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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 24th Euro-
Forth finds us in Vienna for the second time. The three previous EuroForths
were held in Santander, Spain (2005), in Cambridge, England (2006), and in
Schloss Dagstuhl, Germany (2007). Information on earlier conferences can
be found at the EuroForth home page (http://dec.bournemouth.ac.uk/
forth/euro/index.html).

Since 1994, EuroForth has a refereed and a non-refereed track.

For the refereed track, one paper was submitted, and one was accepted
(100% acceptance rate). For more meaningful statistics, I include the num-
bers from 2006 and 2007: eight submissions, four accepts, 50% acceptance
rate. The paper was sent to three program committee members for review,
and they produced three reviews. This year, one of the program committee
members has submitted a paper; of course this member was not involved in
the review process of the paper in any way. I thank the authors for their
paper, and the reviewers for their reviews.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings. In addition, the printed proceedings
include the slides and an abstract for talks that will be presented at the
conference without being accompanied by a paper. These online proceed-
ings also contain late papers and late presentations that were too late to be
included in the printed proceedings. One presentation (GLforth by Gerald
Wodni) was in demo format and is therefore not included in these proceed-
ings. Workshops and social events complement the program.

We are grateful to Ewa Vesely for organizational support for this year’s
EuroForth.

Anton Ertl
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Using Forth in a Concept-Oriented Computer Language
Course

Angel Robert Lynas and Bill Stoddart
University of Teesside

September 8, 2008

Abstract

We describe a way of teaching fundamentals of Language Systems (for second-year
Computing students), without having to compromise the use of a simple grammar owing
to hardware limitations which need no longer apply in this setting.We adopt a top-down
approach, reading from right-to-left and splitting the input string on the rightmost operator
appropriate to that level. The target platform is Reversible Virtual Machine (RVM) Forth,
so a postfix translation is the aim. We introduce a basic arithmetic grammar and expand it
during the course to allow unary minus, floating point and function application; this shows
how type information can be generated in one pass and resolved in a second, via an internal
intermediate code. Each version of the grammar has its productions mapped onto a system
of equations which serve as the specification for the implementation functions.

1 Introduction

In teaching Language Systems for Computer Science, the conceptual simplicities can often be
obscured by the compromises made to accommodate purely historical restrictions on software
writing for far more limited computers than those available today. These compromises take the
form, for instance, of extra complications in the simple grammars, and trying to do several jobs
in one pass of the compiler.

Accepting that we can now directly implement, at least in a pedagogical setting, a more straight-
forward approach less hampered by traditional constraints, can lead to a clarification of the
conceptual issues involved in top-down parsing.

We used a basic grammar for infix arithmetical expressions, and used the conversion to postfix
as a convenient route for exploring grammar analysis. An expansion to include floating point
numbers and other facilities proved to be a fruitful method for introducing the usage of type
information and two-pass compiling with intermediate code to hide the use of meta-information.

Following some definitions, we describe in Section 2 the overall approach taken, then in Section
3 the basic grammar presented to the students. In Section 4 we examine the extensions to this



grammar, the actions of the new compiler’s first pass and those of its second. We conclude with
a brief look at a possible future application of these ideas for subsequent refinements of the
course.

1.1 Some Definitions
In the following, we use some fundamental terminology from the study of grammars:

Terminals These are the strings which are the tokens of the language and appear in generated
expressions.

Non-Terminals These are symbols which do not appear in the output, but stand for classes of
terminals, or combinations of those classes.

Productions Specifies one way in which a non-terminal can be expanded to a sequence of
other non-terminals and/or terminals, eventually generating strings composed entirely of
terminals.

2 Higher-Level approach

The usual approach in teaching about language systems has been to adopt a relentlessly left-to-
right method, compatible with historical restraints on memory, storage and processing capacity.
Thus in the interests of efficiency, perhaps one token is available for “look-ahead” while the
current token is being processed (look-ahead by default referring to the token on the right). See
for instance the popular compiler texts [1] and [2].

Using these techniques, everything is done in a single pass, including storage and checking
of type information (if applicable) and resolution of conditional structure — though we don’t
consider the latter here.

Certain things must be sacrificed to this methodology, the first casualty being simplicity of
grammar. A grammar for basic arithmetic could contain a production (we define <expression>
and <term> more fully later)

<expression>::=<expression> + <term>

meaning that one way of constructing an expression is by combining an expression and a term
with a “+” sign in between. This we generally abbreviate to

E:=E+T

This, however, is not really suitable for left-right parsing owing to the left recursion; that is, an
E couldexpandto E+ T + T +--- + T, so reliably telling where the first <expression> ends is
problematical. The order of E and T specifies left-associativity for the + operator and others,
ensuring that (for instance) a — b — c is parsed as (a — b) — ¢, rather than a — (b — ¢) which gives
a different result.



In order to remove this left-recursion, such constructs are usually redefined using dashed letters
to denote “the rest of the expression”, now looking like this

TE'
+TE' | €

E ::
E ::

The symbol € or “null” stands for the empty string. The decomposition of the expression E
can now be approached unambiguously from the left, as the term (processed by a similarly
expanded rule) is recognised and the “rest of the expression” E’ is passed downward for further
processing. But this represents a considerable loss in simplicity compared to the first grammar.

What method, then, could be used to parse productions like £ — E + T as is? Clearly a right to
left approach would be more apropriate here, splitting the expression at the rightmost top-level
“+” encountered, where the remaining expression on the left is dealt with by a recursive call to
the expression parser, and the term is dealt with by the term parser. Terms are split on “*” or “/”
if any occur, again the rightmost, for example 7 = T = F, where F is a factor with no top-level
operations. We can now fill in the rest of the grammar and formalise the operation of a recursive
parser.

3 A Simple Arithmetic Grammar

The initial grammar developed for the students, which allows for unsigned integers, identifiers,
and bracketed expressions, is as follows. The order of the non-terminal expansions reflects
the precedence order of the operators; lower precedence operators are scanned for first, and the
non-terminal split if applicable. The higher precedence operators appear closest to the terminals
in the postfix output and are thus executed first. The vertical bars on the left-hand side indicate
alternative productions for the same non-terminal.

Non-Terminals:

E is an Expression; these can contain a plus or minus sign at the top level (i.e. not within
any brackets).

T is a Term, which contains no pluses or minuses at its top level, but can contain “*” or ““/”
for multiply or divide.

F is a Factor, containing no top-level operations, but can expand to an unsigned number
U, or an identifier /, or a bracketed expression (£), the contents of which are recursively
expanded as an expression. We do not define U or [ further at present; in any case U will
be later replaced by a non-terminal which accommodates both integer and floating point
numbers.

E:=E+T|E-T|T
T:=T+F|T/F|F
F:=U|I|(E)



The compilation to postfix is described by a set of equations involving mutually recursive func-
tions which act on appropriate strings of each non-terminal class. The right-hand sides of these
equations show the output from a given string; at the top levels, this will involve invoking other
functions on part of the string — possibly including the function itself recursively. In the fol-
lowing, lower-case e, t,f, u and i represent strings belonging to the nonterminals E, T, F, U and
I respectively; that is, e is a particular expression, ¢ is a particular term, and so on. We have the
functions

P takes a string e and returns the translation of that string in postfix.
Pr takes a string ¢ and returns the translation of that string in postfix.

Pr takes a string f and returns the translation of that string in postfix.

If no operators are found by P or P, they pass the entire string down to the next function. The
symbol “” is used for string concatenation. The mutually recursive equations which define

the compilation are
Pple ™ "+" 76 =Pge) " Pr() ™" +" 3.1)
PE(@ ) n_n ™ t) — PE(e) /\PT(t) ~n _n
Pg(t) = Pr(1)

Pr(t ™ "*" 7 f) = Pr(t) " Pp(f) " " *" (3.2)
Pt ™" /" T f)=Pr(t) " Pp(f) " /"

Pr(f) = Pr(f)

Pp(u) = u

Pp(i) =i

PR("(" e ™)) = Pr(e)

At the top two levels — expression and term — the parsing is right to left; specifically, a Forth
operation LSPLIT is used to search for a symbol in {+, —} or {x, /} at the top level. The stack
parameters are the string to be searched and a sequence of strings which are the tokens to search
for. An example call follows, but a brief explanation is needed first.

A string in RVM-Forth can be an “ASCII-Zero” or AZ string, which is terminated by an ASCII
null (in other words, a 0 after the final character, like strings in C and some other languages).

They are created with the E word, terminated by another quote. Also, sequences are created
with the syntax

<type> [ <elementl> , <element2> , ] ( and so on)

where the comma word allocates storage for each element. The type can be simple (integer,
string) or composite, involving pairs and nested sets or other sequences.

An example call to LSPLIT using a string EXPR1, then, is

10



EXPR1 STRING [ " +" , " -" , 1 LSPLIT

This would be an call to process EXPR1 using the symbols {+, —}.

Should LSPLIT encounter a right bracket *)”, this means that a lower-level expression is in-
cluded in the top-level one, which expression will be dealt with by a later recursive call to Pg.
So LSPLIT will not continue its search for operators until it finds the matching left bracket; it
will keep track of the level, incrementing for any right brackets and decrementing for matching
left ones, until its own level zero is reached again.

On encountering a symbol/token in its search set, the operation splits the input string into a left
part, the symbol string, and a right part. As can be seen from equations (3.1) and (3.2) above,
the first part is sent recursively to Pr or Pr as appropriate, the second part to Py or Pr, while
the operation token is output last of all, so that it occurs after the outputs from parsing the rest
of the string. If no search symbol is found, the entire string is passed down to the next parsing
level.

When the factor level is reached, subsequent processing of U and I can be done left to right, as
no left recursion occurs in these definitions. A factor of the form “(E)” merely has its brackets
stripped and the contents sent back to the top-level function Pg. We include the code for Pr
(called PT), which parses terms into terms and factors, as figure 1 below. The local variable
syntax uses the words (: and :) to delineate the declarations, with values being taken from the
stack.

: PT ( azl -- az2, parse a term, leaving az2 the postfix
translation of the term azl )
(: VALUE e :)
e STRING [ " *" , " /" , ] LSPLIT
VALUE BEFORE VALUE AFTER VALUE OP-STRING
OP-STRING NULL =

IF
BEFORE PF ( No op found, so e was a factor )
ELSE
BEFORE RECURSE AFTER PF ~ OP-STRING ~
THEN
1LEAVE ;

Figure 1: RVM-Forth code for Pr.

The general technique is known as Recursive Descent Parsing, and is well-known, though we
do not know of its having been implemented in this bidirectional way. The usual categories
of LL(k) or LR(k) do not apply, strictly speaking, as they denote solely unidirectional parsing;
for instance the Earley recogniser [3], based on Knuth’s LR(k) algorithm. Our technique is
adaptable insofar as right-associative operators can and will be accommodated by a sort of
mirror image of LSPLIT which would read from left to right.

The parsing can be illustrated with a couple of examples, which can either be represented as
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parts of trees (useful for the students initially), or in a linear fashion which follows the equations
closely. Given the input string “x = x — 1 — (x — 1) = (x + 1)”, for instance, the first parsing step
is shown in figure 2.

Pe(“xxx—1-(x—Dx(x+1)7)
|

Pe(xxx—17) Pr("(x— D+ (x+ 1)”)

Figure 2: Splitting at the top level.

The left-hand side of this is then the input to a recursive call to Pg; the rest of this is shown (as
far as the Factor level) in figure 3.

PE(“X*X— 177)

9

PE(“X *x”) PT(“I”)

| |
PT(“.X % x”) PF(“I”)

(T3 2]

£
PT(“X”) PF(“X”)
|
PF(“X”)

Figure 3: Splitting the left-hand half down to Factor level.

In linear style, the first part of this second tree would appear as
PE("X*X _ 1") - PE("_x *x" ™ PT(IIIII) N n _ "
which we can see follows the pattern of equation 3.1.

As regards performance, we have not yet undertaken any exhaustive time complexity analyses.
Some empirical run-throughs indicate that the basic technique is probably O(n?) for a suitable
grammar; the limitations with respect to which grammars can be handled require further inves-
tigation, however.
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4 Floating Point Extension

We now consider extending the grammar to include unary minus, function application and float-
ing point capability. The inclusion of mixed-mode arithmetic requires the simple compiler to
become a two-pass compiler, whereby the first pass generates intermediate code containing
type information, as we now have integer and floating point to deal with. These require differ-
ent operations for arithmetic and printing, and sometimes conversion is required from integer
to floating point.

Unary minus is dealt with by converting the minus sign into a tilde “~”, as the compiler uses
this internally; it’s converted back for the Forth-readable output, and allows multiple minuses
in a row which are converted consistently. The details are not examined further here. Function
application is of the form “<identifier>(<arg-list>)”, with the arguments comma-separated.

The basic grammar is extended as follows, with the extra non-terminals

Fo This is simply an unsigned factor.

N This replaces U, and is a general number (integer or float), parsed by the floating point
state machine to be described later.

L This is a comma-separated list of arguments to a function.

E:=E+T|E-T|T
T:=T«F|T/F|F

F = F() | -F
Fou=N|[I[(E)|I(L)
L:=LFE

The list of arguments L is parsed right to left, in a similar way to E and 7, but split by LSPLIT
on a comma.

4.1 First Pass (intermediate code)

The generating functions for the upper levels are similar for those in the previous section, but
instead of including a straightforward plus or multiply sign in the output, they include the string
for an internal operation which the second pass of the compiler will use to resolve the types
and assign the correct integer or floating point version of the Forth operation in the final output;
these internal operations all have an underscore suffix. The first few equations are thus similar
to those near (3.1).

13



Pg(e ™ "+" 7 1) = Pp(e) " Pr(n) " +_"
Pg(t) = Pr(1)

Pgple™"-""1)=Pg(e) " Pr() " -_"
Pr@ ™" " T f)y=Pr@) " Pr(f) " F"
Pr@ ™" /" )y =Pr() " Pr() T /"
Pr(f) = Pr(f)

Pr("(" e ")") = Pg(e)

Below this, terminals begin to be output in the intermediate code, however these need to be
strings rather than literals; spaces are added where required to ensure the final output is con-
sistently space-separated. In the equations below, the symbol denotes a literal embedded
quote, and ¢ is a function identifier (not a numerical variable). We also have the additional
parameters

n Any integer number string.

i Any integer identifier (variable) string — note, no longer a general identifier
[ Any list of arguments.

r Any floating point number string.
" Any Forth equivalent' to .

x Any real identifier string (floating point variable).

The identifiers are stored in symbol tables which specify some predefined families of identifier
strings; this obviates any immediate need for typed declarations, however this is an area which
will be examined at a later stage. Thus identifiers beginning with the letters i-n, in either case,
are integer while all others are treated as floating point.

We then introduce the additional parsing functions

Pry Returns the intermediate code for an unsigned factor.

P; Returns the intermediate code for an argument list.

"We distinguish these as they may use different symbols for unary minus in exponent notation.
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The remaining conversion equations for the intermediate code can now be defined (note L is
shorthand for /, e; and / could be a single e).

Pp(" ~" " f) = Pp(f) " " NEGATE_"

Pr(f) = Pro(f) (f can be n, i, r, x, or @)

Pro(¢(L)) = Pr(L) ™ Pro(¢) (Pro would simply output the string ¢)
Pro(m) =\""n"\" 7" int"

Pro) =\""i"\" " int"

Pro(r)=\""17r""\""" float"

Pro(x)=\""x"\""" float"

Pr(I7™"," " e)=Pr(D) " Pe(e)

Pr(e) = Pg(e)

The final four Prp equations show the type information being included in the output string;
for example, the tokens “36” or “3.142” become the strings (with embedded quotes around the
numbers)

“wn 36" int”
“"3.142" float”

This is because we are still in the intermediate code, which will be converted to input for Forth
by the second-pass operations — those with the appended underscore — e.g. +_, *_ . We can
now examine these in the context of the second pass of the compiler.

4.2 Second Pass

For the simple example infix input 10.5+5x2.5, the first pass will have produced the intermediate
output string with embedded quotes

"10.5" float " 5" int " 2.5" float *_ +_ 4.1

This is then tokenised and interpreted by the second-pass compiler. At this level, int and
float are interpreted as integer constants, so when the operation *_ is reached, the stack has
three string/integer pairs on it. The code for *_ is shown in figure 4.

It takes four arguments consisting of two string/integer pairs, the integers containing type in-
formation. The four possible combinations of int and float are checked (the second case
is applicable here). The numerical/ variable values are output as strings, followed by the ap-
propriate ordinary arithmetical operators, here either * or F* (the floating point version). In
addition, since F* requires that both its arguments be floating point, the conversion operator?
S>F isinserted in the output string after any integer values.

2Single-precision integer to Floating point.
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_ ( azl typel az2 type2 -- az3 type3)
(: VALUE el VALUE typel VALUE e2 VALUE type2 :)

CASE
typel int = type2 int = AND 7?0OF
el e2 ~ " *" " int
ENDOF
typel int = type2 float = AND 7?0F
el " SSF" " e2 © " F*" ° float
ENDOF
typel float = type2 int = AND 7?0F
el e2 " S>F" "~ ° " F*" " float
ENDOF
typel float = type2 float = AND ?0F
el e2 ~ " F*" ° float
ENDOF
( otherwise ) " Type error" AZ-ABORT
ENDCASE
2LEAVE ;

Figure 4: RVM-Forth code for *_.

Finally the constant corresponding to the value is output, either int or float. Thus the output
is a string and an integer, suitable for input to another operation of this kind.

After *_ has interpreted and dealt with the relevant parts of string (4.1), we come to +_ ,
which finds the following four arguments on the stack:

"10.5" float "5 S>F 2.5 F*" float

the last two being the output from *_ . Note these strings are actual strings.

The code for +_ is very similar to the above, and the final output will be

"10.5 5 S>F 2.5 F* F+" float

The final type indicator is dropped from this (by the second-pass compiler when the end of the
expression is reached), and the remaining string can now be compiled by Forth.

For an example with identifiers (subject to the conventions mentioned in 4.1, page 8) we use
i+7)=(G+1.5)

The first pass produces the string (recall these quotes are embedded)

i int " 7" int +_ " j" int " 1.5" float +_ *_

16



After both +_ have been processed, the stack will contain the following:

"i 7 +" int "j S>F 1.5 F+" float

Finally *_ will produce this

"i 7 + SSF j S>F 1.5 F+ F*"

having dropped the float type indicator.

The second pass doesn’t have such a neatly defined set of equations to encapsulate it, as the
arguments are no longer a single string, but four arguments (stack parameters): string, integer,
string, integer. Also, NEGATE_ and F->F_, dealing with negating variables and numbers, and
type-checking the arguments for function applications®, have different signatures again. They
also have more conditions to cover with, for instance, four combinations of int and float.
The specifying equations for +_ would be:

+_(n1,int,ny,int) =n; "npy T " +
+_(n,int,x, float)=n"" S>F" "x " F+"
+_(x,float,n,int) =" S>F" "x " n " F+"

+_(x,float,x, float) =" S>F" "x " S>F" " x7" F+"

4.3 Floating Point State Machine

For the general numeric literals subsystem — which handles floating point and exponent form
literals — we adopt a state machine. A feature of the exponent form for infix expressions is that
unary minus in an exponent must be written as a tilde rather than a normal minus (this does not
apply to any other unary minus). Thus expressions such as

-3.467e~6 or -2.5e~10

are admissible. This is to simplify the otherwise unwieldy process of identifying unary minuses
for floating-point exponents and replacing them internally with tildes; the outputs will have
normal minus signs for the usual Forth input. The machine itself has seven states; No, N4 and
N7 are terminal states, and € denotes an empty string.

3Neither are described in detail here.
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N = N1 |DN2 | .N3

Np ::= DN, | .N3

N, ::= €| DNy | .N4 | eN5
N3 ::= DNy

Ny ::= €| DN4 | eNs

N5 ::= Ng | DN;

Ng ::= DNy

N7 ::= €| DN;

5 Conclusions and Further Work

The idea for this course stemmed from a desire to teach Language Systems at a more pure con-
ceptual level, so that the concepts would be less obscured by their almost immediate abandoning
for a more complex bottom-up approach, as was previously done.

We therefore used a top-down right-to-left method to parse expressions down to factor level,
using recursive descent techniques to generate postfix versions readable by the Forth system —
later via intermediate code to hold type information. The course thus began with deceptively
simple concepts and could build naturally to a reasonably capable two-pass expression compiler.
So the students learn about grammars and programming simple compilers in Forth.

We could go in a number of different directions with this, perhaps expanding in other ways than
the floating point facility; for instance, one idea is to adapt this approach to make use of RVM
Forth’s native support for sets (using the C package contributed by Frank Zeyda [5]). This could
be used to develop, for the course, an application to accept sets and basic set operations and
generators from a suitably defined grammar, and convert them to valid Forth. Even eschewing
floating-point support here, we still have the issue of types, as sets can contain strings and
integers, and also pairs (maplets, using the ASCII notation |->) and nested sets. Therefore
recursion would again be required to tease out the type information at each level and generate
the appropriate tags for the first-pass output.

For illustration, a brief example of a simple set enumeration with string-integer pairs and the
output which would be generated:

{"Dave" |-> 3291, "Li" |-> 3419} becomes
STRING INT PROD { " Dave" 3291 |-> , " Li" 3419 |-> , }

The grammar would, among other things, have to ensure that the maplet operator retained left
associativity, and had the correct type signature. Some operators have right associativity, for
instance domain restriction, and the bidirectional functionality will be needed to parse these.
We will give consideration to a generalised and consistent system for type declarations in these
language grammars, which would work with the set types of Forth and also with numeric types;
also a closer analysis of the time complexity over a greater variety of grammars.
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Abstract. In [2] author introduces theoretical background for static
analysis of Forth programs (definitions, basic operations, typing rules,
etc.). This paper is direct continuation of the topic and describes im-
plementation of basic blocks for writing software tools to support type
checking of Forth programs. On small examples we try to explain prob-
lems and possible solutions. Author hopes that these ideas help to de-
velop some useful tools. Prototype is written in Java that is quite univer-
sal and widespread object oriented platform for software development.

Keywords: Type Systems, Forth, Program Analysis

1 Introduction

In [1] we first defined formal stack effects of Forth words. This definition and
theory of stack effect calculus have been developed for a long time and in [2]
we introduced several operations on effects to perform static type analysis of
Forth texts. Basic program constructs covered so far are sequence, choice and
iteration. For each of these we have corresponding operation in our calculus.

Let us start with a few informal examples. Data item on Forth stack generally
does not have any run-time type but the programmer usually has some static
type information in mind when composing a program. This information may be
more or less exact, e.g.
a-addr < c-addr < addr < u < x (x is the least exact)
and for example word @ is specified as (a-addr -- x).

At the same time many operations manipulate stack (e.g. SWAP, DUP, ROT,
etc.) without changing types of data items. To cover this aspect we introduced
position indices to type symbols:
word SWAP has effect (x[2] x[1] -- x[1] x[2]) rather than (x x -- x x).
Program DUP @ has stack effects (x[1] -- x[1] x[1]) (a-addr -- x) and
should evaluate into (a-addr[1] -- a-addr[1] x) rather than (x -- x x).

Sequences can be longer than two words, e.g. SWAP DUP @ gives:

(x[2] x[11 -- x[1] x[2]) (x[1] -- x[1] x[1]) (a-addr -- x).
When two type symbols with locally defined indices must match in the process of
evaluating a sequence they produce a new type symbol that has minimal (most

* Supported by Estonian Science Foundation grant no. 6713
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exact) type and new ”fresh” index. This new symbol replaces both matching
symbols in the sequence:

(x[2] x[1] -- x[1] x[2]) (x[1] -- x[1] x[1]) (a-addr -- x)

(x[3] x[1] -- x[1] x[31) (x[3] -- x[3] x[3]) (a-addr -- x)

(a-addr[4] x[1] -- x[1] a-addr[4]) (a-addr[4] -- a-addr[4] a-addr[4])
(a-addr[4] -- x)

Let us rename (to delete unused) indices where possible:

(a-addr[2] x[1] -- x[1] a-addr[2]) (a-addr[2] -- a-addr[2] a-addr[2])
(a-addr[2] -- x)

and the final evaluation result for sequence SWAP DUP @ is

(a-addr[2] x[1] -- x[1] a-addr[2] x).

On this small example we see that evaluation has to preserve information
both on types and positions of data items. When type symbols do not match
we have to produce some useful error information. This is one of the reasons
to have evaluation of sequence as a basic block in our framework rather than
composition of two effects.

Choice between two branches of a program in our framework forces these
branches to have ”the same” effect. Operation glb (greatest lower bound) of two
effects tries to match all corresponding symbols and replace these with new most
exact ”fresh” symbols (like for composition above).

Program IF ! ELSE C! THEN has two branches and we calculate
glb((x a-addr -- ), (char c-addr --))as (char a-addr -- ).

Program IF OVER ELSE @ DP @ THEN produces
glb((x[2] x[1] -- x[2] x[1] x[2]),(a-addr -- x x)) that evaluates into
(x[2] a-addr[1] -- x[2] a-addr[1] x[2]).

From these examples we conclude that glb calculates longest type lists with
most exact types.

Iteration in this framework forces the loop body not to change the stack state
(loop body has ”idempotent” effect: e = ee).
Effects with equal type lists on both sides are idempotents: (list -- list).
To calculate the effect of a loop we find the most precise idempotent by matching
left and right sides of the effect that describes the loop body (it is possible only
if both sides have the same length).

Program BEGIN @ AGAIN iterates the word @ endlessly. The loop body has
effect (a-addr -- x) and loop (as a whole) has effect
(a-addr[1] -- a-addr[1]).
More complicated loop BEGIN SWAP OVER WHILE NOT REPEAT falls into two pieces:
(x[2] x[11 -- x[1] x[2]) (x[2] x[1] -- x[2] x[1] x[2]) (flag -- ) and
(x -- x).
First loop body has effect (x[2] flagl[1] -- flagl[1] x[2]) and the loop has
effect (flagl[1] flagl[1] -- flag[1] flag[1]).Composed by the second loop
effect (x -- x) we still have (flag[1] flag[1] -- flag[1] flag[1]) but we
also know that NOT operates on flag[1].

If the loop body has effect e we can calculate loop effect as glb(e, ee).
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These examples are not complex enough to cover real programs but hopefully
give some ideas how to evaluate sequences, choices and iterations.

2 Java framework

Package evaluator consists of several classes and probably will grow depend-
ing on tools we intend to develop. Let us summarize the basic blocks in this
framework.

Class TypeSymbol defines symbolic type of a stack item (like a-addr, flag,
char, ...) together with position index (used by stack manipulation words like
SWAP, OVER, ROT, ...). Type names must be known by current typesystem.
Usually there are more names than actual types (synonyms are allowed for con-
venience). Position indices are integers (when ”fresh” symbol is created during
the match operation this index increases, index 0 is used if position is not im-
portant).

Class TypeSystem is used to define and query subtyping relations between
types. Type name is used as a key to access matrix of relations. Relations
are "incompatible", "subtype", "supertype", "synonym". Typesystem is
static, once created it does not change much during evaluation process. But we
keep possibility to use different typesystems to analyze the same program open
(e.g. to see more or less details).

Class Tvector describes the stack state (top right) and each vector consists
of typesymbols. Substitution of one symbol by another is defined in this class.

Class Spec describes the stack effect (specification). It consists of two vectors
(left side - stack state before execution, right side - stack state after execution)
and additional workfields (e.g. string read by scanner words like ." or ( ). Major
operations of the framework (like greatest lower bound or finding idempotent for
the loop body) are defined in this class:
specl.glb(spec2, typesystem, specset) returns spec
bodyspec.idemp (typesystem, specset) returns loopspec

Class SpecSet describes a mapping from Forth words to stack effects. This
mapping is dynamic - all new words defined in the program must be added.
Once again, we may use different specsets for the same program text to analyze
different aspects (e.g. run-time stack vs. compile-time stack).

Class SpecList describes a linear sequence of stack effects and implements
evaluation of this list against given typesystem and given specset:
speclist.evaluate(typesystem, specset) returns spec
Composition of stack effects is a particular case of evaluation.

Class ProgText is inner representation of the Forth program we want to
analyze. Currently only linear sequence of words is implemented.

Class Evaluator contains the main method and a small demo that adds
annotations (comments about stack state) to the linear program text.
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3 Further work

All classes described above are prototypes and need to be implemented fully to
develop any useful tools. Extensible nature of Forth demands that our framework
is also extensible (for example, we cannot just fix control structures or data
definition words). It seems to be easier to re-write this package in Forth to
achieve full extensibility.

Stack effect calculus might help programmers when integrated into Forth
IDE (e.g. editor that shows current stack state symbolically, evaluates selected
text, etc.). To create such an editor we need these (or similar) basic blocks plus
a lot of other components. Maybe it is reasonable to use some existing IDE plat-
form (like Eclipse - www.eclipse.org) and develop a Forth plugin for Eclipse.
Then probably we lose in extensibility but we can still work with some subset
of Forth. The following is a very small but useful subset that we would like to
cover next:

PROG = ELEM / PROG ELEM .

ELEM SIMPLE / DEFINITION .

SIMPLE = WORD / PARSER / CONSTANT .

WORD = <word> .

PARSER = PARSER<delim> / COMMENT .
PARSER<delim> = WORD <string><delim> .
COMMENT = <comment> .

CONSTANT = <constant> .

DEFINITION = VARDEF / CONSTDEF / COLONDEF .
VARDEF = ’VARIABLE’ NAME / ’°CREATE’ NAME .
CONSTDEF = SIMPLIST ’CONSTANT’ NAME .
COLONDEF = ’:’ NAME CONTENT ’;’ /

>:? NAME CONTENT °CREATE’ CONTENT °’DOES>’ CONTENT °’;°’
NAME = <word> .

CONTENT = CELEM / CONTENT CELEM / .

CELEM = SIMPLE / STRUCTURE .

STRUCTURE = ’IF’ CONTENT ’THEN’ /

>IF’ CONTENT ’ELSE’ CONTENT ’THEN’ /
’BEGIN’ CONTENT °’WHILE’ CONTENT °’REPEAT’ /
>[> SIMPLIST ’]’

SIMPLIST = SIMPLE / SIMPLIST SIMPLE .
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Abstract

The canonical Forth Virtual machine has remained essentially the same since its inception.
Modern silicon implementations and compiler techniques indicate that the VM as used in
practice differs from this model. It is time to consider overhauling the canonical Forth
Virtual Machine. In particular, the addition of address registers is considered.

Introduction

Classical or canonical Forth views the world as a CPU connected to main memory and two
stacks which are not addressable, and are quite separate from main memory. C views the
world as a CPU connected to memory, which includes a list of frames (usually a stack of
frames) which must be in addressable memory.

Data Return
Stack CPU Stack CPU
\
|
Main Memory
Main Memory including
Frame Stack
Forth VM CVM

By adding the necessary registers for the frame stack to the canonical Forth machine, we
arrive at the basic design of the SENDIT VM, which was discussed in various papers in the
late 1990s. SENDIT (EP9152) was a project carried out under the European Union’s ESPRIT
research and development programme. SENDIT was based upon the results of a preceding
project, PROCIC EP5497, and produced tools for the development of heterogencous
networks for use in embedded and real time applications.
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Data cPU Return PC = program counter
Stack Stack PSP = parameter stack pointer
RSP = return stack pointer
M?riglt";gmy FP = frame pointer
Frame Stack FEP = frame end pointer

SENDIT VM and registers

The SENDIT VM looks remarkably similar to other stack machine CPUs derived from a
Forth architecture and designed to execute C efficiently.

Another branch of the Forth virtual machine has been called machineForth, and appears in
software implementations such as ColorForth and various CPUs from iTV, Ultratechnology
and IntellaSys, most lately in the SEAForth S24 multicore chips.

Data CPU Return PC = program counter
Stack Stack PSP = parameter stack pointer
RSP = return stack pointer

A = A index and scratch
Main Memory B = B index and scratch

machineForth VM and registers

Other CPU core designs include MicroCore and designs from Bernd Paysan, Brad Eckert and
Chris Bailey.

What distinguishes these cores is that they introduce data cells, registers and operations that
are unsupported by the canonical Forth machine. In the description I have chosen not to
include the TOS, NOS and TOR virtual registers. TOS and NOS are common across virtually
all implementations as ALU inputs and outputs. TOR has wide variation in implementation
for anything other than to hold a return address.

This paper explores the impact of these designs on how the Forth programming language
could be changed.
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Why update the Forth Virtual Machine?

The canonical Forth virtual machine is weak in several areas.
1) It does not execute C well, which is important for commercial exploitation of silicon
stack machines.
2) Itis weak for DSP operations, which restricts performance in embedded applications
without changes to the VM or much increased compiler complexity,
3) Without index operations, it is cumbersome to deal with complex data structures
whose base address is passed as an argument to a word.

Execution of C requires a frame pointer for access to local variables and buffers.

DSP operations often require three or four parameters to be manipulated regularly, e.g.
1) source address, destination address and length,
2) first source address, second source address, destination address and length.

Canonical Forth requires ugly source code to deal with these situations. Silicon
implementations such as C18, FR32 and the Teesside University machines have provided
index and scratch registers, whereas others have provide more access to the top of the return
stack. Using the top of the return stack as a loop counter has been common for some time,
e.g. the FOR ... NEXT loop structure.

The Forth community has long talked about TOS (top of data stack), NOS (next/second on
data stack) and TOS (top or return stack). These are not quite enough for DSP operations an
Chuck Moore's current silicon includes A and B registers which are used both as index
registers and for scratch storage.

A new Forth Virtual Machine

I claim no particular novelty in this machine. It is a synthesis of practice that has been
observed in several software and silicon machines over the years. What triggered this paper
was seeing that Forth various compilers, e.g. Gary Bergstom's AFT (Another Forth
Translator) have either implemented additional registers and facilities in their Forth VMs, or
are seriously considering doing so.

If we look at what is common between these designs we find the following that can be treated
as registers rather than just as ALU connections.

A Register used as a scratch or index register, often with auto-increment
and/or auto-decrement addressing.

B Register used as a scratch or index register, often with auto-increment
and/or auto-decrement addressing.

LP Local frame pointer with base+literal indexed addressing.

UP User area pointer with basetliteral indexed addressing for thread-local
storage.

Table 1: Additional Forth VM registers
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Inspecting various Forth implementations and source code, we can make various
observations:

)
2)

3)

4)

S)

Use of the A and B registers considerably reduces the need for local variables.

Use of the A and B registers can considerably reduce stack manipulation in both
source and compiled code.

Although UP can be implemented as a variable, most Forth systems, especially
embedded systems, implement it using a CPU register.

What distinguishes the A/B pair and the LP/UP pair is that A/B implement auto-
increment addressing, and occasionally auto-decrement addressing. The LP/UP pair
implement base + offset addressing.

The use of the scratch registers improves source code density (level of abstraction)
and reduces stack shuffling at basic block boundaries and avoids complexity in code
generators.

In order to avoid mandating use of these registers, we can simply rename them in terms of
how they are used:

A Register used as a scratch or index register, often with auto-increment
and/or auto-decrement addressing.

B Register used as a scratch or index register, often with auto-increment
and/or auto-decrement addressing.

X Memory pointer with base+literal indexed addressing.

Y Memory pointer with base+literal indexed addressing.

Table 2: Additional registers in the new VM

Data cPU Return PC = program counter
Stack Stack PSP = parameter stack pointer
RSP = return stack pointer
A = A index and scratch
Main Memory B =B index and scratch
including .
Frame Stack X =index
Y =index

A possible new Forth VM and registers
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Wordsets

A and B registers

This a fully featured wordset. Some systems only provide auto-increment/decrement on the A
register. On some systems, the B register cannot be read. The A and B registers provide the
source and destination address pointers used for block, string and DSP operations as well as
providing scratch storage.

>A \ x —-—

Writes to the A register.

>B \ X ——

Writes to the B register.

A> \ —— x

Reads the A register.

B> \ -- x

Reads the B register.

AQ \ -- x

Read the memory pointed to by the A register.
Al \ x --

Write the memory pointed to by the A register
B@ \ -- x

Read the memory pointed to by the B register.
B! \ x —-

Write the memory pointed to by the B register
AQ+ \ —-- x

Read memory pointed to by A, increment A by one cell. A post-incremented read.
B@+ \ —— x

Read memory pointed to by B, increment B by one cell. A post-incremented read.
AQ- \ -- x

Read memory pointed to by A, decrement A by one cell. A post-decremented read.
BQ- \ -— x

Read memory pointed to by B, decrement B by one cell. A post-decremented read.
Al+ \ x —-

Write to the memory pointed to by A, and update A.

B!+ \ x —-

Write to the memory pointed to by B, and update B.

X and Y registers.

The X and Y registers provide indexed addressing. In Forth they can be used to implement
the USER area and local frame pointers.

>X \ x —-—
Writes to the X register.

>Y \ X ——
Writes to the Y register.

x> \ —— x
Reads the X register.

Y> \ -- x
Reads the Y register.

nX@ \'n -—- x

Read the memory pointed to by the X register plus n (literal) address units.
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nX! \ x --
Write the memory pointed to by the X register plus n (literal) address units.
nY@ \ - x
Read the memory pointed to by the Y register plus n (literal) address units.
nY! \ x —-
Write the memory pointed to by the Y register plus n (literal) address units.

Biquad filter example
My thanks go to Gary Bergstrom for permission to publish this code.

I \ frl fr2 -- fr3

\ Fractional multiply.

+1. */

1STEP+ \ sum -- sum'’

Perform a multply/accumulate step, incrementing both
pointers.

B@+ AQ+ *. +

1STEP- \ sum -- sum'

Perform a multply/accumulate step, incrementing the
coefficient pointer and decrementing the data pointer.
B@+ A@- *. +

SHIFT2 \ fr --

o~ e

s~ e

\ The last step of the filter. The current data item

\ is shifted into the next data slot and replaced by fr.
AQ@ SWAP A'+ Al+ ;

: (BIQUAD) \ frx —-- fry

\ The core of the biquad filter operation.
DUP >R
B@+ *. ( initial sum = BO*input )

1STEP+ 1STEP- R> SHIFT2

1STEP+ 1STEP- ;
: BIQUAD \ fx addr-filt addr-coef -- fry
\ A single order biquad filter.

>B >A (BIQUAD) DUP SHIFT2 ;
: 2xBIQUAD \ fx addr-filt addr-coef -- fry
\ A second order biquad filter.

>B >A (BIQUAD) (BIQUAD) DUP SHIFT2 ;
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Abstract

A debugging interface for the b16 CPU is shown. A
few lines of Verilog and some small Forth programs
are sufficient to add a classical debugging interface
to this small CPU. Integration of other controls (like
test equipment) is very easy to do.

1 Motivation

For the current project with the b16 core [1] inside,
a few things are “unusual™:

e Firmware programmer isn’t a Forth expert (i.e.
not me)

e Program in writable memory (first test chip:
RAM, final chip: Flash or OTP)

Under these circumstances, it makes some sense to
debug the firmware using a “classical” in—circuit—
debugger. It will turn out that adding such a de-
bugger to the hardware is a fairly trivial exercise,
leaving writing the software as “main” challenge.

The features such a debugger should have are
quite common:

e Interface the chip with a PC, so that the
PC can control memory content (and memory

mapped IO registers)

The debugging window should show the source
code, and jump with the cursor to the currently
executed location (if the CPU is halted)

Typical commands: Single step, multiple steps,
run/stop, set/clear breakpoint

Direct access to a memory location, dump of a
consecutive memory block

Optional: Forth console to mix debugging com-
mands with other instructions (e.g. measure-
ment and stimuli equipment driven by serial
lines)

What’s missing

e (lassical command line for the embedded CPU
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B16 small Block Diagram

RAM/ROM
4‘—‘{ Instruction Word ‘ ‘ Address MUX

TOS

—{

NOS

Stack
Return-Stack

Figure 1: Block Diagram

1.1 Architectural Overview

Just to recap: The core components of the b16 are

e An ALU

e A data stack with top and next of stack (T and
N) as inputs for the ALU

e A return stack with top R
e An instruction pointer P

e An instruction latch I

Figure 1 shows a block diagram.

2 Adding
ging

From a previous project, we already had two impor-
tant parts: The CPU in a shape that’s useful for the
project (multiplication and division, dropped back
then, were added again), and a SPI-derived inter-
face to directly access memory from outside. The
interface uses only two pins, by sharing DI/DO, and
interpreting activity on the clock line as chip select
(with timeout). The device is not pad limited, but
the package gets cheaper with less pins; a standard
SPI interface that allows tristating DO can talk to
this chip without problems. To interface with the
PC, an FTDI module is used (bit—banging mode of
serial port interface).
So the missing link was the actual debugger.

In—Circuit Debug-
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3 DEBUGGING SOFTWARE

The registers were implemented in the order de-
scribed here. This turned out as a not quite clever
idea, but it was possible to work around the prob-
lem. The SPI interface can read multiple words in
one go, by incrementing the address latch after each
read access. This has the side effect that each read
sequence ends with a read to the next memory lo-
cation, even if this data is never used (it just has to
be available on the next rising clock edge).

2.1 Implementation

For debugging purposes, all registers are memory
read—writable. This requires an external bus mas-
ter attached to the debugging interface. It’s only
active when the processor is stopped, so the proces-
sor itself can’t access its own registers.

The debugging module offers the following regis-
ters as address space:

| Address | read | write |
$FFEOQ P P
$FFE2 T T
$FFE4 R R
$FFE6 I I
$FFES state state
$FFEA | stack[sp] | push+T
$FFEC | rstack[rp| | pushr+R
$FFEE stop start/step

The address $FFEE is special, since a read ac-
cess to it stops the CPU. By writing to $FFEE, the
debugger can either continue the program (write 1
there), or cause it to single step (write 0 there).
(debugging read 2a)=

reg ‘L dout;

always @(daddr or dr or run or
Por Tor Ror I or
state or sp or rp or c)

if(!'dr || run) dout <= ’hz;
else casez(daddr)
3’h0: dout <= P;
3’h1: dout <= T;
3’h2: dout <= R;
3’h3: dout <= I;
3’h4: dout <= { run, 4’°h0, c, state,

{4-sdep{1°b0}}, sp,
{4-rdep{1°b0}}, rp };

3°h5: dout <= N;

3’h6: dout <= toR;

3°h7: dout <= 0;
endcase

(debugging-ports 2b)=
input [2:0] daddr;
input dr, dw;
input ‘L din;
output ‘L dout;
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(debugging 2c)=
if (dw) casez(daddr)

3°h0:
3°hi:
3°h2:
3°h3:
3’°h4:

3°hb5:
3°h6:
endcase

P

A H DA

{
{

<= din;
<= din;
<= din;
<= din;

c, state, sp, rp } <=
{ din[10:8],
din[sdep+3:4], din[rdep-1:0]
sp, T } <= { spdec, din };
rp, R } <= { rpdec, din };

if(dr) casez(daddr)
3’h5: sp <= spinc;
3’h6: rp <= rpinc;

endcase

(debugger 2d)=
module debugger(clk, nreset,

parameter 1=16, dbgaddr =

addr, data, r, w,
drun, dr, dw);
12°hFFE;

input clk, nreset, r;
input [1:0] w;

input ‘L addr, data;
output drun, dr, dw;

reg drun,
wire dsel
assign dr
assign dw

druni;

= (addr[1-1:4] == dbgaddr);
= dsel & r;

= dsel & |w;

always @(posedge clk or negedge nreset)
if (!nreset) begin

drun <= 1;

drunl <= 1;
end else begin

drun <= drunli;

if ((dr | dw) && (addr[3:1] == 3’h7)) begin

drun <= !dr & dw;

drunl <=

end
end

endmodule

'dr & dw & datal0];

(dbg senselist 2e)=
or run or dw or daddr

(stack debugging 2f)=

if ('run
3°h5:
3’h6:
endcase

&& dw) casez(daddr)

dpush <= 1;
rpush <= 1;
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Figure 2: Debugging GUI

3 Debugging Software

The debugging GUI is just a MINOS window which
shows the main states and opens a window to the
source code (see figure 2).

The SPI interface code was already available from
the last project [2] — it needed slight changes,
though. First of all, there were two different bit or-
ders of SPI interfaces availbable, both with consis-
tent test environments, and the coworker in charge
picked the little endian one'.The SPI post-access
read had a bad effect on the CPU status register
read: This would also read the data stack, and as
side effect increment the stack pointer. No good
idea, especially, since the CPU status register also
tells you if the CPU is running or halted by the de-
bugger. A reordering of these registers would be a
good idea.

What’s worse is that the instruction register con-
tent changes the side—effect: Only NOPs really in-
crement the stack pointers, other instructions may
interfere with the commands from the debugger. So
the workaround found was to first read the four reg-
isters P, I, T, and R, and then write back 0 (all
NOPs) into the I register. This then allows to read
the status plus the two stacks, and then again the
two stacks until a full wrap—around of the stack
pointers is achieved. Finally, restore the original
content of the instruction register.

(read registers 3)=
: load-regs ( - )
DBG_P regs 4 spiw@s
0 DBG_I spiw!
\ clear instruction register to read stacks
DBG_STATE regs 8 + 3 spiw@s
stack 16 + stack 4 + DO
DBG_S[] I 2 spiw@s
4 +L00OP
regs 6 + w@ DBG_I spiw!

LCertainly, this sort of software gets written short before
the chip arrives from the fab — during device debugging, the
proof that this software could be written is sufficient.

3.1 Breakpoints

The original idea how to implement breakpoints
was to call the debugger status register. This plan
was sabotaged by eliminating loops in the design,
so the debugger status register is not accessible by
the CPU itself. It won’t halt the CPU then, as
well. However, it turned out that this idea had
been bad for another reason, as well: Calling the de-
bugger status register wastes precious return stack
space (20%!), and is not necessary at all. Instead,
it’s completely sufficient to replace the instruction
where you want to break with an empty loop, and
check the P register for the breakpoint addresses.
The likelyhood that the CPU will be executing the
current breakpoint is quite high under these circum-
stances (however, it’s only 1/2, in the other case,
the P register points to the next instruction).

If the debugger sees that a breakpoint has been
reached, it will stop the CPU. It then has to single—
step until the right state is reached (just before
loading the instruction). For further execution in
single-step mode, the original memory content is
restored; only when the CPU goes to “run” mode,
the breakpoints have to be restored (run from a
breakpoint location then is done by single-stepping
to the state where the instruction register has been
loaded, then the effect of replacing that instruc-
tion by a “breakpoint” loop will not be recognized).
Since empty loops are not possible at the last ad-
dress of a 1k word block, the “workaround” is not
fully functional. So far, the firmware is clearly be-
low this 1k words total size limit, anyway.

3.2 Source Window

Looks fairly trivial: Just use the MINOS editor
component, and load the source. Next to the ed-
itor component, there’s a canvas, which can draw
the addresses (obtained from the listing), and by
clicking on an address, you set/clear a breakpoint.
What’s a bit less trivial was changing the assembler
so that the listing contains meaningful information
about the relation between cursor position and ad-
dress+state of the CPU. So far, there are still a
few bugs: .org statements don’t write out the ad-
dress into the listing stream (so that the start of the
first instruction is not tagged), and the assembler
doesn’t expand tabs, while the editor window does.
So code with tabs will not have the cursor at the
right spot.

The source window currently is not an IDE win-
dow, i.e. changes won’t result in anything. Adding
this feature is possible, also adding the feature to
automatically reload the source after it has been
changed by another editor. However, with the typ-
ical Unix environment, people are happy to rerun
assembler and restart the debugger after changes in
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the source code. Remember: The user isn’t expect-
ing this kind of magic anyway, so don’t deliver.

4 Integrating other

Equipment

Testing

After successful deployment of the debugger, coor-
dination between it and other test equipment has
been needed quite soon. E.g. to characterize the
ADC, you’ll want to load a test program that loops
ADC conversions and stores them into RAM, and
force a certain voltage into the input pin; iterate
over this process through the entire input voltage
range. Now we are happy that our debugger is noth-
ing but a simple Forth program, and all you need
is to add a few other simple Forth words to drive
HP instruments over RS232 (nowadays using some
USB to serial converters, optimally not from FTDI,
to avoid conflicts). Warning: Confusion may arise
when you reboot the machine or replug the USB
adapters, because the number scheme of USB serial
ttys is first come, first serve type. Unfortunately,
Intel also forgot to specify a unique per—device ID
for this kind of device, so you can’t use an alterna-
tive naming scheme.

5 Lessons Learned

After a few days work, this debugger was satisfying
the “customer” (the coworker doing firmware devel-
opment and me doing other device testing). It’s a
fairly trivial program, and the hardware behind is
also fairly trivial; trivial enough that the gate count
is insignificant. One wonders why in earlier days
CPUs with in—circuit debuggers used to be quite
expensive; also the cost for an debugger (hardware
plus software plus IP) for traditional 8051 clones
still is very high — even though that’s a product
that doesn’t go into just one device.

This is a fairly simple approach; for the final de-
vice, the breakpoint mechanism e.g. won’t work; at
least when it’s in OTP (and reflashing entire sec-
tions to just add a breakpoint is also no good idea).
So in the final device, there will be a fairly limited
set of breakpoint address registers and comparators.

o If time permits, diverging modules like the SPI
should be merged and made configurable

e The register order should be changed so that
the stack access doesn’t require special care
(stack access first)

— Read with side effect is evil, anyway

e Integrating the assembler into the debugger
should be fairly trivial, and thereby it creates
an IDE with little effort

e Further magic could allow to seamlessly insert
code with just a small stop and restart of the
CPU

e Adding some (further) interactivity with the
target CPU is also fairly trivial

e Hot—plugged devices must have a unique serial
ID (this is a hint to Intell!!)
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Abstract

Performing cleanup actions such as restoring a vari-
able or closing a file used to be impossible to guar-
antee in Forth before Forth-94 gave us catch. Even
with catch, the cleanup code can be skipped due
to user interrupts if you are unlucky. We introduce
a construct that guarantees that the cleanup code
is always completed. We also discuss a cheaper im-
plementation approach for cleanup code than using
a full exception frame.

1 Introduction

A frequent programming problem is to restore some
state, free a resource, or perform some other cleanup
reliably. Typical examples are:

e Restore base after a temporary change.
e Close a file.

In Forth-94 we can use catch to ensure that such
cleanup actions happen under most (but not all)
circumstances.

In this paper we explore ways to improve on this
state of affairs in the following ways:

e Provide a more reliable mechanism that works
even in the presence of asynchronous excep-
tions (e.g., user interrupts).

e Avoid the cost of a full-blown exception frame
where possible.

2 Running Example

As a running example, we will use a word hex. that
prints a number in hex base without changing base.
And that word will be used in the following context:

: foo
. hex.

decimal foo
hex foo

*Correspondence Address:  Institut fiir Computer-
sprachen, Technische Universitdt Wien, Argentinierstrafie 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

Note that, in addition to printing a number in
hex, foo also prints a number in the current base.

3 Standard Forth solutions

3.1 Thinking Forth approach

In the old days, Forth did not have catch, so one
would write, e.g.:

: hex. (u--)
base @ >r
hex u.
r> base ! ;

But even in the old days Forth had non-local exits
via abort, and quit, as well as user interrupts. If
any of these non-local exits from u. happened, base
would not be restored.

So, in the old days, cleanup could not be per-
formed reliably. So, various ways to work around
this situation were developed and practised, as dis-
cussed in the Thinking Forth, Chapter 7, Section
“Saving and Restoring a State” [Bro84]; in partic-
ular, this section cites Charles Moore as follows:

You really get tied up in a knot. You're
creating problems for yourself. If I want
a hex dump I say HEX DUMP. If I want a
decimal dump I say DECIMAL DUMP. I don’t
give DUMP the privilege of messing around
with my environment.

There’s a philosophical choice between
restoring a situation when you finish and
establishing the situation when you start.
For a long time I felt you should restore
the situation when you're finished. And
I would try to do that consistently ev-
erywhere. But it’s hard to define “every-
where.” So now I tend to establish the
state before I start.

If T have a word which cares where
things are, it had better set them. If some-
body else changes them, they don’t have
to worry about resetting them.

There are more exits than there are en-
trances.
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Unfortunately, this workaround is not even usable
in our running example: What is the situation that
should be established before the call to . in foo?

And this workaround does not help at all with
other cleanup tasks like closing files and freeing
other resources.

3.2 Using catch

Fortunately, with the introduction of catch in
Forth-94, the situation changes: There is only one
exit from catch, and we can use that property to
make the cleanup more reliable:

: hex.-helper (u -- )

hex u. ;
: hex. (u--)
base @ >r

[’] hex.-helper catch
r> base ! throw ;

This makes sure that base will be restored
even if an exception (of any kind) happens while
hex.-helper is executed.

Unfortunately, there is still one chink in our
cleanup armour: If an exception (e.g., a user inter-
rupt) happens during the restoration of base, the
cleanup code would not complete, and base would
be left in the wrong state.

4 Advanced solutions

4.1 Try...restore...endtry

The current development version of Gforth offers a
construct try codel restore code2 endtry. If
any exception happens anywhere between try and
endtry (including in code2), the stack depths are
reset to the depth at try, the throw value is pushed
on the data stack, and execution jumps right behind
the restore.

With this construct there is not just only one exit,
it also guarantees that code2 is executed from start
to end.

This construct can be used to solve our problem
as follows:

: hex. (u--)
base @ { oldbase }
try
hex .
0 \ value for throw
restore
oldbase base !
endtry
throw ;

Cleaning up after yourself

The old base is stored in a local, because we
cannot use the return stack for this purpose (try
pushes an exception frame on the return stack).
However, Instead of using a local, we could use the
data stack, as follows:

: hex. (u--)
base @
try
over hex .
0 \ value for throw
restore
over base !
endtry
throw
2drop ;

Note how we use over twice to keep the values
on the data stack intact, so we can use them in the
restoration code. We only drop these values after
endtry.

This construct requires some care in usage:

e As shown above, one has to be careful not to
remove items from the stacks that are needed
in the restoration; one must not even remove
them during restoration.

e The restoration code must not throw an excep-
tion, at least not every time it executes. Oth-
erwise the system will go into an infinite loop
of start-restoration...throw-exception. And not
even a user interrupt can be used to break out
of that loop. Instead, the user then has to stop
the system by using some more brutal meth-
ods (e.g., in Unix by sending a SIGTERM to the
Gforth process).

e The restoration code must be idempotent, i.e.,
executing it multiple times (starting at the
same stack depths) should have the same ef-
fect as executing it once.

However, Forth programmers are used to taking
responsibility for their programs, so these caveats
should not be a problem.

The idempotence requirement may be hard or
impossible to satisfy in some cases, e.g., when the
cleanup involves close-file or free. In such cases
it is usually preferable to have a small chance of not
cleaning up than to try to clean up several times.
One can achieve this by writing the non-idempotent
part between the endtry and the throw.

In cases where a variable is changed and restored,
the idempotence requirement is easy to achieve.

An example of a non-idempotent use is:
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recovery address

old sp

old fp

old Ip

previous handler/old rp

exception
frame

locals|old base |

old base
restoration xt
previous handler

restoration
frame

Figure 1: A general-purpose exception frame used for restoring base compared to a restoration frame

. open-file throw { f }
try
. f read-file throw ...
0 restore
endtry
f close-file throw
throw

4.2 Special-purpose words

Gforth also has special-purpose words for a few fre-
quent or dangerous purposes:

base-execute ( i*x xt u -- j*x ) executes zt
while base is set to w.

infile-execute ( i*x xt file-id -- j*x )
executes zt while key etc. read their input
from file-id.

outfile-execute ( i*x xt file-id -- j*x )

executes zt while the output of type etc. is
redirected to file-id.

Given that all these words take an xt from the
stack, and the xt is nearly always a constant, it is
probably better to define future words of this kind
such that they take the xt from the top-of-stack.

5 Efficiency

An exception frame costs five return stack cells in
Gforth (and probably a similar amount in other sys-
tems), and constructing and consuming it costs a
bit of time. For the purpose of cleanup a full ex-
ception frame is overkill. We don’t really need to
restore the depths of all stacks in this case: If we
enter the restoration in the normal way, the stack
depths are not restored anyway; and if we enter
the restoration code through a throw, we are go-
ing to throw the error further on, so we don’t need
the stack depths, either; we just need access to the
restoration data.

So we could implement a lighter-weight mecha-
nism for restoration. Two cells for the restoration
frame itself would be enough (see Fig. 1). The
restoration frames would be kept on the return
stack and chained in a linked list. Throw would

process all the restoration frames that are above
the next exception frame on the return stack, then
process that exception frame as usual.

The downside is that the code for the restoration,
and for setting up the restoration data would have
to be even more aware of the restoration mecha-
nism, because the restoration data cannot directly
be transferred through a stack, but has to be ac-
cessed through the restoration frame. E.g., the
restoration word for restoring base might look as
follows:

: restore-base ( addr -- )
dup @ base !
next-restoration ;

Here, addr is the address of the user part of the
restoration frame. Next-restoration ( addr --
) removes the current restoration frame from the
chain. Any non-idempotent cleanup code would
happen after next-restoration.

An implementation of base-execute with such
a mechanism might look as follows:

: base-execute ( i*x xt u -- j*x )
base @ >r
[’] restore-base >restore
base ! execute
restore>
r> drop ;

Here >restore would push a restoration frame
on the return stack and add it to the restoration
chain. Restore> would execute the restoration xt
(i.e., restore-base) and drop it from the return
stack. The old base would have to be dropped ex-
plicitly.

This mechanism has not been implemented.
While it would be relatively easy to implement, it
is unclear if it is worth the documentation and sup-
port load to provide it as a feature to the users.
Here are a number of points to consider:

e In my experience nearly all uses of catch
are for restoration/cleanup. So most excep-
tion frames could be replaced by lighter-weight
restoration frames.
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e Exception frames and their handling have not
shown up as performance bottlenecks, but then
I have not performed any measurements.

6 Related work

I am not aware of other advanced solutions in Forth.
However, this is a common programming problem,
so other languages have developed a wide variety of
approaches for solving it.

6.1 Dynamic Scoping

Some of the problems addressed in this paper,
e.g., our base-based running examples can be seen
as customizing the execution environment. Han-
son and Proebsting [HP01] argue that dynamically-
scoped variables have the right properties for this
usage and that programmers in languages without
dynamic scoping resort to simulating dynamic scop-
ing, and they point out the similiarity between ex-
ceptions (a dynamically scoped control structure)
and dynamically scoped variables (which explains
why we and others use exception-catching to im-
plement them).

A significant number of programming languages
and systems provide dynamically-scoped variables.
Lisp is a well-known example. But a probably
more widely-used example is environment variables
in Unix and Windows processes.

Another language with dynamically-scoped vari-
ables is Postscript; there programmers perform dy-
namic scoping by (in Forth terminology) construct-
ing wordlists dynamically, and pushing them on
the search order stack; because name lookup in
Postscript happens at run-time, this results in dy-
namic scoping. However, the Postscript dynamic
control-flow words (exit, stop) do not affect the
depth of the control-flow stack, so these features
cannot be combined safely.

6.2 Cleanup

Lisp has the unwind-protect special form?:
(unwind-protect protected cleanup) makes
sure that cleanup is executed in any case, even
if there is an abnormal exit from protected.
However, unlike try...restore...endtry, it does
not protect against abnormal exits from cleanup.
Java has a similar feature in the form of the try
finally construct, and C++ in try ...
catch.
C++ also provides destructors that can be used
to automatically release resources and perform

Thttp://www.lispworks.com/documentation/
HyperSpec/Body/s_unwind.htm
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other cleanup when the scope of a variable is ex-
ited. Stroustroup[Str01] gives a good overview of
what kind of exception safety are desirable, and how
the various features of C4++ may be used to achieve
them.

In a similar vein, Java finalizers perform cleanup
actions when an object is garbage-collected. How-
ever, because the finalizer may be executed a long
time after a destructor would have been executed,
it is often recommended to favor other approaches
over using finalizers.

Many other languages have similar features.

7 Conclusion

The introduction of catch in Forth-94 provided a
good basis for writing code that cleans up after itself
rather than requiring every piece of code to clean
up all the trash that all other code may have left
behind.

However, in the presence of user interrupts and
other asynchronous exceptions this is not sufficient.
We propose the try ... restore ... endtry
construct that can be used to solve this problem
completely for some, but not all uses. We also dis-
cuss a more light-weight implementation technique.
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Abstract

The ANS Forth Standard and its follow up standard effort, Forth 200x, allow for
writing Forth applications portable to a wide range of commercial and open source
Forth systems. One area of Forth which has been notoriously hard to standardize
is the area of meta/target compilers as well as advanced compiler and interpreter
extensions.

Many Forth systems implement system specific extension mechanisms in order
to support just their special meta/target compiler but there is no common practice
how to do so. One extension mechanism is to place execution vectors — or hooks
— at key positions in the Forth system. In the un—extended case, the vectors have
no or a default behavior and in the extended case the can get sophisticated and
elaborated behavior.

One example of a very simple hook would be a vector notfound in the typical
outer interpreter, which would be located right at the end when both, token lookup
in the dictionary and the conversion of the token to a number, failed. In the un—
extended case notfound would issue an error message (complaint) about an unknown
token. In the extended case, say hexadecimal number input with $—prefix, notfound
could try a hexadecimal number conversion, and leave the appropriate number on
the stack, or issue an error message as before.

We could write a hexadecimal number input with $—prefix as a portable Forth
system extension, if we would agree on the hook notfound and its default behavior.

Other extensions that come to mind are object oriented systems with advanced
search order requirements such as Manfred Mahlows CSP (Context Switching Pre-
lude) system. It also can benefit from well defined system hooks.

The idea of hooks is quite common, not only with Forth system but also with
operating systems in general. The EMACS editor provides a vast collection of hooks
for all kinds of extensions.

In the context of Common Lisp’s Object System CLOS, a technique called the
Meta Object Protocol has been developed by Gregor Kiczales in the early 1990s
which allowed to implement an early form of aspect oriented programming. The
advantage of their unique approach was that the CLOS community widely accepted
the functionality of their hook pendants as defined in the book The Art of Meta
Object Programming (AMOP). As a result AMOP based CLOS extensions were
portable over a wide variety of CLOS implementations.

The talk will give a short overview of hooks and the CLOS meta object protocol
and will also propose possible Forth system hooks in traditional Forth implementa-
tions with hope to come closer to a Forth system hook standardization.
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Filters for Unicode Markup, a work in progress
report.

Bill Stoddart and Angel Robert Lynas
University of Teesside, UK

September 19, 2008

Abstract

The advent of Unicode extends the restrictive ASCII character set
with millions of characters. However, we still have the same keyboards!
Very often a document or program will require a limited set of Unicode
characters in addition to characters available from the keyboard. We
describe an approach which allows a user to provide a “markup” for
each special character required, such as \alpha for the Greek letter
«, and in which the markup is replaced by the character it represents
when typed at the keyboard or streamed from file. The techniques
used include vectoring Forth’s keyboard input to enable markup se-
quences to take effect during Forth command line input, and writing
Unix filters in Forth. The latter allows the provision of wrappers that
allow the use of Unicode markup with any Unix editor that can accept
input from the standard input device.
keywords. Forth, Unicode, Unix Filters, UTF-8, RVM-Forth

1 Introduction

The Unicode Standard, available at unicode.org, provides a description
of an extended character set encompassing mathematical symbols and the
alphabets of most natural languages. The matter of character encodings
is separated from the form of the characters themselves, and the encoding
that has become dominant within Linux distributions is known as UTF-
8, in which characters are represented within files or computer memory as
a sequence of between one and four bytes. Support for Unicode is now
becoming widely available, although it is still not included in some well known
packages, for example Lesstif, the freeware version of Motif. Incorporation
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of a UTF-8 locale is non-trivial, as it breaks an implicit assumption under
which almost all packages have been written, that each character occupies
an equal amount of space. The Forth 93 Standard looked forward towards
internationalisation, but assumed characters would remain of equal length
but might become longer. Whilst such encodings are defined in Unicode,
they have not proved to be the most popular ones, and anyone wishing to
display a Unicode character on an Linux X Windows terminal or editing
window will probably need to do it using the variable length encodings of
UTF-8.

Unicode encoding issues were raised in 1998-9 by Stephen Pelc, Steve
Coul and Peter Knaggs. An updated discussion from Stephen Pelc and Peter
Knaggs appeared in 2001. An RFD on extended characters, designed to
cope with all Unicode encodings, has been posted to the Forth Standards
forum on forth200x.org by Bernd Paysan. A discussion paper “Xchars, or
Unicode in Forth” by Anton Ertl and Bend Paysan appeared in EuroForth
2005 proceedings. Support for wide characters has been included in GForth
and BigForth.

We are currently including UTF-8 support within our RVM-Forth (Re-
versible Virtual Machine Forth) environment, to gain access to mathematical
symbols and other symbols commonly used in mathematics, such as letters
from the Greek alphabet. We do this by providing a markup sequence for
each special character required, e.g. \alpha for the Greek letter a. When
the markup sequence is entered from the keyboard, it is immediately replaced
by the Unicode character it represents. We provide this facility at the Forth
command line, and also make it available for use in editing via a Unix filter,
also written in Forth.

2 Preparing RVM-Forth to act as a Unix Fil-
ter

RVM-Forth is a subroutine threaded Forth. It has a small nucleus generated
by “meta compilation” of a description of Forth written in Forth. Meta-
compilation of the nucleus generates a Gnu Assembler file which is linked
with object code generated from parts of the nucleus which are written in
C. This provides an executable Forth Nucleus. When the Forth Nucleus is
invoked, command line arguments are provided in the usual C style, and
these are converted to a single string which is interpreted as though it where
Forth terminal input. The usual startup sequence is:
RVM-FORTH HI
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Where HI is a command that loads additional utilities, provided as Forth
source code files, which are incrementally compiled. This process appears to
the user to take virtually no time.
To use RVM-Forth to provide a UTF-8 markup filter when editing the
file example.r with the Nano editor, we invoke it from a script file NANO as:
NANO example.r
Where NANO contains:

#! /usr/bash
RVM_FORTH UTILS ALSO UTF8 FILTER | nano -c¢ -0 -E -T 3 $1
stty echo icanon

Here the command UTILS loads the same utilities as HI, but does not
print a sign on message. Forth is taking its input from the keyboard, and
piping its output to Nano.

Unix, by default, uses buffered keyboard input in which a whole line
is input and echoed to the terminal before the characters are seen by a
program. RVM-Forth configures Unix keyboard input to be unbuffered, so
that it receives one character at a time without that character being echoed
to the screen. The second line of the file is included to restore normal Unix
terminal handling when the filter terminates.

The commands ALSO UTF-8 FILTER add the Forth wordlist UTF-8 to
Forth’s search order, then invokes the command FILTER, which is from this
wordlist. FILTER records keyboard input in a circular “markup buffer”, as
well as generally passing it through to standard output. Whenever a defined
markup sequence matches with the characters most recently received into the
markup buffer, FILTER reinitialises the markup buffer, outputs characters to
delete the markup sequence from the edit screen, and replaces it with the
associated Unicode character.

The Forth side of the filter is non-terminating, and overall termination
occurs when the user exits from the editor.

A second possible use of the same filter is as

RVM_FORTH UTILS ALSO UTF8 FILTER < raw.r > cooked.r
In this case Forth is receiving its input from file and must leave configuration
of terminal input to the Unix filter mechanism. To achieve this Forth needs
to test whether its input is coming from a keyboard during its configuration
sequence, which it does by issuing a Unix system call via the C function:

int stdin_is_kbd() /*return -1 (Forth true flag) if stdin is the
keyboard, and O if stdin has been redirected to a pipe or file */
{ if ( system("[ -t 0 ]") == 0 ) return -1; else return O ;

}
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The functionality of this command is made available as a Forth command
by the following code!

CODE STDIN_IS_KBD ( -- f, returns true if stdin is the keyboard )
xchg Yesp,hesi
call stdin_is_kbd
push %eax
xchg %esp,hesi
ret
ENDCODE

A second issue is that, from our observations of Unix filter behaviour,
it seems that FILTER will need to terminate when the end of the input file
is reached. The different termination behaviours required of FILTER are
provided by the loop test in the following definition.

: FILTER ( --, pre: stdin is the keyboard or a file.
Filter input, replacing markup sequences with the
corresponding UTF-8 character codes )

INITIALISE-BUFFER

BEGIN 7KEY STDIN_IS_KBD OR WHILE FILTER-KEY REPEAT BYE ;

When receiving from a file, FILTER will terminate when no further bytes
are available, which occurs at he end of the file. At this point (and not
before) 7KEY returns a false flag.

Summarising, to enable RVM-Forth for Unix filter applications we have
had to control the output of the RVM-Forth sign on message to ensure it does
not occur during Filter deployment, and make standard input configuration
dependant on whether the system finds it is receiving input from a keyboard
or a file. When running RVM-Forth as a filter which pipes its output to an
editor, the Forth filter need not explicitly terminate as it will be terminated
externally when the editor terminates. When Forth runs as a filter which
receives its input from a file, it must terminate when the end of the file is
reached, and this will correspond to 7KEY returning a false flag.

"'We do not use the elegant postfix syntax of the classical Forth assemblers because
our assembly code is passed through to the Gnu assembler after processing for control
structures and code definitions, making it convenient to use the Gnu AT&T syntax for
our assembler commands.
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3 Recognising and acting upon markup se-
quences

The association between markup sequences and UTF-8 character encodings
is recorded as a sequence of ordered pairs using the RVM-Forth Sets Package.

Part of the sequence which records Greek alphabetic characters, for ex-
ample, is:

STRING INT PROD [ " \GAMMA " CE93 |-> , " \DELTA " CE9%4 |-> ,

" \THETA " CE98 |-> , " \LAMBDA " CE9B |-> , " \XI " CE9E |-> ,
" \PI " CEAO |-> , " \SIGMA " CEA3 |-> , " \PHI " CEA6 |-> ,
-]

Here we are constructing a sequence of string integer pairs. The open square
bracket is a start sequence bracket. Strings are enclosed by quotes, and
| -> is the maplet symbol, which removes two elements from the stack and
constructs an ordered pair. The following comma compiles the ordered pair
as the next sequence element.

"\GAMMA ” is the markup string for a capital gamma (I") character, and
CE93 is the UTF-8 hexadecimal encoding for the character, which occupies
two bytes. As each keyboard character is entered, it is added to the circular
markup buffer. The text in the markup buffer is then compared with the
markup sequences to see if any markup sequence matches the most recent
text in the buffer. If it does, we re-initialise the markup buffer, backspace and
erase the markup sequence on the screen, and output the UTF-8 character.

Some input keys require special treatment. A backspace results in the
last character in the markup buffer being removed if the buffer is not empty.
A new line will clear the markup buffer.

No attempt is made to handle escape sequences. These are recorded in the
markup buffer and passed though to standard output like normal key strokes.
This means, for example, that using the cursor movement keys during entry
of a markup will prevent that markup being recognised. This can actually
be useful, as it provides a way of entering a markup sequence without hav-
ing it transformed into its corresponding Unicode character. It also means,
however, that spurious markups can occur. For example, the left arrow key
generates the hex byte sequence 1B 5B 44. Since 5B 44 corresponds to [D,
then if we include [D as a markup sequence, it will be spuriously recognised
when a left arrow key is entered.

59



4 Experience with Unix editors

We have previously integrated Nedit into our Forth IDE. Typing SEE <word>
at the Forth command prompt will cause Nedit to open the source file con-
taining the definition of <word> in read only mode at the line where it is
defined. EDIT <word> will open the file at the same place but in read/write
mode. Nedit has the advantage of supporting a read only mode and of dis-
playing line numbers. Unfortunately it is not suitable for UTF-8 encodings
as it is based on Lesstif, which currently has no UTF-8 locale support.

Gedit handle files with extended characters, and some old versions of
Gedit claim to have options for accepting input from STDIN. This option is
not recorded on current documentation however, and we have not been able
to make Gedit work with our UTF-8 filter. Another disadvantage is that
there is no explicit read only mode. We have nevertheless implemented an
option for Gedit to be the associated editor, and we use a Bash script to
provide a read only wrapper for Gedit when a browsing mode is required.

Kate can also handle extended characters, and looked a promising candi-
date for use with a filter. In the Kate handbook,

(docs.kde.org/stable/en /kdesdk/kate/kate.pdf)

we read, under command line options:

kate --stdin

Reads the document content from STDIN. This is similar to the
common option - used in many command line programs, and allows
you to pipe command output into Kate.

Whatever this might mean, it does not allow a filter configuration similar
to the one used with Nano above. Standard output can be piped into Kate
with commands such as:

1ls | kate --stdin

but we have not been able to use Kate with our UTF-8 filter in such a way
that user input to Kate is passed through the markup filter.

Nano needs no special option to accept input from STDIN, and it works
perfectly with the filter when the script NANO is invoked from the Unix
Shell. However, when Nano is invoked from a system command sent by
Forth, as when using EDIT, it sometimes fails to hit the correct line in the
source file and also does not always record new lines correctly during the
subsequent editing session.
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5 Markup filtering of the Forth command line

The markup of utf-8 characters is achieved at the Forth command prompt
by vectoring the execution of the Forth Standard ACCEPT to UTF8-ACCEPT.
ACCEPT accepts the input of a given number of characters from the console
into an input buffer, displaying characters as they are entered and termi-
nating on receiving a new line or obtaining the given number of charac-
ters. UTF8-ACCEPT has the additional behaviour of storing received char-
acters in the markup buffer and checking the markup buffer for a match
against the possible markup sequences, such as \alpha . When a match is
found, backspaces are output to delete the markup sequence from the screen,
and the corresponding Unicode character is output in its place. Termination
occurs on receipt of a new line character, or when the given maximum num-
ber of bytes have been received into the input buffer. Input of a backspace
character causes the last character in the markup buffer to be removed, if it
exists, and causes the last character of the input buffer to be removed. This
latter may occupy between one and four bytes.

6 Adapting RVM-Forth to UTF-8 Unicode

Switching character representation to UTF-8 revokes the assumption under
which RVM-Forth was written, that each character occupies one byte, and
also the assumption, taken in the Forth Standard, that each character occu-
pies an equal amount of memory space known as a “char location”. With
UTF-8 encoding a string of n characters may occupy more than n address
units, leading to possible buffer overruns if we continue to rely on our old
assumptions.

We use the abbreviation pchar, introduced Stephen Pelc and Peter Knaggs.
A pchar refers to a “primitive character”, from the ASCII character set, and
requiring one char location of storage. In the UTF-8 encoding, other, “ex-
tended characters”, occupy between 2 and 4 character locations.?

The current Standard description of ACCEPT has the signature:

( c-addr +n1 -- +n2 )
and a description that begins with: “Receive a string of at most +nl char-
acters..”. This needs to be re-expressed as “Receive a string of length at
most +nl address units”. There are further issues if markup is used to enter
extended characters. After entering “\alpha \beta ” we have the two char-

2 This is not quite accurate, since, in some alphabets, characters may be written with
diacritical marks which themselves are encoded as separate characters. However, we al-
ready have enough to deal with here..
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acter string a3, which of four address units in length. However we have to
allow a buffer length of ten in order to enter the string. Where a pchar oc-
cupies one byte and UTF-8 encoding is used, the maximum character length
is 4 bytes. If m is the length of the longest markup sequence and m > 4,
then to allow entry of n characters it is sufficient to accept a string of length
4% (n — 1)+ m address units.

ACCEPT is typical of a number of Standard words which deal with char-
acters and whose glossary definitions require rewording in terms of character
locations rather than characters. A new wordset is required to deal with the
special operations required of wide characters, and here the current RFD
provides valuable suggestions.

7 Conclusions and future work

Using markup to access a limited range of special characters allows us to write
Forth code which can makes use of classical mathematical symbols. This is
particularly beneficial to RVM-Forth which has an extensive set package and
supports A notation. Future work includes rewriting the mathematical parts
of the RVM Forth source code using the extended character set where ap-
propriate, and writing infix expression compilers for set expressions using
the techniques outlined in our EuroForth 2008 paper ” Using Forth in a Con-
cept Oriented Computer Language Course.” Further work is also envisaged
to get the Forth IDE words SEE and EDIT working with more editors, and
combining this functionality with that of the markup filter.
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