
Bar code printing in Windows
K. B. Swiatlowski Mgr
Micross Electronics Ltd.,
Units 4-5, Great Western Court,
Ross-on-Wye, Herefordshire.
HR9 7XP
UK
Tel. +44 1989 768080
Fax. +44 1989 768163
Email: kbs@micross.co.uk, Website: http://www.micross.co.uk

Abstract
Industrial computer systems frequently require bar codes to be included in printouts. This

paper presents the construction of a single Forth word that does all the work for you, and
results in an accurate and easily read printed bar code.

Introduction

Printing in Windows
Windows provides to a programmer a set of functions, called WinAPI. Among many

functions there are graphic functions. We can distinguish those responsible for:

• choosing tools used for drawing like: brushes, pens, fonts, fillings, colours;

• drawing itself: characters, lines, solid shapes and pattern filled shapes;

• transformations of graphics output (resizing, rotating, etc.);

• handling output devices: initializing/finishing a display, refreshing, set-up of device's
parameters;

• handling users' interaction on graphical output (screen).

All details about those functions can be obtained from Microsoft's website developer's
service or any programmer's reference.

Bar code structure
Information in a bar code is presented by a sequence of ones and zeros. The logical one is

agreed to be presented as a bar – a dark rectangle, zero is represented as an absence of a bar.
Bar, or its absence should have a fixed width, so we could recognize a number of bars in
repeatedly appearing ones or zeros.

Fig. 1. Bar representation of a digit – binary 1101 (13 decimal)

A char set or a bar set is a sequence distinguishing one character (numeric, alpha-
numeric, ASCII).

With software presented it is up to you how you will represent your information. You can
even assign a word or a sentence to a one bar set. Encoding must be designed wisely. Zeros

and ones should interlace mutually quite often so the hardware can recognize the sequence.
The Internet is full of many proposals and described standards (http://www.bar
codeisland.com).

There are generally two types of bar code symbologies: discrete and continuous. A
discrete symbology is one where each and every character encoded in the symbol may be
interpreted individually without respect to the rest of the bar code. Such symbologies have
characters that both start and end with a bar. Individual characters are separated by some
amount of inter-character spacing.

A continuous symbology is one in which the individual characters of the symbology
cannot be interpreted by themselves. This is due to the fact that characters start with a bar
and end with a space. Continuous symbologies normally implement some kind of special
termination bar or termination sequence such that the last space of the last data character is
terminated by the termination bar.

Fig. 2. Discrete and continuous bar codes

Bar codes may be either fixed or variable-length. A fixed-length symbology is one which
must, by definition, encode a certain number of characters or digits (UPC-A, EAN13). A
variable-length symbology is one which can carry a message of any length (Code 128), it
may encode any number of characters.

Solution
We are glad to present a solution for convenient printing of a flexible bar code on a

device. Words have been grouped into two files:

Barcode-print.fth deals with printing itself. It uses Windows functions and takes printing
parameters.

Ean13.fth is an implementation of EAN13 standard. It deals with data generation,
checksum calculations and sets bar sets' appearance flags. It is your part to design data
generation routines, translation from bar code and to bar code relative to other standards or
your own idea..

General printing parameters
There are two places where the appearance of the bar code can be set. One of them is a

structure BARCODE-PRINTCTL and it is used for setting parameters of the bar code as a
whole. Common parameters are e.g. a width of the bar, a font used for printing and finally

pointers to data arrays. Furthermore, appearance of a single bar set, representing one
character or a digit, should be amended in an array of control flags B-CONTROL-TBL
assigned to every single bar set of the bar code. In that array you can define height ratio, bar
count and others. Note that following table indicates by italic style font values that should
not be set directly. There are calculated for every call of the interface words provided.

Table 1. Structure members setting printing parameters for a whole bar code

Sizes in bytes Name Comment
7 CELLS
32 +

B-BARSFONT MUST be first so you could use WinAPI's
LOGFONT structure offset flags on this structure

CELL B-HDC Device Context (window, printer etc.)
CELL B-DIGITS-IN-CODE How many digits in a bar code, including checksum,

a guard bar set etc
CELL B-CHARWIDTH% If 600[%] of B-WDTH then for a one bar set of 8

bars it will occupy 6 bars wide
CELL B-CHARHEIGHT% If 900[%] of B-WDTH will produce 9 B-WDTH *

high char
CELL B-HSHORTBAR% If 80[%] then for a long bar 5 units high, a short one

will be 4 units high
CELL B-CHARDIST% If 90[%] then chars will appear at 4.5 units of bar

height
CELL B-CONTROL-TBL Ptr to controlling bytes for each bar set
CELL B-STRING-TBL Table of pointers to counted strings shown below

bar code
CELL B-CODE-TBL Table ptr for binary representation of bar codes
CELL B-SPECIALSTRING Ptr to String shown above the bar code
CELL B-RECT-ALIGN Bar code alignment inside the rectangle
CELL B-LOGICWDTH A Bar width in device units
CELL B-LOGICHEIGHT A Bar height in device units
CELL B-WDTH A Bar width in device units
CELL B-HEIGHT A Bar height in device units
_RECTNG B-ONEBARSIZE Bar size in device points used by printing routines
_XFORM B-XFORM Transformation for rotating bar code
_XFORM B-XFORM-BACKUP Current transformation backup, will be restored after

printing
CELL B-GRAPHICSMODE Graphic mode backup. If user wants to rotate the bar

code it must be done in ADVANCE MODE
2 CELLS B-LOGICRATIO Ratio computed for current mapping mode. Used to

calculate dev units for given distance.
2 CELLS B-WINORG-BACKUP Backup for window origin coordinates

Deferred word BCTL is used for accessing in functions the structure shown in the above
table, so you could use your own word to access your data.

There are several words you can call to print the bar code on a chosen device. It should be
activated after configuration of the BARCODE-PRINTCTL and filling of data arrays.
: BAR-CODE (hdc x y bar-width bar-height angle --)

A device context – hdc, can be obtained by calling a WinAPI function, and it represents a
printer or a computer screen. An angle is an integer number which specifies the angle, in
tenths of degrees counter-clockwise. Setting it to a number greater than 0 turns on the
advance graphic mode.

All other parameters are defined in a chosen metrics, so it can be set in device units
(pixels), in tenths of a unit eg. millimeter. Left upper coordinates are indicated by x and y, it
is a hook point of rotation as well. Bar width and height follows those coordinates. There is a
simple call, if bar height and width are already set, which takes only coordinates, an angle,
and device context.
: DOBAR-CODE (hdc x y angle --)

In setting character height and width you can determine the size of the font, which will be
a multiple of a bar width in thousandths of a bar width. Text below the bar sets is centered
aligned. Reseting those values to zero will let you set font size by manipulating a LOGFONT
structure.

The last word provided is one which uses a Rectangle structure to define the position and
size of the whole bar code. In that case Bar width and height will be calculated to efficiently
fill the given area. Because bar width multiplicity can be smaller then a rectangle width it is
possible to set the alignment of the bar code inside the rectangle. To do that assign one of the
font's text alignment flags to the B-RECT-ALIGN field.
: RECTBAR-CODE (hdc rectangle angle --)

Bar set printing parameters
The structure BARCODE-PRINTCTL hold fields pointing to each bar set controlling flags

– B-CONTROL-TBL, arrays of strings displayed below each bar set – B-STRING-TBL, and
array of cells for storing binary representation of each bar set B-CODE-TBL.

B-CODE-TBL is filled in routines declared by a user thus there might be many different
encoding and algorithms. There is enough room for up to 31 bars representing one bar set.

B-STRING-TBL is an array of counted strings. It holds empty strings or multi character
strings, the only restriction is a resolution of the device or a legibility of the message.

In addition you show one more string which might to be useful for displaying extra
information above the bar code. The pointer to that string should be placed in B-
SPECIALSTRING field of the previously discussed structure.

B-CONTROL-TBL holds an array of bytes. The 5 least significant bits hold the number of
bars for each bar set, so you can have varying counts of bars in a bar set. I.e. in EAN13's
center and band guard patterns have different counts (5 and 3) than the information bars (7).
It gives you an opportunity to design flexible structure in your bar code. B-CONTROL-TBL
takes also values of constants, shown in Table 2, except for a mask which is used in the code
to retrieve bar count form the control table. The drawing routine prints the sequence of bars
according to that count. That sequence is placed in B-CODE-TBL, the state of rightmost bar
is set according to the least significant bit in that cell, and so on.

Table 2. Constants controlling appearance of a single bar set, placed in a control array

Value Name of a constant Comment
31 BARCOUNT-MASK Mask for retrieve bars count for one bar set
32 PRINT-TITLE Prints a title string above appointed bar set.
64 SHORT-BAR Draws short bar leaving space for string below
128 PRINT-FOOT Prints string from STIRNG-TBL below bar set

An example of EAN13
EAN-13 was implemented by the International Article Numbering Association (EAN) in

Europe. As based upon the American version, it is a superset of UPC-A. This means that any
software or hardware capable of reading an EAN-13 symbol will automatically be able to
read an UPC-A symbol.

Fig. 3. The structure of data represented by EAN13 bar code

EAN-13 number system code consists of two digits ranging from 00 through 99, which is
essentially a country code – an authority which assigns manufacturer codes to companies
within its jurisdiction. The manufacturer code is usually five digits long, as is the product
code – which are attended by a producer itself. The last digit is a checksum.

Guard bar sets (no. 1 and 15) delimit the bar code from both sides, and the bar set no. 8 is
a middle guard bar set, which separates the manufacturer part from the product part. As you
can see on the Figure 4, the first digit of the number system is represented as blank bar set,
although it is still taken for the checksum calculations.

Fig. 4. Bars alignment and bar set's indexing

Lets follow the steps to achieve a working EAN13 bar code. The following code sample
shows how to create instances of all tables and structures and how to fill them with data.

CREATE BCTL-INSTANCE BARCODE-PRINTCTL ALLOT
: (BCTL) (-- addr)
 BCTL-INSTANCE
; ASSIGN (BCTL) TO-DO BCTL \ BCTL will return an address
400 BCTL B-CHARWIDTH% ! Char width will consume 4 bars below
700 BCTL B-CHARHEIGHT% ! Windows will ATTEMPT to make that

rectangle
NULL BCTL B-GRAPHICSMODE ! Clearing is a must
NULL BCTL B-SPECIALSTRING ! Clearing
92 BCTL B-CHARDIST% ! Upper band of the char will be at

92% of the height provided
90 BCTL B-HSHORTBAR% ! Shorter bars (2,...,7 and 9,...,14)

will be 10% shorter then long ones
16 CONSTANT #DIGITS-IN-CODE Number of bar sets including blank,

checksums, guards etc.
7 CONSTANT #BAR-ELEMENTS Max is 31 how many bars represent

one digit (predominately)
CREATE CODE-TBL #DIGITS-IN-CODE
CELLS ALLOT

Table for binary representation of
bar codes

CREATE STRING-TBL #DIGITS-IN-CODE
CELLS ALLOT

For pointers to counted strings
shown below bar code

CREATE CONTROL-TBL #DIGITS-IN-CODE
ALLOT

How many bars shall be printed for
each digit

CONTROL-TBL #DIGITS-IN-CODE
#BAR-ELEMENTS SHORT-BAR PRINT-FOOT
OR OR FILL

Puts a standard control flags into
all bar sets (shorter, print char
below, 7 bars)

7 PRINT-FOOT SHORT-BAR OR OR
CONTROL-TBL C!

7 bars wide and shorter for first
number system, deletes previous
setting

3 CONTROL-TBL 1+ C! Left band control bars, new setting
5 CONTROL-TBL 8 + C! Middle control bars, new setting
3 CONTROL-TBL #DIGITS-IN-CODE 1- +
C!

Right band control bars

10 CODE-TBL 8 CELLS+ ! Middle control-guard bars 01010
5 CODE-TBL 1 CELLS+ ! Left band control-guard bars 101
0 CODE-TBL ! First number system bar set is blank
5 CODE-TBL #DIGITS-IN-CODE 1-
CELLS+ !

Right band control-guard bars 101

61 CODE-TBL 6 CELLS+ ! 61 decimal is 0111101 binary and it
encodes 3 of 6th bar set (Fig.4)

51 CODE-TBL 7 CELLS+ ! 51 is 0110011 binary, it represents
bars of 7th bar set (Fig.4)

Conclusion
With our application you are given full control over the structure, size, alignment and the

appearance of the bar code. Due to data feeding being separated from printing it is possible
to develop a unique information encoding, and apply it with the printing routines provided.

This applied technique has a major advantage over the True Type Font bar code. It prints
bars in device units, ensuring fixed widths and spaces of every bar and gap, which can not be
said about scalable techniques. This yields the required accuracy for reading devices.

Appendix

Nonstandard, undeclared functions used in the code:

Forth call Comment
ALSO F-PACK ALSO
FORTH
DEFINITIONS

Includes nonstandard dictionaries in search chain.

REALS Switches floating point numbers routines.
SF! Stores a floating point number at address.
SF@ Fetches a 32-bit floating point number from address.
S>F Converts a 32-bit signed integer to a floating point number.
F/ Divides double length numbers by other.
DEG>RAD Converts degrees to radians (both double length floating point

numbers).
FSINCOS Calculates the sine and cosine of angle in radians, returning (both

double length floating point numbers).
FNEGATE Changes the sign of the top double length floating point number.
FDUP Duplicates the double floating point number on the stack. An

analogue of 2DROP.
INTEGER? Attempts to convert the counted string at “addr” to a number

returning 0 for conversion failed, “n” and 1 for converting a single
number, and “d” and 2 for converting a double number.

WinAPI functions used in the code (*.dll)

WinAPI call Short description Forth call
SetTextAlign The function sets the text-alignment

flags for the specified device
context.

F-SETTEXTALIGN (flag hdc
-- oldflag)

TextOut The function writes a character
string at the specified location, using
the currently selected font.

WINTEXTOUT (hdc,
xcoordinate, ycoordinate,
lpString, strCount -- status)

Rectangle The Rectangle function draws a
rectangle outlined by using the
current pen and filled by using the
current brush.

WINRECTANGLE (hdc
nLeftRect nTopRect
nRightRect nBottomRect --
status)

LPtoDP The function converts logical
coordinates into device coordinates.

WINLPTODP (hdc lpPoints[2]
nCount -- t/f)

WinAPI call Short description Forth call
SetMapMode The function sets the mapping mode

of the device context defining the
unit of measure and defining the
orientation of the device's x and y
axes

F-SETGRAPHICSMODE
(flagmode hdc -- oldmode)

GetGraphicsMode The function retrieves the current
graphics mode for the specified
device context.

F-GETGRAPHICSMODE
(hdc -- value)

SetGraphicsMode The function sets the graphics mode
for the specified device context.

WINSETMAPMODE (hdc
flagMode -- oldMode)

GetWorldTransform The function retrieves the current
world-space to page-space
transformation.

F-GETWORLDTRANSFORM
(lpXform[6] hdc -- t/f)

SetWorldTransform The function sets a two-dimensional
linear transformation between world
space and page space for the device
context (used to rotate).

F-SETWORLDTRANSFORM(
lpXform[6] hdc -- t/f)

CombineTransform The function concatenates two
world-space to page-space
transformations.

F-COMBINETRANSFORM
(lpxformResult[6] lpxform1[6]
lpxform[6] -- t/f)

GetDeviceCaps The function retrieves device-
specific information about a
specified device: number of pixels
per logical inch or width, in pixels,
of the screen

WINGETDEVICECAPS (hdc
queryFlag -- value)

SetWindowOrgEx The function sets the window origin
of the device context by using the
specified coordinates

WINSETWINDOWORGEX
(hdc x-coord y-coord oldPoint
[2] -- t/f)

GetStockObject The function retrieves a handle to
one of the predefined stock pens,
brushes, fonts.

WINGETSTOCKOBJECT
(flag -- objHndl)

SelectObject The function selects an object into
the specified device context

WINSELECTOBJECT (hdc
ObjHnld -- OldHndl)

CreateFontIndirect The function creates a logical font
that has the characteristics specified
in the specified structure.

WINCREATEFONTINDIREC(
LOGFONT -- FontHndl)

SetBkMode The function sets the background
mix mode of the specified device
context.

WINSETBKMODE (hdc mode
-- oldMode)

DeleteObject The function deletes a logical pen,
brush, font etc freeing resources
associated with the object.

WINDELETEOBJECT
(objHndl - t/f)

Visit our website in order to download the source code (http://www.micross.co.uk)

