
A Debugger for the b16 CPU

Bernd Paysan

EuroForth 2008, Vienna

Abstract

A debugging interface for the b16 CPU is shown. A
few lines of Verilog and some small Forth programs
are sufficient to add a classical debugging interface
to this small CPU. Integration of other controls (like
test equipment) is very easy to do.

1 Motivation

For the current project with the b16 core [1] inside,
a few things are “unusual”:

• Firmware programmer isn’t a Forth expert (i.e.
not me)

• Program in writable memory (first test chip:
RAM, final chip: Flash or OTP)

Under these circumstances, it makes some sense to
debug the firmware using a “classical” in–circuit–
debugger. It will turn out that adding such a de-
bugger to the hardware is a fairly trivial exercise,
leaving writing the software as “main” challenge.

The features such a debugger should have are
quite common:

• Interface the chip with a PC, so that the
PC can control memory content (and memory
mapped IO registers)

• The debugging window should show the source
code, and jump with the cursor to the currently
executed location (if the CPU is halted)

• Typical commands: Single step, multiple steps,
run/stop, set/clear breakpoint

• Direct access to a memory location, dump of a
consecutive memory block

• Optional: Forth console to mix debugging com-
mands with other instructions (e.g. measure-
ment and stimuli equipment driven by serial
lines)

What’s missing

• Classical command line for the embedded CPU

ALU

NOS

RAM/ROM

 Instruction Word

TOS

B16 small Block Diagram

Address MUX

Stack

Return−Stack

P

R

Figure 1: Block Diagram

1.1 Architectural Overview

Just to recap: The core components of the b16 are

• An ALU

• A data stack with top and next of stack (T and
N) as inputs for the ALU

• A return stack with top R

• An instruction pointer P

• An instruction latch I

Figure 1 shows a block diagram.

2 Adding In–Circuit Debug-

ging

From a previous project, we already had two impor-
tant parts: The CPU in a shape that’s useful for the
project (multiplication and division, dropped back
then, were added again), and a SPI–derived inter-
face to directly access memory from outside. The
interface uses only two pins, by sharing DI/DO, and
interpreting activity on the clock line as chip select
(with timeout). The device is not pad limited, but
the package gets cheaper with less pins; a standard
SPI interface that allows tristating DO can talk to
this chip without problems. To interface with the
PC, an FTDI module is used (bit–banging mode of
serial port interface).

So the missing link was the actual debugger.

A Debugger for the b16 CPU Bernd Paysan 3 DEBUGGING SOFTWARE

The registers were implemented in the order de-
scribed here. This turned out as a not quite clever
idea, but it was possible to work around the prob-
lem. The SPI interface can read multiple words in
one go, by incrementing the address latch after each
read access. This has the side effect that each read
sequence ends with a read to the next memory lo-
cation, even if this data is never used (it just has to
be available on the next rising clock edge).

2.1 Implementation

For debugging purposes, all registers are memory
read–writable. This requires an external bus mas-
ter attached to the debugging interface. It’s only
active when the processor is stopped, so the proces-
sor itself can’t access its own registers.

The debugging module offers the following regis-
ters as address space:

Address read write

$FFE0 P P
$FFE2 T T
$FFE4 R R
$FFE6 I I
$FFE8 state state
$FFEA stack[sp] push+T
$FFEC rstack[rp] pushr+R
$FFEE stop start/step

The address $FFEE is special, since a read ac-
cess to it stops the CPU. By writing to $FFEE, the
debugger can either continue the program (write 1
there), or cause it to single step (write 0 there).

〈debugging read 2a〉≡
reg ‘L dout;

always @(daddr or dr or run or

P or T or R or I or

state or sp or rp or c)

if(!dr || run) dout <= ’hz;

else casez(daddr)

3’h0: dout <= P;

3’h1: dout <= T;

3’h2: dout <= R;

3’h3: dout <= I;

3’h4: dout <= { run, 4’h0, c, state,

{4-sdep{1’b0}}, sp,

{4-rdep{1’b0}}, rp };

3’h5: dout <= N;

3’h6: dout <= toR;

3’h?: dout <= 0;

endcase

〈debugging-ports 2b〉≡
input [2:0] daddr;

input dr, dw;

input ‘L din;

output ‘L dout;

〈debugging 2c〉≡
if(dw) casez(daddr)

3’h0: P <= din;

3’h1: T <= din;

3’h2: R <= din;

3’h3: I <= din;

3’h4: { c, state, sp, rp } <=

{ din[10:8],

din[sdep+3:4], din[rdep-1:0] };

3’h5: { sp, T } <= { spdec, din };

3’h6: { rp, R } <= { rpdec, din };

endcase

if(dr) casez(daddr)

3’h5: sp <= spinc;

3’h6: rp <= rpinc;

endcase

〈debugger 2d〉≡
module debugger(clk, nreset,

addr, data, r, w,

drun, dr, dw);

parameter l=16, dbgaddr = 12’hFFE;

input clk, nreset, r;

input [1:0] w;

input ‘L addr, data;

output drun, dr, dw;

reg drun, drun1;

wire dsel = (addr[l-1:4] == dbgaddr);

assign dr = dsel & r;

assign dw = dsel & |w;

always @(posedge clk or negedge nreset)

if(!nreset) begin

drun <= 1;

drun1 <= 1;

end else begin

drun <= drun1;

if((dr | dw) && (addr[3:1] == 3’h7)) begin

drun <= !dr & dw;

drun1 <= !dr & dw & data[0];

end

end

endmodule

〈dbg senselist 2e〉≡
or run or dw or daddr

〈stack debugging 2f〉≡
if(!run && dw) casez(daddr)

3’h5: dpush <= 1;

3’h6: rpush <= 1;

endcase

A Debugger for the b16 CPU Bernd Paysan 3 DEBUGGING SOFTWARE

Figure 2: Debugging GUI

3 Debugging Software

The debugging GUI is just a MINOS window which
shows the main states and opens a window to the
source code (see figure 2).

The SPI interface code was already available from
the last project [2] — it needed slight changes,
though. First of all, there were two different bit or-
ders of SPI interfaces availbable, both with consis-
tent test environments, and the coworker in charge
picked the little endian one1.The SPI post–access
read had a bad effect on the CPU status register
read: This would also read the data stack, and as
side effect increment the stack pointer. No good
idea, especially, since the CPU status register also
tells you if the CPU is running or halted by the de-
bugger. A reordering of these registers would be a
good idea.

What’s worse is that the instruction register con-
tent changes the side–effect: Only NOPs really in-
crement the stack pointers, other instructions may
interfere with the commands from the debugger. So
the workaround found was to first read the four reg-
isters P, I, T, and R, and then write back 0 (all
NOPs) into the I register. This then allows to read
the status plus the two stacks, and then again the
two stacks until a full wrap–around of the stack
pointers is achieved. Finally, restore the original
content of the instruction register.

〈read registers 3〉≡
: load-regs (–)

DBG_P regs 4 spiw@s

0 DBG_I spiw!

\ clear instruction register to read stacks

DBG_STATE regs 8 + 3 spiw@s

stack 16 + stack 4 + DO

DBG_S[] I 2 spiw@s

4 +LOOP

regs 6 + w@ DBG_I spiw! ...

1Certainly, this sort of software gets written short before

the chip arrives from the fab — during device debugging, the

proof that this software could be written is sufficient.

3.1 Breakpoints

The original idea how to implement breakpoints
was to call the debugger status register. This plan
was sabotaged by eliminating loops in the design,
so the debugger status register is not accessible by
the CPU itself. It won’t halt the CPU then, as
well. However, it turned out that this idea had
been bad for another reason, as well: Calling the de-
bugger status register wastes precious return stack
space (20%!), and is not necessary at all. Instead,
it’s completely sufficient to replace the instruction
where you want to break with an empty loop, and
check the P register for the breakpoint addresses.
The likelyhood that the CPU will be executing the
current breakpoint is quite high under these circum-
stances (however, it’s only 1/2, in the other case,
the P register points to the next instruction).

If the debugger sees that a breakpoint has been
reached, it will stop the CPU. It then has to single–
step until the right state is reached (just before
loading the instruction). For further execution in
single–step mode, the original memory content is
restored; only when the CPU goes to “run” mode,
the breakpoints have to be restored (run from a
breakpoint location then is done by single–stepping
to the state where the instruction register has been
loaded, then the effect of replacing that instruc-
tion by a “breakpoint” loop will not be recognized).
Since empty loops are not possible at the last ad-
dress of a 1k word block, the “workaround” is not
fully functional. So far, the firmware is clearly be-
low this 1k words total size limit, anyway.

3.2 Source Window

Looks fairly trivial: Just use the MINOS editor
component, and load the source. Next to the ed-
itor component, there’s a canvas, which can draw
the addresses (obtained from the listing), and by
clicking on an address, you set/clear a breakpoint.
What’s a bit less trivial was changing the assembler
so that the listing contains meaningful information
about the relation between cursor position and ad-
dress+state of the CPU. So far, there are still a
few bugs: .org statements don’t write out the ad-
dress into the listing stream (so that the start of the
first instruction is not tagged), and the assembler
doesn’t expand tabs, while the editor window does.
So code with tabs will not have the cursor at the
right spot.

The source window currently is not an IDE win-
dow, i.e. changes won’t result in anything. Adding
this feature is possible, also adding the feature to
automatically reload the source after it has been
changed by another editor. However, with the typ-
ical Unix environment, people are happy to rerun
assembler and restart the debugger after changes in

A Debugger for the b16 CPU Bernd Paysan REFERENCES

the source code. Remember: The user isn’t expect-
ing this kind of magic anyway, so don’t deliver.

4 Integrating other Testing

Equipment

After successful deployment of the debugger, coor-
dination between it and other test equipment has
been needed quite soon. E.g. to characterize the
ADC, you’ll want to load a test program that loops
ADC conversions and stores them into RAM, and
force a certain voltage into the input pin; iterate
over this process through the entire input voltage
range. Now we are happy that our debugger is noth-
ing but a simple Forth program, and all you need
is to add a few other simple Forth words to drive
HP instruments over RS232 (nowadays using some
USB to serial converters, optimally not from FTDI,
to avoid conflicts). Warning: Confusion may arise
when you reboot the machine or replug the USB
adapters, because the number scheme of USB serial
ttys is first come, first serve type. Unfortunately,
Intel also forgot to specify a unique per–device ID
for this kind of device, so you can’t use an alterna-
tive naming scheme.

5 Lessons Learned

After a few days work, this debugger was satisfying
the “customer” (the coworker doing firmware devel-
opment and me doing other device testing). It’s a
fairly trivial program, and the hardware behind is
also fairly trivial; trivial enough that the gate count
is insignificant. One wonders why in earlier days
CPUs with in–circuit debuggers used to be quite
expensive; also the cost for an debugger (hardware
plus software plus IP) for traditional 8051 clones
still is very high — even though that’s a product
that doesn’t go into just one device.

This is a fairly simple approach; for the final de-
vice, the breakpoint mechanism e.g. won’t work; at
least when it’s in OTP (and reflashing entire sec-
tions to just add a breakpoint is also no good idea).
So in the final device, there will be a fairly limited
set of breakpoint address registers and comparators.

• If time permits, diverging modules like the SPI
should be merged and made configurable

• The register order should be changed so that
the stack access doesn’t require special care
(stack access first)

– Read with side effect is evil, anyway

• Integrating the assembler into the debugger
should be fairly trivial, and thereby it creates
an IDE with little effort

• Further magic could allow to seamlessly insert
code with just a small stop and restart of the
CPU

• Adding some (further) interactivity with the
target CPU is also fairly trivial

• Hot–plugged devices must have a unique serial
ID (this is a hint to Intel!!!)

References

[1] EuroForth 2004, b16-small — Less is More,
Bernd Paysan

[2] EuroForth 2007, Audio GUI: MINOS@work,

Bernd Paysan

