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Abstract 
 
Following the convincing demonstrations at EuroForth 2004, we decided to use the "Microcore" 
VHDL Forth processor in the design of three new products. This paper will describe our 
progress in expanding the core design with additional peripherals, performing simulation, board 
implementation, and early experiments in writing code on the Microcore. 
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1. Overview of Microcore 
 
Microcore is a VHDL description of a microcontroller, which can be implemented in an FPGA. 
It is highly configurable, and in particular, the external data path width is a compilation 
variable, so that various different "sizes" of the same processor may be constructed, with 
different performance / cost balances. The code for Microcore is available under a licence which 
is similar to open source software, and which encourages other to contribute to the project 
development while retaining compatibility and openness. 
 
Microcore was first described by Klaus Schleisiek at the 17th EuroForth at Dagstuhl, and he 
also described an implementation of the device at the 20th conference, where he gave a 
convincing demonstration of the technology. 
 
Microcore has its own website from which the code may be downloaded. 
 
2. Reasons for choosing Microcore 
 
Advantages unique to Microcore 
 
a) It's free. This is a serious consideration for a small company where development budgets are 
tight. 
b) It comes from a known and trusted developer. Klaus also designed the IX1 microcontroller 
which has given us years of completely trouble-free service. 
c) You can actually talk to the designer, who even answers email and telephone calls. This is in 
marked contrast to other offerings of standard cores. 
d) Genuine futureproofing 
Even if the hardware goes obsolete, the software won't. There should be no difficulty in moving 
a Microcore project to a future FPGA technology. The struggle to buy "one careful previous 
owner" RTX chips will be over. 
e) Control 
We have all the code to produce versions of Microcore for as long as we need to. 
f) No black boxes 
If there is a problem, nothing is hidden. We can analyse the problem to whatever depth is 
required. 
g) Simple and inexpensive design tools 
We have used Xilinx and Mentor Graphics tools. 
h) Different sizes, same code 
We can use exactly the same software on both 8 bit and 32 bit external data bus width versions. 
j) Simplicity 
We almost understand quite a bit of it. 
k) It runs Forth 
All of us understand it, and with careful core design it should be possible to port large chunks of 
our existing code straight in. 
 
Advantages of FPGA microcontrollers over fixed hardware 
 
l) Potential for future performance enhancement 
As the speed of FPGAs increases, so will the speed of Microcore. 
 



m) Extensibility 
On-chip peripherals can be added relatively easily. 
n) Pinout flexibility 
Pinouts can be matched to the PCB layout requirements, enabling a simpler and less expensive 4 
layer PCB to be used. Without this, a 6 layer PCB would almost certainly be needed. 
 
3. Our particular requirements 
 
We needed to replace and upgrade three products. 
a) The Virtual Programmable Logic Controller 
This is a high integrity device which provides the central control functions of a distributed 
automation system. We described this card at  EuroForth 97. It uses the RTX2001 as its CPU, 
and has a PCI interface with a PC but is otherwise completely autonomous. This has been a very 
satisfactory design with excellent reliability.  
b) The Rapid Automated Bacterial Impedance Technique (RABIT), also a PCI card but this time 
designed as a centralised data logger for a large number of distributed microbiological tests 
cells. 
c) The RABIT block module, which provides ultra-accurate temperature control and digitisation 
of a group of 32 microbiological test cells. 
 
Both RABIT circuits used the Intel 251 microcontroller, which is possibly the worst 
microcontroller ever produced. We shall be very glad to replace it. 
The new versions of both a) and b) are very similar, using 32 bit data bus widths and an 
Ethernet connection to the PC instead of a PCI connection. They have differing power supply, 
communication and memory requirements. 
The new version of c) will be an 8 bit implementation. 
 
4. Experiences with the tools 
 
Design philosophy 
 
Our basic design philosophy is to make it simple and to use as much of the Microcore design as 
possible. We don’t want to have to dig deep into the VHDL to understand it and by doing a 
conservative design where we keep a respectful distance from the limits we hope to reduce our 
problems. We also need to remember that the number of boards that we will make is quite small, 
and that the cost of the development tools must be kept to a minimum.  
 
The chips used in the design also affect the tools. Each chip vendor has its own tool set for 
which it is optimised, but limited to its own ICs, this includes both Lattice and Xilinx . By 
choosing a class of chip that has already been used to implement Microcore other potential 
pitfalls may be reduced. Microcore has already been implemented in the Xilinx Spartan series of 
chips. These are currently cheaper than the Lattice parts, but they do require an external flash 
memory to initialise them. We want to reduce manufacturing problems so we don’t want ball 
grid array packages. We also want a part that will give room for experimentation in the future. 
 



The XC3S400 PQ208 is a Xilinx Spartan 3 device in a 208 pin plastic quad flat pack and it will 
accept the Microcore with room for expansion and the additional peripherals that we need. A 
cheap programmer is available for transferring the compiled output on the computer to the flash 
memory on the board and modifying the design as often as required. 
 
Choice of tools 
 
There are two possible tool sets we could use, the Xilinx ISE (Integrated Software 
Environment), or the Synplify system from Synplicity. The pros and cons of each are as 
follows: 
 
Xilinx ISE Synplify 
Free ~£10,000 
Complete design from beginning 
to end  

Works with Xilinx tools 

Limited optimisation increases 
chip area used. 

Advanced optimisation gives smallest 
possible design 

Design may not give maximum 
possible speed. 

Advanced optimisation may give 
fastest design 

 
The ModelSim simulator from Mentor Graphics is provided to simulate the designs at all levels. 
This accepts a VHDL description that can be functional, i.e. no timing information, and allows 
the VHDL to be checked for accuracy, right up to a full post layout description that gives 
detailed operations and timings. 
 
We chose to use the Xilinx ISE foundation pack that can be downloaded free from the Xilinx 
web site. By not pushing the design to its limits we hope that the reduced optimisation will not 
cause a problem. The huge reduction in cost is also more in line with the number of chips we are 
likely to produce. 
 
Here is a typical screen for the ISE version 7: 
This shows a project window where all the files can be entered, a process window where for 
each file all the possible actions are listed, an edit window where all the files can be viewed and 
edited and a console where progress and errors are displayed.  



From here, all the different operations needed to build a design are managed. One obvious 
operation is to run the simulator. By selecting the test bench file, which contains waveforms, 
you have the option to run the simulator directly. A typical screen shot: 
 

 
This again shows a multi-window screen with the waveform result on the right. 
The first job in evaluating the tools and the microcore design was to try and run a functional 
simulation. 
 



This shows the first instructions in the boot memory being run at the end of reset and loading 
immediate data onto the stack. The first 2 instructions have the top bit set that then loads the 
following 7 bits onto the stack.  
 
5. Peripherals we have developed 
 
At this stage of using Microcore we need two additional peripherals: 
 

• Watchdog counter 
• SPI serial interface 

 
Watchdog counter. 
 
The watchdog counter counts a period of time, using the master input clock as its reference and 
if it is not reset in that period by the software it causes a processor reset. We require a timeout of 
1ms and can set this directly into the hardware based on the processor master clock. 
 
The VHDL code is as follows: 
 
watchdog_reload <= '1' when sel_io = '1' AND 
(addr(watchdog_select_address_bit) = '1') else '0'; 
 
watchdog_control : process(m_clk,rst_n,watchdog_reload,watchdog_div) 
BEGIN 
 if(rst_n = '0') then 
  --On reset set a slightly longer watchdog time 
  watchdog_div <= (OTHERS => '1'); 
 else 
  if (rising_edge(m_clk)) then 
   if watchdog_reload = '1' then 
    watchdog_div <= "110000110101000000"; --200000 
   else if two_meg_div = "0000" then 
     watchdog_div <= watchdog_div - 1; 
    end if; 
   end if;  
  end if; 
 end if; 
 
END PROCESS watchdog_control; 
 
This describes a simple down counter watchdog_div that is decremented on every rising edge 
clock with the code: 
 

watchdog_div <= watchdog_div - 1; 
 
This is modified if we have a reset signal or a watchdog_reload signal. The watchdog reload 
signal comes from a memory access instruction from the processor to the watchdog address. 
 
The microcore reset generator then looks at both the external reset signal and the value of 
watchdog_div. If watchdog_div ever gets to a value of ‘0’, the processor is reset, and can start 
again. 
 



SPI serial interface 
 
The SPI (Serial Peripheral Interface ) is more complex than this. It uses a clock line, two data 
lines (one input and one output) and a chip enable to provide bidirectional data transfer, and can 
be used to talk to a wide range of chips. We currently need to communicate with a serial flash 
memory to store our programs. Normally, data transfers are in 8 bit bytes, but we have made 
good use of the 32 bit data path to allow up to 4 bytes to be transferred at a time without 
processor intervention. 
 
The general hardware arrangement is as follows: 
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The VHDL for this has been developed as a separate module. This contains the status register, 
all the shift registers and counters. It is controlled by a hardware state machine implemented as 
follows: 
 
state_machine: process(reset,state,status_reg,shift_clock) 
BEGIN 

if reset = '1' then 
  state <= waiting; 
  bit_counter <= "000000"; 
 elsif falling_edge(shift_clock) then 
  case state is 
   when waiting => if status_reg(start_bit) = '1' then 
    state <= running; 
    if status_reg(byte_count_1_bit downto 
byte_count_0_bit) = "00" then 
     bit_counter <= "000111"; 
    elsif status_reg(byte_count_1_bit downto 
byte_count_0_bit) = "01" then 
     bit_counter <= "001111"; 
    elsif status_reg(byte_count_1_bit downto 
byte_count_0_bit) = "10" then 
     bit_counter <= "010111"; 
    else 
     bit_counter <= "011111"; 
    end if; 
   end if; 
   when running => bit_counter <= bit_counter - 1; 
    if bit_counter = 0 then 
     state <= waiting; 
    end if; 
   when others => state <= waiting; 
  end case;   
 end if; 
END PROCESS state_machine; 
 
As you can see, the naming conventions and appearance are much closer to ‘C’ than to Forth, 
but you can also see that it is using its current ‘state’ which can be ‘waiting’ or ‘running’ along 
with the start_bit in the status register and the bit counter to control its operation. 
 
In use you load the data to be transferred into the shift registers, set the start_bit, the byte count 
and the chip enable, and wait either for the interrupt or by poling the start bit for the end of the 
transfer. Any data read back from the device can then be read into the program from the shift 
registers. 



6. The first hardware design 
 
This is the block diagram of the complete system that we are building: 
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The most important question to ask at the start of the design is at what voltage the chips will 
run. The Xilinx chip requires 1.2V and 2.5V for its internal operation but will interface to the 
outside world at any voltage up to 3.3V. Looking at the chips around it, some are available at 
3V, some at 3.3V and others at 5V.  
 
In this case most chips are available for 3.3V operation, except for the IX1 chip that is only 
available at 5V. This meant providing a separate 5V supply using voltage converters on the 
signals to and from the Microcore. 
 
The next question to ask is how the memory is to be organised. We need 32 bit wide RAM for 
stack and data, but we also need an area of battery backed ram for long term storage. The 
memory needs to be 10ns to run at full speed and we could not find memory that fast that was 
also low power enough to be battery backed. Our solution is to have both kinds of memory, 
with the 55ns battery backed ram requiring 2 cycles for access. 



 
The program memory is only 8 bits wide but requires the same compromises. It needs to be fast 
RAM and non-volatile. We could not find anything to do this. We compromised with a fast 
RAM chip and a slow serial flash memory. The Microcore can be made to write to its program 
memory, so at boot time, running the internal boot loader, the code in the flash memory can be 
read out and written to the RAM. The program then jumps to the start of the RAM. The flash 
memory can be written by the program as well. 
 
The external peripherals that we need for the application are placed on the memory bus. The 
Centronics debug port comes straight from the Microcore design and is used in initial 
development for programme load and debugging. The master clock is a silicon oscillator, which 
is an alternative to a crystal. This has the advantage both of size and its ability to ‘jitter’ slightly. 
This does not affect the operation of the Microcore, but it does reduce the electromagnetic 
interference and that helps with technical approvals. 
 
The design was started using version 1.30 of the Microcore. Part way through the process 1.31 
became available. This has some significant differences and required some changes to our 
designs. Then 1.32 became available. The rapid changes can cause problems in the design. It is 
better to stay with a version until its limitations cause real problems rather than change every 
time a new version is available. 
 
 
7. First steps in software development 
 
We expect to have some hardware to show in time for the conference. With luck, a little 
software might even have been written. 
 
8. Conclusions 
 
We'll tell you next year! 
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