
47

A Portable C Function Call Interface

M. Anton Ertl∗

TU Wien

Abstract

Many Forth systems provide means to call C func-
tions, but these interfaces are not designed to be
portable between platforms: A call to a C library
function that works on one platform may fail on
the next platform, because the parameter and re-
turn value types of the C function may be different.
In this paper, we present an interface that avoids
this problem: In particular, the actual calls can be
made platform-independent; a part of the declara-
tions is platform-dependent, but can be generated
automatically from C .h-files.

1 Introduction

Many operating system and library calls have their
interfaces specified as C prototypes and are called
using C calling conventions. As a result, C has be-
come a kind of lingua franca when interfacing with
other languages; other languages generally interface
to C, and “foreign function call” libraries like ffcall
and libffi are actually only designed for interfacing
with C.

This paper discusses the design of a C interface
for Forth. The main goals of this interface are:

Portability of Forth code It should be possible
to write Forth code with calls to C such that
it works unchanged across different platforms.
The portability of the C function declarations
would also be nice, but may only be partially
achievable, as we will see.

Programmer convenience It should be easy to
call the C functions using the existing docu-
mentation for them. The need for declaring C
functions should be eliminated if possible.

Avoid losing bits During conversions between
Forth and C types, bits should only be cut off
in places where the programmer has some con-
trol over what these bits are.

Full domain Allow using all possible values as ar-
guments to functions. This goal conflicts with
the no-bit-loss goal.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

Many Forth systems already have a C call inter-
face. However, they all fail the portability goal.
Indeed, many of the interfaces contain artifacts like
the reversal of the arguments that are specific to
the platform and the Forth system involved.

This paper does not deal with access to C
structs, unions or memory accesses to C types.
In addition to some of the problems discussed here,
these issues also pose additional problems, and re-
quire additional effort to solve them.

2 Problems and choices

This section discusses the problems that we en-
counter when we design a C call interface, and out-
lines some of the design decisions. Our actual inter-
face is presented in Section 3. If the present section
appears to be complicated and lengthy, this is due
to the complex subject matter. Feel free to skip to
Section 3, and only read this section to learn about
the reasons for this design.

2.1 Parameter order

For user convenience, the parameter order is the
same as in the C code and (more importantly) the
documentation of the C function. I.e., the right-
most parameter in C is on top of its stack in Forth,
and the leftmost parameter deepest.

Some existing implementations use the reverse or-
der (leftmost parameter on top of stack), because
that is easier to implement for their systems on the
IA-32 architecture (where C passes parameters on
the native stack, with the leftmost parameter on
top).

However, the reverse order is inconvenient for the
users, and error-prone. Typically, neither the nor-
mal nor the reverse order are what a Forth pro-
grammer would have designed for best use in Forth,
so some stack juggling is often necessary; perform-
ing this stack juggling while mentally reversing the
order of parameters given in the documentation is
hard and frequently leads to errors.

Also, all recent calling conventions pass the first
few parameters in registers, including the calling
conventions used for Unix and Windows on the
AMD64 architecture, which will gradually replace

48

Ertl A Portable C Function Call Interface

the IA-32 architecture and its stack-based calling
convention in the next years.

Finally, the implementation benefits of the re-
verse order are not just restricted to an obsoles-
cent architecture, but also to a specific design of
the Forth system: It requires that stack items are
kept in memory, with the data stack pointer be-
ing esp, and that floating-point values are kept on
the data stack. Sophisticated native-code compilers
keep stack items in registers, and less sophisticated
systems like Gforth do not use esp for the data
stack pointer. And nearly all Forth systems use a
separate floating-point stack.

2.2 Types

The main problem with the calling C functions is:
Which Forth types should we pass for various pa-
rameters, and what type should we expect as return
value?

A simple approach would be to let all C integer
and pointer types correspond to Forth cells and all
C floating-point types to Forth floats, for both pa-
rameters and return values. This would satisfy the
portability and convenience goals.

Unfortunately, some C integer types are larger
than a Forth cell on some platforms; e.g., off t may
be 64 bits wide even on 32-bit platforms. Consider
a call to this C function:

off_t lseek(int fd, off_t offset,

int whence);

If we pass a cell for the offset parameter, we are
not able to pass all the possible offsets that lseek

can take, so we miss the full-domain goal. What’s
worse, the result of the function is truncated to fit
into a cell, so we lose bits, contrary to our goal.

So we might actually prefer to call the C function
lseek with the following stack effect:

(n-fd d-offset n-whence -- d)

Bit loss vs. full domain

When we call lseek, the d-offset argument may be
too large (e.g., on a 64-bit system, where d is 128
bits and off t 64 bits; or on a 32-bit system with a
32-bit off t), and may be truncated on passing it to
lseek, losing bits. This is the conflict between the
full-domain goal and the loss-avoiding goal. How-
ever, in this case the problem is not that bad, be-
cause the programmer has some control over the
situation; e.g., he will typically pass an offset that
comes from an earlier call to lseek, or use a small
(constant) offset that is known not to be damaged
by truncation on any platform.1

1It might still be a good idea to have an (optional) run-
time check that the truncation really loses only redundant
bits.

So, in general, for functions we call, we usually
want to have a Forth type for the arguments that
is at least as big as the C type (the full-domain
trumps bit-loss here); for the return value, we want
a Forth type that it at least as big as the C type,
to avoid bit-loss.

For callbacks (Forth words that we pass to C as
C function pointers and that the C code then calls),
we want to have the Forth types for the arguments
at least as big as the C type to avoid bit-loss. For
the return value, we again want to provide a type
at least as big as the C type to be able to return
all values out of the codomain of the function (and
avoiding the bit-loss is again the responsibility of
the programmer).

So, in all cases we want a Forth type that is at
least as big as the C type. A way to ensure that
this is as often the case as possible would be to use
double-cells for integer types in all places. However,
that approach conflicts with the convenience goal.
Actually, most C types fit into a single cell on all
32-bit and larger platforms2, and there are only few,
such as off t, that are larger on some platform. So
actually single cells should be the usual case, and
double cells the exception.

You may wonder where the asymmetry between
Forth and C types comes from. It comes from the
situation for which we are designing: We have a
bunch of independently developed C functions that
are called from a Forth program that is designed to
call these C functions; and for callbacks, the words
that are called back are designed to be called back
from these independently developed C functions. If
we designed an interface for calling independently
developed Forth code from (dependent) C code, we
would use C types that are at least as big as Forth
types.

2.3 Determining the Forth type

Can we determine the Forth type of a parameter
from the C type?

We cannot determine it from the basic C type,
because the basic type of the parameter might be
different on different platforms. E.g., off t is not
a basic C type; it is usually mapped to long or
long long. If we use a single cell for long and
a double cell for long long then we would get dif-
ferent stack effects for lseek on different platforms,
breaking portability. This approach is implemented
in Gforth’s current C interface, and it is broken;
fortunately parameters that may be long long are
rare, so this problem is rare.

Can we determine it from the derived C type,
e.g., off t? In principle this is a good idea. It

2We can restrict our view to such big platforms in many
cases, because the library we want to call (e.g. OpenGL)
does not exist on smaller platforms

49

Ertl A Portable C Function Call Interface

certainly can be used as a guideline when deciding
which Forth types should be used when the pro-
grammer declares the Forth type manually, as in
our interface below.

One might also consider to generate the Forth
type automatically from the C prototype infor-
mation (from the .h-files) and a table of C-to-
Forth type mappings. However, while this strategy
would work in most cases, it would not be entirely
portable, because the prototypes in the .h-files are
not necessarily the same on all platforms. E.g., on
some old Unix versions the .h-files probably contain
long in place of off t, and that would typically be
mapped to a single cell (whereas off t would typi-
cally be mapped to a double cell).

The reason why such differences in .h files are
not a problem for C is that C performs automatic
conversion between different integer types. The rea-
son that they would be problems for Forth is that
Forth requires explicit conversion between some in-
teger types (in particular, between single-cell and
double-cell types).

Floating point

For floating-point parameters, the situation is much
simpler: We only have one Forth on-stack floating-
point type, so we have to convert every C type to
that, and have to convert that to every C floating-
point type. There may be some bit loss involved, so
the programmer should know what he is doing. The
bit loss will usually occur in the form of rounding,
which will be acceptable in many situations, but
may lead to hard-to-find errors in other cases.

C performs automatic type conversion between
integer and floating-point types, so in theory a given
parameter might be an integer type on one plat-
form and a floating-point type on another platform.
However, this does not happen in practice.

Addresses/Pointers

In this paper we assume that C pointers are repre-
sented as simple flat addresses. There may be some
platforms around where this is not the case, but we
feel that such platforms are not worth catering for,
because:

• These platforms are relatively exotic, and it
is not clear that ANS Forth systems exist for
them at all, much less that they would want to
use a portable Forth-to-C interface.

• Catering for them would probably complicate
the interface significantly.

• Many programmers would probably make mis-
takes in using such a more complicated inter-
face without noticing (because the result would

run in a flat-address system), resulting in pro-
grams that don’t port to non-flat machines de-
spite the interface complications.

Moreover, we could not cater for such platforms,
because we do not have enough experience with a
wide-enough range of such platforms to design a
general way of dealing with them.

Pointers necessarily always fit into a cell (since
addresses fit into a cell), so the type problem is
trivial for passing and returning pointers: just use
a cell for every pointer.

However, there is a problem in what can be done
with pointers. We cannot easily fetch the data they
are pointing to or store data there, because we don’t
know how to access it. We leave this memory access
problem to a future paper.

Still, we can do something useful with such point-
ers: we can pass them to other C functions; E.g.,
that is the only use that even C programmers make
of some pointer types, such as FILE *.

Structs/Unions

In C you can pass structs and unions as parameters
to a function, and the function can return a struct
or union. We do not attack this problem in this
paper.

Fortunately, the library functions I have come
across usually do not make use of this feature of the
C language, but prefer to pass pointers to structs
rather than pass structs by value. However, this is
not necessarily the case for all libraries.

Varargs

Some C functions (e.g., printf) can be called at
different places with different numbers and types
of parameters (varargs functions). The Forth sys-
tem does not know how many of the values on the
stacks are intended to be arguments to the C func-
tion, which of the values on the stacks correspond to
which C type, etc. Therefore, the Forth program-
mer has to make the Forth and C types used in the
concrete call explicit.

This can be done by putting that information
near the call (probably right before it).

Another option would be to declare several Forth
words (with different names) for the C function,
each with a different parameter pattern, and then
use the right name for the desired parameter pat-
tern in the call.

2.4 Case sensitivity

Another potential problem is that C names are
matched case sensitively, whereas in Forth names

50

Ertl A Portable C Function Call Interface

that may only differ in case may be treated as be-
ing the same; and most Forth systems are actually
implemented case-insensitively.

Fortunately, C programmers usually do not use
case sensitivity to distinguish functions3.

Moreover, a C function may have the same name
as an existing Forth word (e.g., abs), so one would
shadow the other.

One solution for both problems would be to de-
fine the C functions in a separate, case-sensitive
wordlist. However, while Gforth has such case-
sensitive wordlists (tables), most Forth systems do
not have them. Moreover, dealing with collisions
through wordlists is cumbersome.

Another solution is to provide a different Forth
name for the problematic C name, and use this
Forth name to refer to the C function in Forth code.

3 The C function call interface

The C interface consists of three parts, used in this
order:

Declare Forth types and name This part is
platform independent.

Declare C types and name This part is plat-
form dependent, but can be generated auto-
matically from .h-files.

Call the C function This part is platform inde-
pendent.

3.1 Declaration, Forth part

In the Forth part of the declaration, you declare
the Forth name, which C function it corresponds
to, and what the Forth types of the parameters are.
For our lseek example, the Forth declaration might
look like this:

c-function dlseek lseek n d n -- d

This declares a Forth word dlseek for the C func-
tion lseek with the Forth stack effect n d n -- d.
C-function parses the whole sequence up to the

--, plus the following return value. The allowable
types for the parameters and the return value are:

n w A single cell.

d A double cell.

r A float.

void Used as return type if the function does not
return a value.

3There may be case-insensitive collisions between con-
stants or types and functions, though.

func Used to pass a C function pointer.

The Forth part of the declaration is optional. If
it is not present, the word gets a default name and
default parameter and return types, as follows:

• The default Forth name is the same name as
the C function name.

• The default type for an integer or pointer type
in C is a single cell.

• The default type for a floating-point type in C
is a float.

In most cases, these defaults are the desired
names and types, so only few explicit Forth-part
declarations are necessary.

If you do not use the default types, it is probably
also a good idea to use a non-default name (like
dlseek in our example), to make the programmer
and reader more aware of the non-default types.

3.2 Declaration, C part

The C part of the declaration specifies the basic C
types for the parameter and return values on the
specific platform, like this:

c-types lseek int longlong int -- longlong

Of course, on a different platform one might need
a different declaration, e.g.,

c-types lseek int long int -- long

Again, c-types parses everything up to --,
plus the return type. The possible types are:
schar short int long longlong uchar ushort

uint ulong ulonglong ptr float double

longdouble void func.

Note that this declaration can be created auto-
matically out of the prototype for lseek and the
type declaration of off t:

typedef long long off_t;

off_t lseek(int fd, off_t offset,

int whence);

So, while these declarations are platform-specific,
it is possible to write a parser that processes the
.h-files of the platform at hand, takes the the C
functions that are declared there, and performs C
part declarations for the Forth system.

51

Ertl A Portable C Function Call Interface

3.3 Calling the C function

Once a C function is declared, calling it works just
like with any other Forth word. E.g., for our dlseek
a call might look like this4:

fd @ 0. SEEK_SET dlseek -1. d= if

... \ error handling

then

3.4 Varargs

Functions with variable numbers or types of argu-
ments can be handled by declaring each argument
pattern separately:

c-function sn-printf printf w n -- n

c-types printf ptr long -- int

c-function sr-printf printf w r -- n

c-types printf ptr double -- n

s\" %ld\0" drop 20 sn-printf .

s\" %f\0" drop 2.5e sr-printf .

3.5 Callbacks

Consider the ANSI C function qsort:

void qsort(void *base, size_t nmemb,

size_t size,

int(*compar)(const void *,

const void *));

When you call it, you have to pass a C function
pointer for the last argument. You may want to
let qsort call a Forth word through that function
pointer (a callback); then you have to provide a C
function pointer for the Forth word. An example of
such a word (useful with qsort) would be:

: n-compare (addr1 addr2 -- n)

@ swap @ swap - ;

Ideally we would like to call qsort like this:

: sort-cells (addr u --)

1 cells [’] n-compare qsort ;

However, a Forth execution token is not a C func-
tion pointer, and qsort would not know how to ex-
ecute it, so we have to get a little more involved.
First we define a word compar for the kind of func-
tion pointers that qsort wants, as usual in two
parts:

4Of course, there is still the question of where the
SEEK SET is coming from; this is a constant with a platform-
specific value, and would ideally also be created by our .h-file
processor.

c-function-ptr compar w w -- n

c-function-ptr-types compar ptr ptr -- int

The resulting compar is a defining word for cre-
ating specific function pointers5, like this:

[’] n-compare compar fptr-n-compare

And now you can use that for calling qsort:

: sort-cells (addr u --)

1 cells fptr-n-compare qsort ;

4 Status

This C interface is currently just a paper design, but
its implementation is planned for the near future.

5 Conclusion

Designing a C interface that allows platform-
independent calls to C functions, is convenient to
program, and has some other nice properties poses a
number of subproblems, in particular the mismatch
between the type systems of Forth and the C. In this
paper we discuss these problems and present a solu-
tion: The declartation of parameter types is divided
into: a platform-independent Forth-type part, with
defaults that make most such declarations unnec-
essary; and a platform-dependent C-type part that
can be generated out of C’s .h-files. The main part
of the Forth code, that part that contains the calls
to C, is platform-independent.

Acknowledgments

I thank Sergey N. Baranov for his helpful comments
on a draft version of the paper.

5An alternative would have been to make compar just a
conversion word that would typically be used with constant,
but that might encourage the users to call it several times
with the same execution token, and that might cost memory
every time.

