly difficult to gain
a holistic understanding of the computer systems they study. ”Popit” is
a Forth-like language designed to be implemented by students in order
to expose them to a complete, though simple, programming system and
virtual machine. The Popit implementation exercise is used in a group
project module in the second year of the course, where it is implemented
in C. In the fourth year of the course it is offered as an individual project
to be implemented in Scheme.
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1 Introduction

Over a generation the complexity of the computing environment faced by stu-
dents has changed by several orders of magnitude. From small machines with
simple software support and fully described hardware interfaces, we have evolved
to the use of complex operating systems where even simple functionality is
wrapped in millions of lines of code. The effect of these changes is that students
have a less holistic understanding of the computing environment and “subject
knowledge” appears fragmented and arbitrary, rather than based on fundamen-
tal principles.

In an attempt to counter these trends we have developed project work in which
students implement a simple stack based virtual machine and programming
environment which we call “Popit”. Popit draws heavily from the directness
and simplicity of Forth. Second year students implement and program in Popit
as part of a group project assignment in C. Final year students may choose the
implementation of Popit in Scheme as an individual project.

The paper is organized as follows. In section 2 we describe aspects of the Popit
language. In section 3 we give some examples of Popit programs. In section
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4 we describe the C version of the project. In section 5 we discuss project
management and assessment. In section 6 we describe the Scheme version of
the project and in section 7 we draw our conclusions.

2 The Popit Language

Popit is a close relative of Forth and uses an identical stack organization with
separate parameter and return stacks. Where possible it uses the same operation
names as Forth. However, it is less ambitious in terms of extensibility and less
crash prone.

Consider this standard Forth code which declares a variable X, sets its value to
100 and then prints its value.

VARIABLE X 100 X ! X @ .

Here use of X pushes the address of X onto the stack. Accessing the memory at
this address requires use of @ “fetch” or ! “store”. In Popit these words are
not available. Our approach is that variables must be responsible for storing or
returning their associated values. For simple variables, we can remain within
standard Forth whilst doing this by use of VALUE. An example usage which
achieves a similar effect to the above is:

VALUE X 100 TO X X .

By adopting this style we avoid invalid memory access arising from careless use
of raw memory access words, but we lose some powerful primitives which can
used in Forth when creating new defining words. For example in Forth VALUE

itself can be defined with these primitives.

In Forth, control structures such as IF ELSE THEN can be provided by defining
the key words of the structure in Forth itself as immediate words: words which
act immediately during compilation rather than being incorporated into a new
definition. This is another aspect of extensibility that we do not include within
Popit, where IF ELSE THEN are built-in key words. Each token in Popit is
first checked to see if it is a key word, of not it is then checked against the names
of operations, and if a match is still not found an attempt is made to interpret
it as a number. An effect of this scheme is that key words cannot be redefined.
The possibly unwise definition : IF 2 ; will be accepted by Popit, but never
seen, as IF is always seen first as a key word.

3 Popit Programming

Despite the limitations mentioned above, we want students to appreciate the
inherent extensibility of postfix notation, and to this end we provide a limited
number of condition-tests which they are invited to extend with definitions such
as:

: >= ( n1 n2 -- f, f is true iff n1 greater than or equal to n2 )

2



< NOT ;

We emphasise, by comparison with C, how perfectly such new operations inte-
grate into the language.

Local variables are not provided in Popit, but we can do quite well without
them by defining a user stack.

10000 CONSTANT USER-STACK-SIZE

USER-STACK-SIZE VALUE-ARRAY USTACK

VALUE USP 1 TO USP

: PUSH ( n -- push n onto user stack, PRE: USP < USER-STACK-SIZE )

TO [ USP ] OF USTACK ( move n into the user stack )

USP 1 + TO USP ( increment the user stack pointer ) ;

: POP ( -- n, pop n from the user stack, PRE: USP > 0 )

USP 1 - TO USP ( decrement the stack pointer )

[ USP ] OF USTACK ( move n to the data stack ) ;

: USEMPTY ( -- flag ) USP 1 = ;

: USFULL ( -- flag ) USP USER-STACK-SIZE = ;

The user stack allows global variables to be borrowed for a local purpose. We
illustrate this in the following “Towers of Hanoi” example. We have three poles,
1, 2 and 3. We have to move a pile of discs from one to another via the third,
moving one disc at a time and never placing a larger disc upon a smaller one.
Note that, unlike Forth, recursion is expressed by invoking an operation by
name within its own definition. The definition of HANOI uses the variables N,
FROM-POLE and TO-POLE at each level of recursion, using the user stack to save
and restore their previous values.

VALUE N VALUE FROM-POLE VALUE TO-POLE

: VIA ( -- via, where FROM+TO+via=6 ) 6 FROM-POLE TO-POLE + - ;

: MOVE-DISC ( from to -- )

CR

." Move disc from pole " SWAP .

." to pole " . ;

: HANOI ( ndiscs from to -- )

N PUSH FROM-POLE PUSH TO-POLE PUSH

TO TO-POLE TO FROM-POLE TO N

N 1 =

IF

FROM-POLE TO-POLE MOVE-DISC

ELSE

N 1 - FROM-POLE VIA HANOI
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FROM-POLE TO-POLE MOVE-DISC

N 1 - VIA TO-POLE HANOI

THEN

POP TO TO-POLE POP TO FROM-POLE POP TO N ;

4 The C Project

The project is done in teams of four students. The project is broken down
into a number of components: text input (keyboard or file), lexical analysis
(same as Forth’s), numeric i/o conversions, virtual machine components such as
memory and inner interpreter, virtual machine operations, and the operations
table, handling the lookup and addition of new operations.

We have run the project in different ways, either letting students take fairly
complete responsibility for design, or, at the other extreme, providing object
code for each program component and requiring them to write code that exactly
duplicates its function (which is also carefully specified). Neither approach is
best in all ways or for all students. Our instincts would be to allow maximum
freedom, but the lack of grounding we observe in our current students means
we have moved completely to the second approach.

Because we are interested in students getting to grips with fundamentals of
programming, we want them to write from the ground up, rather than using
the C library. However, banning the use of the library could send a confusing
message in the context of their overall development, so we don’t go that far.
Instead we specify system components in such a way that the library routines
do not quite do what is required. For example the C library routine strtol will
perform string to integer number conversion in any base from 2 to 36, but it
accepts some special forms such as 0xnnnn for hex numbers, and these special
forms are not part of the Popit language.

In addition to object code, students receive a mixture of complete and incom-
plete C source files for the more tricky parts of the project. This includes the
virtual machine memory components and threaded code inner interpreter. The
virtual machine has both program and data memory, and a primitives ta-
ble containing the C functions which implement primitive operations such as
SWAP, DUP, + ...

The execution token of each Popit operation is an integer giving the location
within the program memory array where an entry for that word is found. For
primitive definitions (those coded directly in C) this location contains the posi-
tion of the primitive in the primitives table. For high level definitions it contains
the position of the nest primitive, whose role is to save the current virtual ma-
chine instruction pointer and set this pointer to the virtual machine code that
follows. This code contains the tokens for the compiled code of the definition.
Compilation of the definition : >= < NOT ; lays down four tokens, for NEST,
>=, NOT and EXIT. The corresponding C functions can be coded as:

void nest() { rpush(ip); ip=w+1; }
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void greaterthan() { int n2 = pop(); int n1 = pop();

if (n1 > n2) push(TRUE); else push(FALSE);

}

void bitwisenot() { push(~pop());}

void eggzit() { ip=rpop(); }

An indirect threaded code inner interpreter is used to wind execution through
compiled code. In the following pmem is the program memory array, pp is an
integer which gives the next free location in that array, and ip is the virtual
machine instruction pointer.

void execute(int opindex) { /* execute the command with the given opindex */

/* set up a temporary pointer in the first free element of pmem */

pmem[pp]=opindex;

ip=pp;

/* Enter the inner interpreter execution loop. When we exit the command ip

will be incremented by 1, i.e. equal to pp+1. Also ip is guaranteed never

to take this value before execution of the command terminates, as it can

only range over the already allocated region of pmem */

while(ip != pp+1) {

w = pmem[ip];

ip=ip+1;

primitives[pmem[w]]();

}

}

As will be seen, we do not use the most concise style of C coding. We rather wish
to show what happens at each step. Since students are given this code, we re-
quire them to produce some example traces to demonstrate their understanding
of its operation.

For the compiler, students are given part of the source code. For example
we provide the source code to handle IF constructs, but the students have to
give the code for loops. The code for IF ELSE THEN is made up of compiling
operations and syntax checking:

/* define syntax tokens for key words */

#define IF 100

#define ELSE 101

#define BEGIN 103

/* compiling operations performed in response to IF ELSE and THEN */

void IFcomp() {

compile(zbranch_i); push(pp); compile(0);

}

void ELSEcomp() {
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compile(branch_i);

pmem[pop()]=pp+1; /* resolve branch address of previous IF */

push(pp); /* leave the branch address of ELSE for resolution by THEN */

compile(0); /* compile a filler into the branch address */

}

void THENcomp() {

pmem[pop()]=pp;

}

/* Syntax checks for .. IF .. [ELSE] .. THEN .. */

void IFsyntax() { spush(IF); }

void ELSEsyntax() {

char errmess[100] = "ELSE with no matching IF in defn of ";

if (spop() != IF)

reporterror( strcat(errmess,lastname()) );

else {

spush(ELSE);

}

}

void THENsyntax() {

int syntax;

char errmess[100] = "THEN with no matching IF or ELSE in defn of ";

syntax=spop();

if( !((syntax==IF) || (syntax==ELSE)) )

reporterror( strcat(errmess,lastname()) );

}

/* combining compiler actions and syntax checks for IF, ELSE and THEN */

void doIF() { IFsyntax(); IFcomp(); }

void doELSE() { ELSEsyntax(); ELSEcomp(); }

void doTHEN() { THENsyntax(); THENcomp(); }

All immediate and defining words are associated with the functions that perform
their associated actions through a lookup table:

typedef char name[32];

typedef void (*action)();

typedef struct keyword_entry { name namefield; action key_action; };

/* now declare and fill the table */

keyword_entry keytable[] = {

{ "VALUE-ARRAY", doVALUE_ARRAY },

{ "VALUE", doVALUE },

{ "CONSTANT", doCONSTANT },

{ "IF", doIF },
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{ "ELSE", doELSE },

{ "THEN", doTHEN },

...

This is the table of Popit key words (mentioned earlier). These take the place
of immediate and defining words in Forth, with the consequence that these are
beyond the scope of Popit definitions, being provided once and for all by the
Popit compiler. This is not because we prefer this approach to that of Forth,
but because we are designing a project in C programming to run over a limited
time duration in which the finer points of Forth programming will not be part
of the agenda.

5 Project Management and Assessment

At the start of the project students receive a description of Popit which includes
a specification of each operation. They receive a specification for each C com-
ponent in the Popit implementation which again contains a specification of each
function. They receive all object code files for the Popit executable and some
parts of the corresponding source code.

They are first required to link and run the Popit executable, and to write some
simple Popit programs. This gets them familiar with the system they are going
to have to produce.

Next we require them to take the object code files along with the specifications
of the C functions they implement, and to write test harnesses for these files.
One reason we find this step necessary is that many students have very little
idea of what has to happen in any system. For example, they find it difficult to
appreciate the need for conversion between character string and internal binary
representation of numbers. These students are not stupid, but they have had to
take on a wider agenda than students in the past. They tend to spend a lot of
time on installation and configuration issues, with the result that they are less
au fait with the basics of programming.

After the testing phase each students within a group takes on responsibility
for coding parts of the project. Assessment is by a combination of report and
project viva, at which code is demonstrated and each student is asked a mixture
of detailed questions about the code he is responsible for and more conceptual
questions about the project as a whole.

The project has been taken by between 60 and 80 students a year for the past
four years. A possible problem with such an arrangement is collusion between
current students and those who have previously done the work. This has not
been a problem so far, perhaps because following this project students are placed
in industry for a year. Such collusion would be noticeable, because each year
we make changes to the project in the light of previous experience. For example
having noted that students find the keyboard input component relatively easy
we added the requirement for a command line history buffer.
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6 The Popit Project in Scheme

A noticeable aspect of the C version of Popit is its very literal interpretation
of the phrase ”Virtual Machine”. The environment constructed was almost a
simulation of a physical computer design, à la von Neumann, but reproduced
in software. We have large integer arrays used for program and data memory,
echoing the linear ordering of actual memory with sequential location addresses,
a program counter, and flow control structures implemented with jumps to other
program memory locations.

The contents of these ”memory” locations can be literal numbers (or character
codes), pointers to other locations, or addresses in the optable; these would be
used to invoke primitives or earlier definitions. Program execution was achieved
by stepping through the instructions and/or data contained in the locations
currently pointed to by the program counter.

This is a good vehicle for inculcating a kind of hands-on understanding of the
way a real computer operates, if one views the C-coded primitives as processor
instructions. The functional, lambda-inspired model, on the other hand, pro-
vides a more abstract way of thinking about Popit definitions, variable values
and stack. Our experience with this project is limited to one student, whose
initial response was a design which reflected the C model. However, with a little
coaxing our student was soon able to provide a far more abstract approach.

An essential feature of the lambda calculus, the mathematical formalism which
underpins scheme, is that functions are regarded as ”first class objects”, that
is, they may be bound (rather than ”named” in the C sense, as one cannot
have an anonymous function in C) to a name, re-bound to another name, exist
anonymously, and passed as arguments to another function as actual applicable
objects. Also, a directly applicable function object can be returned from another
function. This implies a level playing field between functions and other program
objects; literals or variables. In accordance with this outlook, Scheme (unlike
Common Lisp, for instance) uses the same kind of namespace for function names
as variable names, so one can simply refer to a function by name, and apply it by
putting brackets around it (along with any arguments required). There might
be a superficial syntactic resemblance between this and the way a C function
name denotes its address and the way it is applied by putting brackets/ args in
front, but the underlying semantic concept is quite different.

One consequence of this is that sequential (and of course, functional) composi-
tion becomes very easy and elegant. The heart of Scheme Popit compiler is this
tiny function:

(define (compose f g) (lambda () (f) (g) ))

which takes two functions, binds them to the names f and g, and creates a
”closure” representing the sequential composition of the functions.

The approach to definition building is incremental. Each new operation (prim-
itive or existing definition) is sequentially composed onto an existing function,
making a single new function. The process starts with an empty function (no-
op). A completed Popit definition might be a primitive, referring to a Scheme
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function, or a composition of several of these and possibly other previous defi-
nitions, but still only a single function.

A function can also be a nameless block of actions occurring arbitrarily in the
middle of a function definition process – that is, while a new definition is being
compiled. For instance, the body of a while-loop, and the if-body and else-body
of a conditional can be viewed as (and indeed are) separate functions, albeit
ones which make little sense outside their context.

This notion is used to implement conditionals and loops with a definition stack,
the current definition block being always at the top of the stack. A no-op waits in
readiness if no compilation is happening. During a compilation, if the compiler
encounters an IF, a new no-op will be pushed onto the def stack, in preparation
of a new block of incoming operations, which will form the body to be executed
if the IF-test (of the top of the Popit stack) is true. If the compiler subsequently
encounters an ELSE, another no-op is pushed to form the foundation for the
else-body, to be executed if the IF-test is false. Since this is optional, a no-op
is used for the else-body where none was specified.

On receiving the THEN token, the compiler uses the contents of the stack
to build an IF construct (a single function), and then compose this onto the
existing definition, which is still at the bottom of the stack. In pseudocode, the
construction of an if-block looks like this:

construct-if (true-body, false-body) lambda () if Popit-stack-true apply true-
body else apply false-body endif end-lambda end

The lambda keyword in Scheme introduces an anonymous function definition,
which here forms a closure with the true-body and false-body supplied to the
construct-if function. This lambda function is what is returned by the construct-
if function. Thus the respective bodies will not be actually applied until the
function is called (during the execution of its parent definition), and the Popit
stack tested. The returned function here is then compiled into the parent defi-
nition, leaving the complete def so far at the top of the def stack.

The overall approach adopted is not absolutely ”pure” in the functional pro-
gramming sense. A pure approach would have no assignment statements, and
therefore no concept of a ”state” which persists outside of (if not independent of)
the function applications which move the computation along. Being a Forth-like
language, Popit is inherently blessed with state in the form of its stacks, along
with a small number of variables, e.g. that representing the current number
base. The most puritanically functional implementation would therefore have
to regard these as a collective ”environment” which would have to be passed
on – at least the relevant parts of it – between each function application as a
parameter.

However, Scheme does provide a primitive of its own for destructive reassign-
ment (called set!), which mostly allows the updating to be hidden away inside
functions. For example, the stacks can be implemented as functions which store
their own internal state, i.e. as abstract data types. Even an integer variable,
using this style of programming, is actually a function storing an integer as its
internal state, which can be accessed or changed by the appropriate function
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call. Thus there is no notion of variables being locations in memory – we have
abstracted away the idea of value storage from that of storing values in a par-
ticular place, and instead entrusted them to an anonymous function bound to
another function whose job it is to relay interrogations or updates.

On the whole, the approach makes, at least conceptually, a simple and elegant
alternative way of thinking about Popit implementation, certainly for those stu-
dents previously only exposed to the strictly imperative, sequential languages.
To be sure, these features are far from entirely absent from Scheme and are used
in our Popit implementation. We were, however, able to abstract many virtual
machine components, including program and data memory.

The abstraction of data was made easier by the absence from Popit of Forth
memory access primitives such as @ and ! . The use of VALUE declarations,
on the other hand, lends itself readily to expression in Scheme.

7 Conclusions

In a world of increasing complexity the projects described here give students a
rare opportunity to implement a whole system consisting of a virtual machine
and an associated programming language. The C and Scheme flavours of the
project use very different levels of abstraction in accomplishing this task.

In the group project, students are introduced to the science of working effec-
tively as a team. Since each component must link and execute as part of the
overall system, students have to play close attention to the component specifica-
tions. These define a boundary between creativity and discipline in that there is
absolute freedom allowed as to how each specification is met, and absolutely no
freedom to deviate from the specification. This is re-inforced by providing the
students with a working solution in the form of object code files which can be
linked to produce the Popit executable. They must then replicate these compo-
nents from the given specifications in such a way that any object code file they
produce may be substituted for the corresponding provided object file without
compromising the linking and execution of the Popit system.
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