
XML, SOAP and Web Services in Forth

Stephen Pelc
Microprocessor Engineering
133 Hill Lane
Southampton SO15 5AF
stephen@mpeforth.com

Abstract
Web services enable applications to exchange data using an extension to HTTP. Implementing
web services requires extensions to an HTTP server, parsing and generating XML and then
interfacing to other applications. This paper discusses what was needed to extend MPE’s
PowerNet to handle web services, and how we took advantage of Forth itself to simplify the
solution.

Introduction
Web services are a a means of exchanging data between applications. The transfers are designed
for machine use, not for human use; despite this the transfers are mostly printable. Data is
exchanged using XML templates and data descriptions. You can treat XML as an extensible
version of HTML with stricter rules.

Unlike many other application interchange protocols such as DCOM, web services are based on
open standards and so are not restricted to use under specific operating systems. Because all
data transfers are in text form, web services do not suffer from the data marshalling issues of
other techniques.This is achieved at the expense of an increase in data size of about 10:1, which
can make severe demands on the underlying networks used to link machines. It has long been
MPE’s opinion that heterogeneous interoperability is most easily achieved using sockets and
text transfers. This was an ideal opportunity to test the assertion.

The work was supported by Construction Computer Software (Cape Town, South Africa), and
so follows their requirements. The initial design work and test systems were provided by
Graham Stevenson of Oxford Network Solutions.

After much reading of documentation and specifications, the implementation order was:
• XML input
• XML output
• Testing against an existing web service
• PowerNet changes
• Generate WSDL files
• Test with Excel

PowerNet v3
PowerNet v3 is a Forth TCP/IP stack with Telnet, web server, CGI and ASP facilities. It has
been running for some years on embedded systems. The version for Windows replaces the
embedd TCP/IP stack with calls to the Winsock API. Above that level, the multi-threaded

mailto:Stephen@mpeltd.demon.co.uk

servers require very little change between the embedded and the Windows versions. Scripting
facilities are provided by Forth itself.

At a very early stage in the design of PowerNet, we decided to implement each connection to a
server as a task, and to treat the TCP/IP sockets as standard Forth I/O streams. Although this can
increase the amount of RAM required by a busy server, it has the big advantage of simplicity.
An additional advantage is that the usual Forth I/O handling, particularly KEY EMIT and
friends, can be used with each connection. This design decision was to pay off handsomely
when implementing web services.

An example transaction
The following is a SOAP request to a server:

POST /service1.asmx HTTP/1.1
Host: oxns.demon.co.uk
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://oxns.demon.co.uk:37851/HelloWorld"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
>
 <soap:Body>
 <HelloWorld xmlns="http://oxns.demon.co.uk:37851/">
 <s1>string</s1>
 <s2>string</s2>
 <i1>int</i1>
 </HelloWorld>
 </soap:Body>
</soap:Envelope>

The response is generated from the script file HelloWorld.aspx:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
>
 <soap:Body>
 <HelloWorldResponse
 xmlns=http://oxns.demon.co.uk:37851/
 >
 <HelloWorldResult>string</HelloWorldResult>

http://oxns.demon.co.uk:37851/

 </HelloWorldResponse>
 </soap:Body>
</soap:Envelope>

The request's SOAPaction header is parsed to yield HelloWorld, which is the required action
and corresponds to a Forth wordlist. This name is extended to select the file HelloWorld.aspx
which is output and processed by the ASP processor with the selected wordlist in the search
order. The ASPX file that generated the response above could have been as follows.

<?xml version="1.0" encoding="utf-8"?>
<% language=forthscript %>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
>

 <soap:Body>
 <HelloWorldResponse
 xmlns="http://oxns.demon.co.uk:37851/">
 <HelloWorldResult>
 <% /s1 .Param ." :" /s2 .Param ." :" /i1 .param %>
 </HelloWorldResult>
 </HelloWorldResponse>
 </soap:Body>
</soap:Envelope>

The key line is this one:

<% /s1 .Param ." :" /s2 .Param ." :" /i1 .param %>

This text between <% and %> is treated as Forth sourced and EVALUATEd by the Forth
interpreter. Any output from the Forth is simply sent to the socket to which the response text
goes.

XML input design
XML is an enhanced HTML with much stricter rules. In particular, every opening tag must have
a closing tag. The major difference is that the choice of tag names is up to you, and each section
of an XML document forms a tree.

As with HTL, you can choose to ignore tag pairs. We chose to process input the tags at the
closing tags because the text was available as the content of the tag.

 <s1>string</s1>
 <s2>string</s2>
 <i1>int</i1>

Thus, for output we need to be able to access the tags by name, and to extract the data from
them. The simplest way is to create Forth words for tags we wish to process, and to ignore all
others. In the output phase, we can then use these Forth words.

All Forth words corresponding to tags share a common data structure which controls how data
is set and displayed. To ease construction of services, a source notation was devised. An
example is:

[services
 [service Service1
 Xcstring: /s1
 Xcstring: /s2
 Xint: /i1
 Xint: /i2
 Xfloat: /fl1
 Xoperation: HelloComplexWorld
 Xoperation: HelloLong
 Xoperation: HelloWorld
 Xoperation: HelloInts
 Xoperation: HelloFloat
 Xoperation: HelloDouble
 service]
services]

Several services can be available from one server. A service description consists of the data it
uses and the operations it supports.

XML parser implementation
We started from Jenny Brien’s code published in ForthWrite, the magazine of the UK Forth
Interest group. It was later reimplemented by Leo Wong, with extensions for handling
attributes, which are the name/value pairs (name=”value”) found after the tag names inside
a tag declaration.

The code has been extensively rewritten to add error checking and to deal with more cases
which were discovered when we exported a large Excel spreadsheet to XML.

The intention of the original code was to be able to include an XML file as a Forth source
code file. This makes testing easy, but has limitations when dealing with web services as the
HTTP headers have to be bypassed. The solution was to provide a version of include that we
call IncludeMem (caddr u --) which performs the function of include from a block
of memory. This word has other uses in embedded systems and is sufficiently useful that we
incorporated it into the VFX Kernel, not least because the word has carnal knowledge of the
kernel.

The final code code can be found in the file Lib\XML.fth in all VFX Forth for Windows
distributions.

XML output design
Output of XML for web services is defined in ters of standard data types. Having defined a
structure for each data item, we can insert the correct output routine when we define an instance
of a data type. In the ForthScript below

<% /s1 .Param ." :" /s2 .Param ." :" /i1 .param %>

the words /s1 /s2 and /i1 correspond to the closing XML tags </s1> </s2> and
</i1>. The word .Param displays the data in XML format.

The only issues here are in matching the specification, and in converting the XML special
characters such as the ‘<’ and ‘>’ characters to their XML representations.

Testing against an existing web service
The parser was tested by constructing an example web service using the Microsoft C#.NET
toolchain. This showed what we can expect from other systems. We could then test Excel
against this web service. By logging the transactions, we could see what was expected.

The objective of our first server was thus to replicate the test server.

Required changes to PowerNet
The major changes to PowerNet were in the detection of a web service request. We handled this
by using the ASMX extension for web service files. Another change was that most web service
requests are made as POST requests, whereas most web pages are served as GET requests. GET
requests are used when the state of the server will not change. Since web services exchange and
modify data, the state of the server can change, and so POST requests are used.

We also had to modify the CGI handler to recognise the “?wsdl” string which is discussed
below.

WSDL files
It is all very well to be able to exchange data, but you also have to be able to publish how you
are going to exchange the data. This is handled by the Web Services Description Language
(WSDL, or “wizdl”). Every web service includes two files which can be accessed by GET
requests.

The first is a standard web page which tells humans how to use the service and often includes
software documentation. The second is an XML description of the service as an XML schema.

In the real world
So does it really work? Yes, it does. There were the usual problems with Excel not being totally
standards compliant, especially in terms of requiring “keep-alive” connections. However, since
these restrictions are the result of recommendations in later versions of the HTPP RFCs, these
problems may be forgiven even if they cause problems in low-resource environments such as
are found in embedded systems.

Embedded systems
Much as we have complained about the behaviour of Excel, it is in reality the application that
most people want to be able to exchange data with. PowerNet v3 can be coerced to work with
16k of RAM in total, is much more comfortable in 32k, and surprising in 64k bytes. The effect

of keep-alive connections with Excel is that you have to generate XML output data (or at least
know its size) before generating the HTTP header.. This requires either more code or more
RAM. We simply chose the more RAM route for the PC implementation.

Future developments
We intend to port PowerNet v4 to embedded systems, and to enhance the ease of use by
automating the generation of the response scripts and WSDL files.

	XML, SOAP and Web Services in Forth
	Abstract
	Introduction
	PowerNet v3
	An example transaction
	XML input design
	XML parser implementation
	XML output design
	Testing against an existing web service
	Required changes to PowerNet
	WSDL files
	In the real world
	Embedded systems
	Future developments

