
SuDoku Solver Case Study: from specification to RVM-Forth

(part I)

Angel Robert Lynas, Bill Stoddart

October 4, 2005

Abstract

A project is underway to formulate a development cycle from B — suitably aug-
menting its implementation language B0 with reversibility constructs — to a coded
implementation in the reversible target language RVM-Forth[3, 4] with translation
schemas defined for this final stage. This paper describes the first phase of a case
study using the puzzle SuDoku to investigate possible ways of fleshing out such a
development cycle. We adopt an experimental approach, using a relatively simple
specification as a springboard for what a generated code implementation might look
like, and explore correspondences between the specification and implementation.

1 Introduction

1.1 Background and Terminology

The ancient Japanese puzzle SuDoku is of course no such thing; it’s American and only a
few decades old. Its basic form is a 9× 9 grid of squares (which we refer to as a “board”,
not entirely defensibly) divided into nine 3 × 3 subsections, hereinafter called “sectors”.
A puzzle consists of a partly filled-in board which must be filled in such that every row,
column and sector contains all the digits 1 to 9.

The structure of the puzzle and its solutions leads naturally to a set-based model,
wherein the constraints on a square’s value and the properties of a solution can be readily
expressed.

The target programming language is based on ANS Forth, and runs in a Reversible
Virtual Machine developed by Bill Stoddart [3, 4] with an embedded set implementation
built on work by Frank Zeyda [5]. The language will be referred to as RVM-Forth; the
defining feature which concerns us is a guard/ choice set of constructs, described in [2],
whereby a non-deterministic reversible choice (written as CHOICE) can be made from
elements in a set. The guard construct takes a flag from the stack, and if this is false,
reverses to the last non-deterministic choice, choosing another forward path. Should there
be no choices left, the previous CHOICE is revisited. On running out of options, a ko

prompt is given to signal this to the user (for instance, if a puzzle turns out to have no
solution).

Variables can be declared as reversible, in which case their earlier values are restored
on reversal; thus the (important) state obtaining at the time of the CHOICE can be
reinstated. The full code for the implementation is provided in appendix C.

1.2 Objectives

The overall context of our research is to investigate the formal development of reversible
programs, using a modified version of the B Method[1]. The B language has an exact
mathematical description, so that programs written in it can be subject to formal logical
analysis (a theorem prover is an important part of any B development environment). B
presents a user with (at least) two levels of the B language, which are respectively a
specification language (highly expressive but not implementable) and an implementation
language. A developer writes both a specification and implementation of a program, and
is obliged to show that the implementation satisfies the specification.

Our aim, over several of these reports, is to produce a complete B development cycle
of a simple solver, from abstract B specification through to an RB0 implementation (this
being our reversible version of the B implementation language).

The RB0 code will compile to RVM-Forth, and we hope to gain some insights into
how to optimise that mapping by seeing how various applications can be programmed
in RVM-Forth itself. We are particularly interested in set-based representations of data
and automatic backtracking, because both of these lend themselves to the logical analysis
which is at the heart of the B method. [3]

2 Data Model

The basic requirement is for a mapping from each assigned square of the board to its value,
this being the current board; and for the remaining squares, a mapping to a set of their
available values. The squares can be indexed sequentially, or by row-column co-ordinates,
the latter proving simpler in most areas. We therefore define XY as the set of integers
0..8, and thence a square is a pair (row, column) of type XY ×XY , the cartesian product1

of XY with itself. For convenience, the type of a square is defined as:

SQUARE =̂ (0..8) × (0..8)

The current board is a function from squares to 1..9 — the integer set defined as DIGIT .
Initially a partial function, the solution sees it become a total function (and trivially a
surjection). So defining a Boolean solved, we can specify a variable board, beginning thus:

board ∈ SQUARE 7→ DIGIT ∧
solved = TRUE ⇒ board ∈ SQUARE →→ DIGIT ∧ . . .

The specification variable board becomes the RVM-Forth variable BOARD. There remains
a criterion for validity which each square must fulfil, of course. Complementary to this
and used in the RVM-Forth implementation is the function from blank squares to their
possible values:

POSSIBLE ∈ SQUARE 7→ P(DIGIT)

2.1 Constraint Zone

A further requirement is the notion of a Constraint Zone for a given square, which is the
union of its row, column, and sector. The shaded area in fig 1 around square S is its
constraint zone. The row and column are simply specified; row 3, for instance, is the set

1A brief explanation of set operations used in the paper is given in appendix A.

SI

S

Figure 1: The Constraint Zone for square S

of pairs from (3,0) to (3,8), or the cartesian product of {3} and XY . A function can be
defined as a constant row to encapsulate this, with properties:

row ∈ XY → P(SQUARE) ∧ (1)

∀ rr .(rr ∈ XY ⇒ row(rr) = {rr} × XY)

The sector can be generated in a number of ways; the method used here is to map each
square (via a function) to a “sector index” — the square at the top left-hand side of
the sector in question (that labelled SI in fig 1). The set of sector squares can then be
generated orthogonally from these.

Having obtained the constraint zone for a blank square, its relational image with
BOARD will yield the subset of DIGIT the square cannot be assigned. The complement,
i.e. DIGIT minus these values, will be paired with the square in the initialisation of
POSSIBLE. The implementation operation AVAILABLE, which generates these values, is
examined below.

2.2 Solution

There remains the rest of the solution specification; while the final board must be a total
function, each of its squares must also be valid — that is, the value should not appear
elsewhere in its constraint zone. Defining this last as czone:

czone(r , c) =̂ row(r) ∪ col(c) ∪ sector(sectorindex (r , c))

A “valid square” function can be defined from a square and a board to a boolean, the
salient part of the definition being:

is valid square(rr , cc, bd) = TRUE ⇔
bd(rr 7→ cc) 6∈ bd(| czone(rr , cc) |))

When solved becomes true (having been initialised to false), then for all the squares in
board, is valid square is true; it should also be true for every assigned square in partially-
filled boards — from which the solution condition would follow. In the code version, this
is ensured by the assignment mechanism in any case; illegal assignments would not be
possible.

3 Method

An implementation based on the above data model can give us an idea what the final
generated product might look like. From the model, an algorithm for a sequential, iterative
modus operandi suggests itself; we present the outline followed by some more detailed
points. The BOARD and POSSIBLE sets have been initialised at this point: for row r ,
column c and values vi , their elements have the forms:

BOARD : ((r , c), v)
POSSIBLE : ((r , c), {v1, v2, . . . , vn})

1. Extract set of most constrained blank squares, along with their values (this is a
subset of POSSIBLE).

2. Choose (non-reversibly) a square from the domain of this set. Remove this entry
from POSSIBLE.

3. Choose a value from those available; this must be a reversible CHOICE. Create a
pair from the square and value, and add it to BOARD.

4. Update the blanks in the constraint zone of the square, i.e. remove the value just
assigned from their available sets.

5. If any of the resulting sets are empty, the board is now non-viable; in this case, we
must backtrack to step 3, restoring state along the way.

6. Otherwise, update POSSIBLE itself with these new values.

7. Repeat until board full.

3.1 Algorithm expansion

1. Concentrating on the most constrained blanks simply seems most logical; should a
wrong choice be made, there will be fewer subsequent attempts to work through.
More sophisticated techniques would be able to reduce the available values by other
comparisons with the current state; our näıve version does not apply all possible
constraints, but instead allows the backtracking mechanism to take the strain.

2. The above being the case, it’s likely that more than one square will be returned, so
one must be chosen to work with. A point which bears stressing is that, if a solution
exists at all from this stage, it can be found from any of these squares. Faster from
some than others, perhaps, though there is no way of knowing which. So:

(a) The choice may as well be random.

(b) The choice must not be reversible.

The latter point may well not be obvious at first glance (it can be tempting to
assume that any choice should be a CHOICE). However, if none of the values from
the chosen square lead to a viable board, reversing will simply cause another square
from the set (if any) to be chosen; there’s a strong likelihood that this will also fail
(needlessly duplicating a fruitless search) and will quite possibly close off backward
paths to points from which an actual solution could be found.

In fact the usual upshot (from observation) of trying a reversible square choice is
that a handful of squares in mutually exclusive constraint zones end up dealing out

the same slightly larger handful of values in an apparently never-ending set of nested
loops. This is an example of inappropriate use of CHOICE, since there is no division
into “wrong” and “right” squares, and therefore nothing to be gained from trying
another one on failure.

3. The choice of value, on the other hand, is clearly critical: probably only one will
lead to a solution.; this should be the only reversible CHOICE in the program. If
no valid number exists, then a previous assignment must have been wrong.

4. The assigned value is now no longer available to those blanks constrained by the
current square, so it must be removed from all of their “possible” assignment sets
(a subset of POSSIBLE itself).

5. This should always leave at least one remaining possible value for a square; an empty
set here indicates we cannot find a solution given this assignment. This is the test
for the reversibility guard, which will provoke backtracking.

6. The action guarded is updating the POSSIBLE set (described in more detail below).

4 Implementation

By virtue of the direct availability of set declarations and operations, many of the data
model specifications and algorithm operations translate quite naturally into RVM-Forth,
allowing for the postfix conversion. A simple example is the row generator row() — recall
the function specification in (1) above on page 3, which becomes the following definition:

: GENROW (n -- n.n.*.P)

INT { , } XY PROD ;

The first line is the name and a comment with the stack effect; translating as “integer
in, set of integer pairs out”, as the specification says. INT { } is one way of creating an
integer set, and here the comma between the curly braces allocates space for whatever is
on top of the stack, within that set. This gives us {n} ; XY puts the set of column numbers
on the stack while PROD generates the cartesian product of these two sets. The issue of
garbage collection for such anonymous dynamically-created sets is addressed in appendix
B. On its own, GENROW looks like this in action:

5 GENROW .SET

{(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(5,7),(5,8)} ok

The union of this with the outputs of GENCOL and GENSECTOR form the set of squares
in the constraint zone, returned by GENCZONE. With the square (3,2) on the stack (single
line of output split for document):

DUP .PAIR CR GENCZONE .SET (3,2)

{(0,2),(1,2),(2,2),(3,0),(3,1),(3,2),(3,3),

(3,4),(3,5),(3,6),(3,7),(3,8),(4,0),(4,1),

(4,2),(5,0),(5,1),(5,2),(6,2),(7,2),(8,2)}ok

Part of the initialisation involves the set POSSIBLE, wherein each blank square is paired
with its available values: generation of the latter is performed by AVAILABLE. As de-
scribed above in section 2.1, what is required is the set of digits in DIGIT which are not

in the already assigned squares within the constraint zone of the square (r , c) in question;
this is specifiable in set notation as:

DIGIT − board(| czone(r , c) |)

Converted for postfix and stack adjustment, it maps exactly to RVM-Forth:

: AVAILABLE (n.n.* -- n.P)

GENCZONE BOARD SWAP IMAGE DIGIT SWAP \ ;

Using the same square as the last example, with a sample puzzle loaded:

DUP .PAIR CR AVAILABLE .SET (3,2)

{1,2,5,8,9}ok

4.1 The Update procedure

A more detailed look at this is now presented, it being the section where the reversibility
guard comes into play. A boolean variable called VALID acts as a flag for the guard,
initialised to true. Arguments are the square and the value just assigned to it. Outline:

1. Generate the subset of POSSIBLE which needs updating. This is simply done by
finding the constraint zone of the square with GENZONE, and performing a do-
main restriction (the word <| in the definition below: described in appendix A) on
POSSIBLE. If the resulting set is not empty, the loop now builds a new set of this
type.

2. (Begin loop) For each blank square in this set, remove the assigned value from its
set of available values, where present. If the resulting set is empty, set VALID to
false and exit loop. Otherwise, add the new pair (square, remaining possible values)
to the set being built.

3. (End loop) Test VALID: if false, instigate reversal to previous CHOICE (and make
another choice). Otherwise, use function override (<+) to update POSSIBLE with
the new sets of values for the affected squares.

The RVM-Forth code to achieve this is shown below. ASSIGNED is a variable holding
the last assigned value, and UNPAIR leaves the first and second elements in that order
on the stack.

1. : UPDATE-POSSIBLE (n.n.* n --)

2. to ASSIGNED GENCZONE POSSIBLE <|

3. DUP ?{} NOT IF (test for non-empty set)

4. INT INT PROD INT POW PROD {

5. DUP CARD 0 DO

6. DUP I @ELEMENT (index through elements)

7. UNPAIR ASSIGNED SUBTRACT-ELEMENT

8. DUP ?{} IF FALSE to VALID LEAVE ELSE |->P,S , THEN

9. LOOP } VALID --> POSSIBLE SWAP <+ to POSSIBLE THEN DROP ;

Line 4 This is the RVM postfix way of specifying a pair comprising a pair of integers and
a set of integers (i.e. a square plus set of values)

((r , c), {v1, v2, . . . , vn})

Line 8 Having subtracted the assigned value, we now check the remaining set with the
empty set test. In theory, the guard might go directly after this, but reversing
from the middle of a set-building operation is incompatible with the reversibility
mechanism; a boolean is used so the guard can be outside.

Line 9 The symbol for the guard is -->, here testing VALID. The symbol is cognate with
the General Substitution Language’s =⇒ , normally associated with an IF. . . THEN
construct in a B specification2. Here and in the proposed RB0 language, it functions
as a “naked” guard, prompting backtracking on failure.

5 Performance

In terms of raw speed, running in a virtual machine atop a subsystem for sets (albeit an
efficient one) is unlikely to be optimal. Instead we balance the simplicity of the devel-
opment using a näıve heuristic against the number of tries the program needs to solve a
problem designated “very hard”, or “fiendish” (anything less challenging requires little if
any backtracking).

While the choice of square could simply take the first one encountered (using ELE-
MENT), there is a non-backtracking random choice available called PCHOICE, and along
with a reversible RANDOM-CHOICE for the value assignment, this gives a variety of
possible paths for the program to follow. Sometimes a solution will be found very quickly
even for the hardest puzzles in this way. The average range for puzzles encountered so far
is 150-500 attempted assignments. The unconstrained search space for assigning about 50
squares from 9 potential values for each one is not considered further here.

6 Further Work

The initial approach here has been to attack both ends of the problem first to gain an idea
of what a complete development should encompass. While refinement from the abstract
machines will often use the usual techniques, certain differences will be apparent: in the
data model, sets need not be refined away as they are directly implementable; also the re-
versible computations introduce certain differences in refinement methods (and associated
proofs), outlined in [6]. Issues thrown up by refinement of this case study will therefore
require investigation.

6.1 Code generation: stack vs locals?

The code generation stage is in very early infancy as yet; translation schemas to support
this have been begun, but certain questions arise. Forth, RVM or otherwise, is a stack-
based language, and much of its operational simplicity derives from not having to declare
and handle local variables for basic operations. B, on the other hand, is in the tradition
of variable-manipulation languages, and this provides an uncomfortable meeting-point for
the two modes.

Provision of an explicit stack at the specification level would cause more problems than
it would solve, leaving two alternatives. Ideally, we would aim for a transparent “under
the hood” translation system, whereby appropriate use was made of the Forth stack from
a standard local-using specification. Initially, however, translation will (relatively) simply

2Such programming-style constructs are “syntactic sugar” for the underlying GSL notation.

map B locals to RVM locals, less than optimal though this will prove; meanwhile a reliable
way of optimising the translation must be investigated.

The combination of top-down approach from specification and bottom-up approach from
code will provide illumination from two aspects for the development of a middle stage,
hypothetical as yet, an implementation-level specification language closely based on the
existing B0.

References

[1] Jean-Raymond Abrial. The B Book. Cambridge University Press, 1996.

[2] W J Stoddart. Efficient reversibility with Guards and Choice. In M A Ertl, editor,
18th EuroForth, 2002. Available from:
http://www.complang.tuwien.ac.at/anton/euroforth2002/papers/bill.rev.ps.gz.

[3] W J Stoddart. Using Forth in an Investigation into Reversible Computation. In
P Knaggs and M A Ertl, editors, 19th EuroForth, 2003.

[4] W J Stoddart. RVM-Forth, a Reversible Virtual Machine: User Manual. In M A Ertl,
editor, 19th EuroForth, 2004. Available from
http://dec.bournemouth.ac.uk/forth/euro/ef04/stoddart04.pdf or
http://www.scm.tees.ac.uk/formalmethods/index.php.

[5] W J Stoddart and F Zeyda. Implementing sets for reversible computation. In A ERTL,
editor, 18th Euroforth, Technical University of Vienna. 2002.

[6] F Zeyda, W J Stoddart, and S E Dunne. The Refinement of Reversible Computations.
In T Muntean and K Sere, editors, 2nd International Workshop on Refinement of
Critical Systems, 2003. Available from www.esil.univ-mrs.fr/ spc/rcs03/rcs03.

A Set operations

Many set operations are provided “out of the box” with RVM-Forth, and more advanced
ones can be built up with little trouble. For instance, from two sets (of arbitrary types),
the set of all possible pairs (cartesian product) can be generated with PROD:

SAVOURY SWEET .SET .SET

{chocolate,fruit,honey} {cheese,fish,onion} ok

SWEET SAVOURY PROD .SET

{(chocolate,cheese),(chocolate,fish),(chocolate,onion),

(fruit,cheese),(fruit,fish),(fruit,onion),

(honey,cheese),(honey,fish),(honey,onion)} ok

Tasty. As usual, the order of the stack parameters is the same as for the infix operator:
S × T becomes S T PROD.

Working with relations and functions is also straightforward. We define a simplistic
telephone directory (a relation from strings to integers) to work with, called PHONE,
which looks like this:

CR PHONE .SET

{(Bill,2673),(Frank,4611),(Keerthi,4611),(Michelle,4611),

(Rob,4611),(Steve,2657)}

An operation used in the text is domain restriction (the word <|), in which a set of values
from the domain is used to extract only those pairs which have a first value in that set
— the result being returned as another set. For instance, with a query set dynamically
constructed:

STRING { " Michelle" , " Keerthi" , } PHONE <| ok.

.SET {(Keerthi,4611),(Michelle,4611)}ok

A relational image is really just the range of this result, though it’s normally implemented
as a separate operation. The set notation S (| U |), where U is a subset of the domain of
S, becomes S U IMAGE in RVM-Forth:

PHONE STRING { " Michelle" , " Keerthi" , } IMAGE ok.

.SET {4611}ok

Which is the range of the previous result. Range restriction is the mirror image of domain
restriction (the word |>); notice the stack parameters are the other way round to reflect
the ordering of the infix operator:

PHONE INT { 4611 , } |> ok.

.SET {(Frank,4611),(Keerthi,4611),(Michelle,4611),(Rob,4611)}ok

A certain overcrowding is becoming apparent. Some rehousing later, the outdated phone
numbers can be overwritten with function override. The word <+ is defined as:

: <+ (s1:x.P s2:x.P -- s3:x.P where s3 = s1 <+ s2)

DUP DOM ROT <<| \/ ;

Using <<|, which is domain subtraction (the complement of domain restriction), this
removes the pairs from s1 which are due to be updated, then unions the remainder with
s2. To update our phones, we construct a set UPDATES:

{(Frank,2680),(Rob,3719)}

and invoke function override to effectively overwrite those pairs whose first value matches
one of the first values in the update set. Thus:

PHONE UPDATES <+ to PHONE ok

CR PHONE .SET

{(Bill,2673),(Frank,2680),(Keerthi,4611),(Michelle,4611),

(Rob,3719),(Steve,2657)}ok

This is of course used in the SuDoku program to update the POSSIBLE set with reduced
sets of values for the affected squares only.

B Garbage Collection

As might be imagined such wanton creation of arbitrary sets has huge potential for garbage
creation; this is automatically collected during reverse execution, but not necessarily oth-
erwise. However, the potential-value capabilities of the RVM allow for the provision of a
wrapper which ensures garbage collection for this sort of program. The details are covered
in [4], but the results of using these capabilities are shown here with the aid of a diagnostic
tool called Heapwatch (c© Frank Zeyda). On starting the RVM itself:

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 936 bytes (0 KB)

Number of calls to malloc(): 40

Number of calls to calloc(): 0

Number of calls to realloc(): 33 (24 ret. same + 9 diff. address)

Largest memory allocation: 56 bytes in file setkernel.c, line 252.

Average allocation size: 26 bytes

Peak memory utilisation: 936 bytes (0 KB) + 2625 KB for HeapWatch.

After a single run of the solver without garbage collection invoked, the situation is as
below — followed immediately by another run and the memory report.

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 211816 bytes (206 KB)

Number of calls to malloc(): 38819

Number of calls to calloc(): 0

Number of calls to realloc(): 30506 (19868 ret. same + 10638 diff. address)

Largest memory allocation: 344 bytes in file setkernel.c, line 211.

Average allocation size: 44 bytes

Peak memory utilisation: 211816 bytes (206 KB) + 2625 KB for HeapWatch.

(******** another puzzle solved here **********)

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 427324 bytes (417 KB)

Number of calls to malloc(): 56596

Number of calls to calloc(): 0

Number of calls to realloc(): 43834 (29158 ret. same + 14676 diff. address)

Largest memory allocation: 344 bytes in file setkernel.c, line 211.

Average allocation size: 44 bytes

Peak memory utilisation: 427324 bytes (417 KB) + 2625 KB for HeapWatch.

ok..

Clearly some garbage is being left behind, and would continue to build up. Using the
<TRY S CUT> construct to wrap the program, however, allows it to run, print (or store) its
output, and then garbage associated with the run is collected. From a similar cold start
to the first quoted above, a run now leaves the system in this situation:

HW-STATS HeapWatch: Statistical Information:

Current memory in use: 936 bytes (0 KB)

Number of calls to malloc(): 38819

Number of calls to calloc(): 0

Number of calls to realloc(): 30506 (19866 ret. same + 10640 diff. address)

Largest memory allocation: 344 bytes in file setkernel.c, line 211.

Average allocation size: 44 bytes

Peak memory utilisation: 211816 bytes (206 KB) + 2625 KB for HeapWatch.

So the memory allocated by the frequent calls to malloc() or realloc() has now all
been reclaimed.

C RVM-Forth Implementation Code

(========== Declarations and initial Board ====================)

1 9 .. VALUE DIGIT

0 8 .. VALUE XY

NULL VALUE_ BOARD (Reversible variable)

NULL VALUE_ POSSIBLE (Reversible variable)

1 VALUE LOOPS 1 VALUE TRIES (Bookkeeping)

8 VALUE COLI 8 VALUE ROWI 0 VALUE ASSIGNED

TRUE VALUE_ VALID (Set to false if square left with no domain)

(Generalised board-builder; assumes 81 numbers loaded on stack)

: BUILD-BOARD (n TIMES 81 --)

8 to ROWI

INT INT PROD INT PROD {

BEGIN ROWI -1 >

WHILE

8 to COLI

BEGIN COLI -1 >

WHILE

DUP 0= NOT

IF ROWI COLI |->I,I SWAP |->P,I ,

ELSE DROP

THEN

COLI 1- to COLI

REPEAT

ROWI 1- to ROWI

REPEAT } to BOARD ;

(================ Utilties; zone generation etc ================)

: UNPAIR (x1.x2.* -- x1 x2)

DUP FIRST SWAP SECOND ;

: GENROW (n -- n.n.*.P)

INT { , } XY PROD ;

: GENCOL (n -- n.n.*.P)

XY SWAP INT { , } PROD ;

(Here, nr is the row number, and nc isn’t.

The output is the row & col of the sector index)

: SECTORINDEX (nr nc -- n n)

DUP 3 MOD - SWAP

DUP 3 MOD - SWAP ;

: GENSECTOR (nr nc -- n.n.*.P)

SECTORINDEX

DUP 2 + .. SWAP

DUP 2 + .. SWAP PROD ;

(Find the constraint zone for a particular square)

: GENCZONE (n.n.* -- n.n.*.P)

UNPAIR DUP

GENCOL ROT ROT OVER

GENROW ROT ROT

GENSECTOR \/ \/ ;

(Now we find the values a blank square can take)

: AVAILABLE (n.n.* -- n.P)

GENCZONE BOARD SWAP IMAGE DIGIT SWAP \ ;

(===)

(Pretty(ish)-print subsystem. Can safely be ignored)

0 VALUE ELEMINDEX NULL VALUE BOARDSIZE

: VLINE 124 EMIT ;

: LINE VLINE CR ." +---------+---------+---------+" CR ;

(Convert co-ord pairs to scalar square numbers)

: CONVERTBOARD (n.n.*.n.P --)

INT INT PROD {

DUP CARD 0 DO

DUP I @ELEMENT

UNPAIR SWAP UNPAIR SWAP 9 * +

SWAP |->I,I ,

LOOP

} NIP ;

: .BOARD (--)

CONVERTBOARD

0 to ELEMINDEX DUP CARD to BOARDSIZE

81 0 DO ELEMINDEX BOARDSIZE < IF

DUP ELEMINDEX @ELEMENT

ELSE DUP 0 @ELEMENT

THEN

I 27 MOD 0=

IF LINE VLINE ELSE I 9 MOD 0=

IF VLINE CR VLINE ELSE I 3 MOD 0=

IF VLINE

THEN

THEN

THEN

DUP FIRST I = IF

SPACE SECOND . ELEMINDEX 1+ to ELEMINDEX

ELSE 3 SPACES DROP THEN

LOOP LINE DROP CR ;

(===================== End of print system ===================)

(Build set of squares and their possible values)

: INIT-POSSIBLE (--)

XY XY PROD BOARD DOM \

INT INT PROD INT POW PROD {

DUP CARD 0 DO

DUP I @ELEMENT

DUP AVAILABLE |->P,S ,

LOOP

} to POSSIBLE DROP ;

(Get the next squares from the most constrained -- returns a

subset of POSSIBLE. We cheat a bit by using the set ordering

to find the lowest card in the range of POSSIBLE)

: GETSQUARES (n -- n.n.*.n.P.*.P)

0 (: VALUE N :)

POSSIBLE DUP RAN ELEMENT CARD to N

INT INT PROD INT POW PROD {

DUP CARD 0 DO

DUP I @ELEMENT

DUP SECOND CARD N =

IF , ELSE DROP THEN

LOOP

} 1LEAVE ;

(Picks next square and its availables (an element of POSSIBLE)

to send to assign; subtract it from POSSIBLE)

: NEXTUP (n.n.*.n.P.*.P -- n.n.*.n.P.*)

PCHOICE DUP POSSIBLE SWAP

SUBTRACT-ELEMENT to POSSIBLE ;

(Assigns from square and set of values a single value, adding

pair to Board; leaves square and value separately)

: ASSIGN (n.n.*.n.P.* -- n.n.* n)

UNPAIR RANDOM-CHOICE TRIES 1+ to TRIES

2DUP |->P,I BOARD SWAP ADD-ELEMENT to BOARD ;

(Remove assigned from the domain of each square in the constraint

zone of the last assigned square -- update by func override. Should

not attempt to update when no blanks need updating)

: UPDATE-POSSIBLE (n.n.* n --)

to ASSIGNED GENCZONE POSSIBLE <|

DUP ?{} NOT IF

INT INT PROD INT POW PROD {

DUP CARD 0 DO

DUP I @ELEMENT

UNPAIR ASSIGNED SUBTRACT-ELEMENT

DUP ?{} IF FALSE to VALID LEAVE ELSE |->P,S , THEN

LOOP } VALID --> POSSIBLE SWAP <+ to POSSIBLE THEN DROP ;

(============ Run and step-through facilities ================)

: START (--)

NULL to BOARD NULL to POSSIBLE

1 to TRIES 1 to LOOPS

32 WORD LOAD-FILE BUILD-BOARD INIT-POSSIBLE ;

: STEP (--)

GETSQUARES NEXTUP

ASSIGN UPDATE-POSSIBLE LOOPS 1+ to LOOPS ;

: SOLVE (-- n.n.*.n.*.P)

BEGIN

BOARD CARD 81 <

WHILE

STEP

REPEAT ;

(Takes filename after word, e.g.: TRY-TO-SOLVE S1)

: TRY-TO-SOLVE (--) CR

START SOLVE BOARD .BOARD TRIES . ." TRIES IN "

LOOPS . ." LOOPS. " CR ;

(Garbage collecting wrapper for above)

.(TRY <filename> runs the puzzle)

: TRY

<CHOICE

<TRY TRY-TO-SOLVE CUT>

[]

CR

CHOICE> ;

