
Porting Forth Applications and Libraries EuroForth 2009

Porting Forth Applications and Libraries
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England
t: +44 (0)23 8631 441
f: +44 (0)23 8033 9691
e: sfp@mpeforth.com
w: www.mpeforth.com

Abstract
Porting Forth applications between host  Forth systems is less difficult  than many people  
assume. It just requires discipline, management, preparation and a minimal ego. This paper  
discusses  how to  perform a  successful  port  with  reference  to  several  ports  I  have  been  
involved with. Some guidelines for both producers and consumers are suggested.

Introduction
Successful code tends to have a long lifetime and to evolve over time. 

The MPE Forth cross compiler has evolved from a code base originally supplied in 1982. 
Although hardly a line of code from the original sources has survived unchanged, the code is 
a direct descendant of the original.

The Candy Construction Project Modelling and Project Control software from Construction 
Computer Software (CCS) in Cape Town is approaching one million lines of Forth source 
code dating from the early 1980s.  Over that  period it  has been ported between two CPU 
architectures  (M68000,  i386)  and  four  operating  systems  (HP98xx,  DOS16,  DOS32, 
Windows) as well as several Forth hosts from several suppliers.

Hanno Schwalm recently ported his fJACK audio interface to VFX Forth. The code base now 
runs on iForth and VFX Forth under both Windows, Linux and OSX where the host supports 
it.

Bernd Paysan  is  currently porting his  Minos/Theseus  GUI design tools  from the original 
BigForth host to VFX Forth for Linux.

Brad Eckert provided the FAT file system used with the MPE Forth cross compilers.

The Forth Scientific Library (FSL) has been ported to many different Forth systems and was 
probably the first example of a significant Forth source code library being widely ported. Its 
success is in no small measure due to the assumption that library code should be ported. The 
FSL uses the same harness approach as is discussed here.

The issues involved in porting Forth source code are very little different from those in porting 
source code in any other language. My observation is that standards have helped a great deal 
in making Forth source code more portable.



Porting Forth Applications and Libraries EuroForth 2009

Why do the port?
The motivations for porting Forth code depend heavily on whether the code is an application 
or a library.

Maintainers of applications usually see themselves as tool  users rather than tool  makers. 
Although this line is blurred in large applications, many companies producing applications 
see  the  compiler  as  outside  their  core  competency.  Why  should  a  manufacturer  of 
construction planning software or mass spectrometers write Forth compilers? Using a third-
party compiler enables then to take advantage of improvements introduced for all users rather 
than just  those required by the application. In turn, if their current Forth system does not 
support a particular operating system, e.g. Intel OSX, the authors can turn to a Forth host that 
does support that operating system.

Source code libraries gain by widespread use. You don't reinvent the wheel, you use existing 
code. You don't waste time learning the details of a web protocol, an audio interface or a 
GUI,  you  use  existing  tools  and  get  your  job  done  faster.  Successful  libraries  influence 
standards and make other peoples lives easier. Successful use of libraries enables you to do 
more with your time.

Why not do the port?
The main reason for not doing a port, either from one system or to another, is that you need 
your code to be smaller or faster. In the desktop world, size is no argument for any Forth 
application  I  know  of,  and  both  compilers  and  PC  hardware  improve  over  time.  The 
speed/space reason is often advanced in the embedded systems world as it  would force a 
hardware change. In many instances this is a fallacious argument.

The majority of embedded Forth applications are produced in volumes of less than 10,000 
units per year. Changing from a 8/16 bit CPU with 60kb of Flash and 4kb of RAM to a much 
faster 32 bit CPU with 512kb Flash and 64kb of RAM and vastly more peripherals will cost 
in  the  range  of  1  to  2  dollars/EU/pounds,  and  greatly  extend  the  lifetime  and  potential 
features  of  the product.  The additional  hardware cost  is easily saved in reduced software 
development costs.

MPE has had several clients who have stayed with what they know, only to come back five 
years  later  saying  that  they now need  to  change and  that  the  five  years  have been very 
expensive.

When should I port?
Most people port code to another platform when they need to make a step change in the 
capability of the application.

Programmers of desktop applications may need to move to a new platform or use a feature or 
library that  is  unique  to  a  particular  Forth host.  Embedded systems  developers  make the 
change when they run out of memory on an 8/16 bit system or need facilities such as USB, 
file systems or TCP/IP stacks. Don't even  think about bank switching – it will cost you a 
fortune!

Whatever the reasoning, the decision to port  must  be considered and the porting process 
managed.



Porting Forth Applications and Libraries EuroForth 2009

Process
The successful application ports that I have been involved with  have all followed a similar 
process. Library ports to a new host follow the same basic process.

1) Preparation – eliminate host specific code and/or move it to a host-specific harness.
2) Line in the sand – draw a line in the code. What's below it can be changed between 

hosts, what's above it cannot be changed.
3) Dual build – compile the same code base on the old and the new hosts and retest on 

both hosts
4) Decision  time  –  can  you  add  your  new features  to  the  both  hosts,  or  must  you 

abandon one?  If you are moving from DOS to Linux or Windows, your objective 
may well be to abandon DOS.

5) New features – only at this stage should you introduce new features.

I have observed an application of 800,000 lines of Forth source code ported in six months 
using this process.

Preparation
If you rely on host-specific features, they will break your code later. To avoid this, move all 
such code to a host-specific harness file or directory of files. The harness for your existing 
host should be fully documented in the source code. The harness will become the model for 
the new hosts.

Code that causes problems includes standard words that have host-specific extensions, e.g. 
some Forths use range checks in /STRING whereas many do not. It is far better to rename 
this version to something else. A global search/replace on your source tree is much cheaper 
than days spent chasing bugs. Other nightmares come from words that are common, but have 
different meanings and semantics on different hosts, e.g. FOR and NEXT.

Many Forth systems  use a vectored I/O model  for  redirecting  KEY,  EMIT and friends  to 
different devices or displays. You will need to find a way to isolate the differences from your 
application code.

Other sources of error will come from words that effectively split execution into two words, 
but do not use : and ; to do it. The ANS standard does not permit words to define other 
words inside themselves and some compilers take advantage of this. Such words will need 
host-specific hooks into the compiler.

Remove all  coded definitions, rewrite them in high level for the harness model.  You can 
always rewrite them later if you have to. Forth assemblers for the same host CPU are very 
rarely compatible, so remove problems before they occur.

This phase essentially forces you to perform a code review of your source tree. Do not be 
surprised if you find and correct existing bugs!

Line in the sand
The objective is find a place in your load order above which no code needs to be changed to 
make  the  application  work  on  the  new host.  You will  not  get  right  immediately,  but  is 
important  that the setting of the line is managed and that programmers buy into the idea. 
There must be a manager of the process.



Porting Forth Applications and Libraries EuroForth 2009

There's always a big temptation to put conditional compilation into the code above the line. 
This only indicates that that some piece of code should be changed and the host-specific parts 
moved into the harness layer. The porting process is a matter of constant negotiation between 
the partners.

Dual build
The point of the process is to be able to test that the new version runs identically to the one 
on the old host. You must be able to share data between them.

Do not add new features. This is only a port, you do not want to be debugging new features 
yet.

At the end of this stage you will have two harnesses – one for the old system, one for the 
new.

Decision time
If you are porting a library, you have now completed you first port. Your harnesses need to 
be reviewed. It is in your own interest to reduce the size of the harnesses where possible – it 
will make future ports easier.

When porting an application, you are probably not going to be able to make all users convert 
to the new system immediately.  Therefore  you need to make a decision as to whether to 
maintain the dual build for a while so that the old host can be extended too, or whether to put 
the application on the old host on “care and maintenance only”. This decision is essentially a 
commercial decision.

Where you are porting between (say) Windows and Linux, you will probably have already 
made,  or  be in a good position  to make,  decisions  about  how to manage the  differences 
between GUIs. Embedded systems developers will be in a position to review speed, space 
and power budgets.

It is important to (try to) predict what evolution the code will make over the next few years. If 
you have moved from Windows to Linux, will you want to go to OSX as well? Now that 
you've moved from a 16 bit CPU to a 32 bit CPU, will you want a file system and a TCP/IP 
stack? What will be the consequences of these decisions on your harnesses, e.g. for vectored 
I/O.

New features
Now that you have made your decisions and reviewed the harness code, you can plan your 
new features.

Application developers who have chosen to abandon the old host will  be very tempted to 
optimise  the  code  base  for  the  new host.  Be  very cautious.  The  process  of  building the 
harness has also contributed to layering the software, which has its own benefits. Where you 
can  profitably take benefit  is  in  removing code  that  has  equivalents  in  the  new host.  In 
embedded systems, the appearance of vectored I/O in the new host may permit considerable 
simplification.

Library developers should seriously consider doing another port. The effect of another port is 
to consolidate the harness code. The result of this to make it much easier for third parties to 
do their own ports, which in turn increases the take-up of the code.



Porting Forth Applications and Libraries EuroForth 2009

Guidelines

Harness documentation
Documentation is like sex: when it is good, it is very, very good; and when it is bad,  
it is better than nothing. Dick Brandon

Yes, this guideline comes first. The harnesses are the specification by example.

The  documentation  should  be  in  the  source  code.  Programmers  don't  use  Word  or 
OpenOffice, they use UltraEdit  or Vi.  Stack comments must  be accurate,  and every word 
should  have  at  least  a  one-line  description.  Literate  programming  tools  for  Forth  are 
available. It may take 10% longer to write the code, but you'll save more time during testing 
and debugging. Once you start documenting your code as just a part of programming, you 
will see the advantages and apply it to all code.

Put the design notes at the top of each section.

Keep it simple
Debugging is twice as hard as writing the code in the first place. Therefore, if you 
write the code as cleverly as possible, you are, by definition, not smart enough to  
debug it. (Brian Kernighan)

The competent programmer is fully aware of the strictly limited size of his own skull;  
therefore he approaches  the programming task in full  humility,  and among other  
things he avoids clever tricks like the plague. (Edsger Dijkstra)

Simple, well factored code is the key to maintainable code. Guru code and clever tricks will 
bite you later. Identify these, re-factor them, and move the nasty bits to the harness layer. An 
example  comes  from the  MPE assemblers,  which  can  be  switched  between  opcode-first 
(prefix)  and  opcode-last  (postfix)  modes.  This  is  done  using  ?PREFIX to  separate  the 
opcode construction code according to when it has to be executed. The original code is a 
Forth classic by Bob Smith from the 1987 FORML conference.

: prefix?       \ -- t/f ; true if in prefix mode
  <prefix> @  ;
2variable aprior
: ?prefix       \ struct -- struct' ; executes previous opcode
  prefix? if
    r>                            \ struct ret-addr --
    aprior 2@  2swap  aprior 2!   \ exchange with contents of APRIOR
    >r                            \ will use previous return address
  endif
;

Opcode descriptions often take the form:
: opType       \ opcode -- ; --
  create  , does> ?prefix  …  ;

This code makes several assumptions that are dangerous:
1) The return address is a single cell on the top of the Forth return stack.
2) It performs a flow control which makes assumptions about the return stack depth.
3) What follows is effectively a nameless word and the compiler is not told about it.



Porting Forth Applications and Libraries EuroForth 2009

A better solution that only makes the return stack assumption follows.

: (?prefix) \ struct -- struct' ; executes previous opcode
\ This word assumes that the return address is on the top
\ of the return stack and that an xt is inline. It exits
\ the caller.
  r> @        \ -- struct xt
  prefix? if
    aprior 2@ 2swap aprior 2!  \ exchange with contents of APRIOR
  endif
  execute  \ use previous xt
;
: ?prefix \ -- ; finish and start nameless word
\ This word assumes that the return address is on the top of the
\ return stack and that it can compile an xt inline.
  postpone (?prefix)  here 0 , \ (?PREFIX) gets xt inline
  state off  smudge
  :noname swap !  !csp
; immediate

This code still makes the return stack assumption. This is safe on most hosted systems, which 
is acceptable but still host-dependent. However, it still makes assumptions about the compiler 
and data alignment. We can fairly easily reduce it to the return stack assumption only.

: (?prefix) \ struct -- struct' ; executes previous opcode
\ This word assumes that the return address is on the top
\ of the return stack and that an xt is inline. It exits
\ the caller.
  r> aligned @        \ -- struct xt
  prefix? if
    aprior 2@ 2swap aprior 2!  \ exchange with contents of APRIOR
  endif
  execute  \ use previous xt
;
: ?prefix \ -- ; finish and start nameless word
\ This word assumes that the return address is on the top of the
\ return stack and that it can compile an xt inline.
  postpone (?prefix) align here 0 , \ (?PREFIX) gets xt inline
  >r  postpone ;  :noname r> !  !csp
; immediate

What is also interesting about the changes is that the resulting code is more robust and makes 
assembler macros easier to handle.

Fix bugs first
Fixing a piece of code with two bugs in in is much more difficult than fixing one bug. So fix 
any bugs as soon as you detect them. Never, ever, leave a bug alone.

Crash early and crash often
When MPE wrote its first Windows Forth back in the days of Windows 3.1, we made many 
mistakes. A natural consequence was programmers wrote extremely defensive code. When 
we wrote VFX Forth for Windows, we didn't do that. VFX Forth is brutally intolerant of 
programming errors,  but has good integration with the Windows exception handler.  When 
CCS moved their application to VFX Forth, there were initially complaints that previously 
working code was crashing. After a month or two it emerged that VFX Forth was revealing 
bugs that  had lurked in the production code for years.  When these bugs were fixed, both 
systems had been improved.



Porting Forth Applications and Libraries EuroForth 2009

The good thing about a crash is that it's a show-stopper – you have to fix it. 

People
The  trouble  with  C++  is  that  it  requires  gurus  to  maintain  it.  Gurus  don't  do  
maintenance. (Anon)

People are part of the design. It's dangerous to forget that. (Anon)

Never attribute to malice that which can be explained by stupidity. (Hanlon's Razor)

Stupidity maintained long enough is a form of malice. (Richard Bos's corollary)

A man who is right every time is not likely to do very much. (Francis Crick).

Porting an application or library is not a competition, it's a collaborative exercise. People 
skills are an important part of the process. Once your code is shared, you will have to deal 
with a wide range of people with a wide range of expectations.

Keeping your ego out of the way is just part of the process. None of us is capable of being 
correct all the time. 

Conclusions
Porting a library or application is mainly a matter of discipline and management.

The harness approach is practical and proven over a number of ports.

People and their management are part of the solution.

Acknowledgements
Willem Botha at CCS taught me a great deal about porting code in a disciplined fashion.

Damian Brasher provided a perspective outside the Forth world.


	Introduction
	Why do the port?
	Why not do the port?
	When should I port?
	Process
	Preparation
	Line in the sand
	Dual build
	Decision time
	New features

	Guidelines
	Harness documentation
	Keep it simple
	Fix bugs first
	Crash early and crash often
	People

	Conclusions
	Acknowledgements

