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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 25th Eu-
roForth finds us in Exeter for the first time. The three previous EuroForths
were held in Cambridge, England (2006), in Schloss Dagstuhl, Germany
(2007), and in Vienna, Austria (2008). Information on earlier conferences
can be found at the EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track.

For the refereed track, one paper was submitted, and one was accepted
(100% acceptance rate). For more meaningful statistics, I include the num-
bers since 2006: nine submissions, five accepts, 56% acceptance rate. The
paper was sent to three program committee members for review, and they
produced three reviews. I thank the authors for their paper, and the review-
ers for their reviews.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings. In addition, the printed proceedings
include the slides for talks that will be presented at the conference without
being accompanied by a paper.

These online proceedings also contain late presentations that were too
late to be included in the printed proceedings. Also, some of the presenta-
tions included in the printed proceedings were updated to reflect the slides
that were actually presented. Workshops and social events complement the
program.

This year’s EuroForth is organized by Peter Knaggs.

Anton Ertl
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A Forth-Based CAD for System-Level Microelectronic Design
Ilya E. Tarasov (Measurement systems), Veniamin G. Stakhin, Anton A. Obednin (IDM-Plus)

Abstract

As part of a Federal project to reconstruct Russian microelectronics, the Zelenograd
Innovation and Technological Center was chosen to coordinate R&D works to develop a set of
IP cores and an appropriate software platform for cores integration, modeling, and hardware-
software co-simulation. This project is carried out under a state contract, supported by the
Ministry of Science and Education of the Russian Federation. This article describes features of
use of the Forth-based engine for the decision of a problem of creation microelecrtonic CAD.

Overview

The main subcontractor for this project is the IDM-Plus fabless company, located in the town
of Zelenograd near Moscow. The company successfully operates at the microelectronic
market, including collaboration with China and Taiwan foundries and the Cadence company.
Among their products is a family of 16-bit stack processors (defined as 1894xx), so IDM-Plus
is experienced with the stack architecture. Since 2004 a partnership of IDM-Plus and
Measurement Systems was established, based primarily on a collaborative research in Forth
technologies.

Measurement Systems, located in Kovrov, was founded in 2000 as an R&D company. It
manufactures the high-intellectual measurement systems and precision sensors with strong
signal processing part. The base technologies of the company include FPGA prototyping of
system-on-chip devices, original filtering and statistical algorithms, and a complete set of
Forth technologies, including original versions of Forth translators for PC (PM-Forth in 1999,
Quark-Forth in 2006), several cross-translators for microcontrollers and FPGA-implemented
Forth processors.

Partnership of IDM-Plus and Measurement Systems based on architectural research works and
system software development, provided by Measurement Systems, resulted in an RTL design
and an FPGA prototype of a new system-on-chip. Its further silicon implementation is being
performed by IDM-Plus. This is a common practice for microelectronic design, when separate
teams work on high-level and topology levels of a silicon device.

Design flow

Within this project it was necessary to develop an original design flow, suitable for both,
worldwide foundries and an 'Angstrem' foundry in Zelenograd. Also, since the cost of mask
set grows dramatically with each new technology step, more attention should be paid to the
modeling stage [1, 2]. After carefully preformed prototyping and algorithms testing, a decision
on acceptability of the silicon implementation must be taken. Furthermore, not only technical
questions, but also marketing ones must be resolved, because a silicon implementation of a
130-nm (and deeper) chip is profitable only for high volumes; in case of moderate volumes an
FPGA implementation should be considered. Such high risks of getting a non-profitable (or
even non-working) device turns silicon developers to assembling large systems from pre-
designed, verified building blocks (IP-cores). With an appropriate set of cores the electronic
engineer or programmer is able to compose an optimal hardware configuration for the device
under construction. From this point of view, it is important to carefully separate architectural



solutions from a low-level topology design. This means that the system-level specialist must
be liberated from designing cores at the low level and refocused to rapidly assemble a
software model or an FPGA prototype of a new device, when evaluating it in the field.

There are design tools in the market, oriented to high-level system design, like Coware
Platform Architect, Mentor Graphics Visual Elite, Xilinx Platform Studio, etc. Some common
trends can be highlighted for this class of CAD systems:

- Early integration of embedded software, that enables complex hardware and software
cosimulation.

- Modeling at the transaction level (TLM, Transaction Level Modeling), that enables
performance speedup compared to RTL level [1]. At this level of abstraction, the developer
must use only pre-verified blocks, because at the transaction level we are at risk to write TLM,
which can't be implemented with the current level of silicon technology (for example,
considering too fast or too large circuit may fail at the layout implementation phase, while the
transaction level will be passed successfully).

- Integration with industry standard software tools, such as topology-level CAD software, and,
from the other side, mathematical and DSP software tools and high-level languages.

- Using script languages for automated creation of a project and running the design flow in a
batch mode. As an example, a Tcl scripting language is widely used in Xilinx software tools,
enabling to assemble an FPGA project with a single batch command without any user
interaction. This greatly helps in running many iterations while creating a large chip, replacing
high cost 'silicon' iterations with cheap modeling iterations on a PC.

Newly developed CAD software, named 'Quark CAD', belongs to the class of system-level
design tools and is intended to design a processor-based chips, including multiprocessor
system-on-chip (SoC) devices. This project utilizes a software Forth machine, based on the
'Quark Forth' translator, previously developed at Measurement Systems. After analyzing the
successful usage of the PM-Forth translator, several features was selected as a basis for this
new implementation of the Forth machine:

- Native machine code of x86 processor with separate code and data spaces.

- DLL implementation, interaction with the shell program via the 'Evaluate' word and several
exported functions, providing access to stack, memory, and a special ' virtual screen'.

- Output from the Forth-machine, based on a virtual screen in the main memory, similar to a
Canvas

object in some object-oriented software development tools. This eliminates the necessity of
wm_paint message handling for an application program, while the shell program is
responsible for proper rendering the contents of a virtual screen.

- Wide usage of vector words, replacing nearly all system interface words (PIXEL, EMIT,
INTERPRET, OK, etc.) for maximal portability.

While developing the Quark CAD system, a baseline version of Quark Forth was adapted to
the new task. First, its assembler version was replaced with a C++ single quark.h source text
for further build-in into the gcc software tool. Due to the Linux compatibility requirement, the
Qt library was chosen as the main GUI engine, providing virtual screen visualization, file and
GUI operations, and handling the main part of Forth source texts, represented as scripts in the
CAD being developed (Fig. 1)
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Fig.1. Interaction between C++ Qt and Quark Forth VM in Quark CAD

As shown in Fig. 1, all interactions between the C++ and the Forth parts of the project are
strictly limited to a single 'Evaluate' function, which accepts a string to be interpreted by the
Quark VM. This VM also is able to open, create, and read/write files without the shell,
because basic POSIX-compatible file operations are wrapped by Forth words. So, simple
replacing the scripts to load the VM can change the whole functionality of this software. This
looks very useful for such complex area as microelectronic design, because many software
components (RTL representations, models, etc.) may require an upgrade or reviewing after
CAD release. Representing the main part of CAD functionality as Forth scripts, evaluated by
VM at the runtime brings great flexibility to this software and makes the component upgrade
process transparent and cheap, because no more replacements of executable files are needed.
Indeed, it is a common and predictable feature of any Forth-based software, which has been
exploited for newly developed CAD.

Forth based product features

Each component in the silicon chip has a several representations for different phases of the
design flow (Fig. 2).
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Fig. 2 System-on-chip design flow

As shown in fig.2, there are three main versions of SoC design flow, depending of the
specialists involved. At early stages, when project requirements and specifications are still
unprecise and need to be reviewed, the long-time FPGA prototyping and especially high-cost
silicon implementation is unacceptable. Working with complex models at the hardware and
software levels costs less, enables hundreds of iterations, when up to ten iterations of FPGA
prototyping may be followed to validate a practical applicability of the developed device.
Finally, ASIC implementation will challenge only specific technological, but not algorithmic
or marketing issues. In the Quark CAD, all of the design-specific tasks run in Quark VM.
There are some types of component representations, used in the design flow, including:

- Structural representation, required for building project graphics and, more important,
creating a top-level structural VHDL file. This kind of file is based on a domain-specific Forth
extension, which looks like a scripting file for the designer. For example, 'in data a 32 bit/,
will create a bus with the name 'data_a' and the 32-bit width for the current component.

- Transaction level model (TLM) representation, written in Forth for each component. There
are no domain-specific extension limitations, like for previous representation, so the
component designer may use any Forth words he wants, and freely define all necessary words
to properly represent the component model. Each model must provide the 'CLK' word, which
is executed by the main modeling engine for each component in the system. Executable
addresses of CLK words are collected when component models are loaded.

- Assembler representation, required for any type of processor component. There are no
restrictions for assembler format, style, or limitations, so the developer may realize both Intel
and AT&T formats, as well as a more compact postfix format. All processor cores, provided in
the baseline configuration of Quark CAD, use the postfix format, written in pure Forth. No
restrictions are present because only requirement to assembler is to create memory image for
each processor component in the system. An external assembler program may be also used for



this purpose.

RTL representation, written in VHDL, but combines to synthesizeable project by
configuration engine, running on Quark VM. Each component must have this type of
representation for FPGA prototyping and silicon implementation; however, not for TLM. This
allows programmers to write their own TLMs without knowledge of VHDL. After modeling is
completed, the TLM representation may be used as a specification to for a corresponding RTL
source file.

- GDSII representation required only for chip production.

Design tools are integrated in IDE, shown in Fig.3.
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Fig. 3. The Quark CAD design tool

The main window, denoted as 'start tab', shows the content of the Quark VM virtual screen.
Any other tabs are text editors from the Qt library, used for viewing and editing source texts
and model reports. The 'Evaluate' button at the bottom of the window runs evaluation of the
text, entered in the text field near it. The content of this text field is copied directly into the
Forth terminal input buffer, when the VM interpreter runs.

Quark CAD stack processor cores

Under the contract conditions, several processor cores must be provided as part of a standard
component library of the CAD tool. There are a general-purpose RISC processor, a DSP core,
and a matrix of processor elements in this library. All processor cores may be connected to the
synchronous system bus for sharing peripheral devices. Fixed priority arbitration is used in



case of more than one processor in the system. Stack operations and a minimal set of Forth
words are supported by all cores being developed.

The RISC-processor, named QuarkR, is a 32-bit general-purpose processor. Its main features
are listed below:

- Harvard architecture with a 3-stage pipeline

- 32 general-purpose registers

- 3-address and stack-based register file access, when the top of data stack is initially located
in R31

- Independent return stack (32 cells deep), switchable to a stack in the external data memory

- 32-bit wide command

- Base Forth commands implemented in hardware as a command set extension (no

mode switching is required)

DSP:

- Independently running MAC engines, 1 or 2 blocks in each DSP core. Each DSP block may
work as one 32x32, two 32x16, or four 16x16 independent multipliers with corresponding
accumulators

- Control processor unit, 32-bit stack core with 8-bit wide commands; command set is similar
to that of QuarkR

Matrix processors have two modifications, one of them with a grid of 32-bit compact stack
cores:

- 4 cells deep data stack, 4 cells deep return stack

- Harvard architecture with separate code and data memories for each core

- Up to 32x32 processor unit grid

- Local links, global column buses and system bus interface

Conclusions

From project description above, we can make several assumptions about usage style of
integrated development systems based on Forth-engine. They have found preliminary
acknowledgement while QuarkCAD was in service at developers laboratories.

- The combined interpreting&compiling nature of Forth makes very useful script-rich style
of large, complex system assembling. In fact, C++ code has about nothing influence on the
actually characteristic of CAD output, while all of results depends only on scripts being run.
This allow a wide range of IP cores to be modeled.

- Possibility of just-in-time defining of additional commands allow deep integration of
different CAD flow steps, including flexible and re-engineering interfaces to external tools.
For example, a full path to VHDL code generation provided by one of Forth script, when
another, added later, scripts are interacts with FPGA downloading tools.

- Working on the scripts, developers team found a little need of complex programming
technologies, some of them was added to Forth last time. Nevertheless, Quark VM, which
closer to F83 than to F94, provide enough capabilities to solve a hard enough task, such as
system-level chip design. We relied less on the built-in possibilities of the Forth, than on
added by our scripts. Thus, in the course of project performance even base possibilities of the
Forth have allowed to achieve good results.

References
1. C. Rowen. Engineering the Complex SoC
2. The International Technology Roadmap for Semiconductors: 2007 http://public.itrs.net
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Formulating Type Tagged Parse Trees as Forth
Programs.

Dr Campbell Ritchie and Dr Bill Stoddart
Formal Methods and Programming Research Group
Teesside University, UK

August 24, 2009

Abstract

We describe a two pass compilation technique for converting infix ex-
pressions to postfix, in which a first pass produces a type tagged tree and
a second pass provides type checking and generates Forth code.

The expression language we consider includes sets and sequences, or-
dered pairs, relations, functions, lambda expressions, strings and arith-
metic expressions. The type theory we employ in our infix expression
language is an extension of that of the B Method, which is based on the
use of power set and product operations as type constructors.

The main interest as a Forth research topic is the ease with which
the compiler can be implemented in Forth. The first pass compiler is a
set of mutually recursive functions that produce a type tagged tree. The
second pass is implemented by providing a Forth definition corresponding
to operations found at the non-terminal nodes of the parse tree, and over
which is distributed the responsibility of performing type checking and
compilation of the final executable code. Due to the close correspondence
between parse trees and postfix expressions, the parse tree can be iden-
tified with a Forth program and the execution of the second pass of the
compiler with the execution of this program.

1 Introduction

We consider the translation to postfix (Forth) of an expression language whose
terms include sets, ordered pairs, higher order functions, lambda expressions,
strings and arithmetic expressions. We use strong typing on set expressions,
so that all elements of a set must be of the same type. Set and sequence
expressions can be nested. Some forms may be represented in multiple ways,
e.g. small sets of integers can be represented as bitsets, as well as in a standard
format. Functions may be represented as executable code, or as sets of ordered
pairs with element lookup.

The translation to Forth ensures the source expression is correctly typed, and
deals with any conversions required to cope with differing data representations.

This work is part of an attempt to create a reversible high level language
with a formal semantics and with a compiler that targets a reversible version of
Forth, the “Reversible Virtual Machine” or RVM.

11



We use a two pass compiler in which the first pass produces a type tagged
parse tree. Since there is a close correspondence between parse trees and postfix
expressions, we are able to think of the tree as a Forth program.

These ideas, in a basic form, were presented at last years Euro-Forth, but
using an expression language limited to integer and floating point arithmetic ex-
pressions. When compiling the expression 1+2.5, the output from the first pass
is “ 1”7 INT “ 2.5” FLOAT +_, and this is a Forth program which produces the
output from the second pass, and its type. INT and FLOAT are constants denot-
ing types. The operation +_ expects four arguments, these being two expression
strings and their types, which can be either INT or FLOAT. The operation +_
generates two stack outputs, the postfix expression, “1 FLOAT 2.5 F+” and its
type, FLOAT. The implementation technique provides the possibility of operators
which are polymorphic, providing different functions according to the type of
their arguments.

Analogously to +_ we have operations -_, *_ and so on. Each operation in
the language has a corresponding operation definition used in the second pass
compiler, whose name is formed by appending an underscore to the original op-
eration name. This is used in place of the original name in the output generated
by the first pass of the compiler, and is executed during the second pass of the
compiler.

This convention is maintained in the present paper. However, we now have
two problems that were not present in the previous discussion. Firstly, since
strings are now a part of our expression language, we need to represent string
expressions which contain string expressions. We do this by using the facility,
provided by Unicode, of using opening and closing quotes, as in:

“ “5im” — 1234, “fred” ~— 2345 7

A second problem is that as well as the atomic types INT and FLOAT we now
have type expressions of arbitrary complexity. We represent these types by the
strings that will denote them in the final Forth code.

The remainder of the paper is structured as follows. In Section 2 we discuss
aspects of our expression language, including sets, sequences, ordered pairs, and
types. In section 3 we discuss the formal syntax of the expression language,
using the syntax definition to derive the functions used to implement the first
pass of the compiler. In Section 4 we consider lexical analysis and the first pass
of the compilation process that generates type tagged trees. In Section 5 we
discuss the second pass, showing how type information is passed up the tree
and how type checking and nested set and sequence structures are handled. In
Section 6 we conclude and discuss future work.

2 Sets and Types

We write mathematical expressions in maths font and fragments of Forth code
in teletype font. The set extension {1, 2,3} is written in RVM_Forth as

INT {1, 2, 3, }. Asisusual in Forth, we adopt a programming style
in which each lexical item is a Forth operation. INT provides the type of the
set elements. The operation { opens a new set construction. The commas
within the set construction represent an operation that takes an element from
the stack and compiles it into the current set, and the operation } closes the set
construction and leaves a reference to the set on the stack.

12



The set {{1,2},{4}} has elements which are sets of integers. It may be rep-
resented in RVM_Forth as

INT SET { INT { 1,2, }, INT {4, },}

The following set of string and integer pairs:

{“Bill” — 2673, “Campbell” — 2680, “Frank” — 2680} may be rendered in
Forth as:

STRING INT PAIR { “ Bill” 2673 — , “ Campbell” 2680 +— ,

“ Frank” 2680 +— , }.

We refer to sets of pairs as “relations”. The set of left hand elements (in this
case {“Bill”, “Campbell”, “Frank”} is the relation’s domain, and the set of right
hand elements is its range. We can apply relations as functions. If the relation
just given is applied to the argument “Bill” the result will be 2673. If the
relation is called R this would be represented in the infix expression language
as R(“Bill”) and in Forth as “ Bill” R APPLY.

If the relation is inverted and applied to the value 2680 there is a choice of re-
sults: “Frank” or “Campbell”. Such choices may be made non-deterministically
and be revised on backtracking.

Our types consist of basic sets, such as INT and STRING, together with the
constructors SET and PAIR. In this paper we are only concerned with the postfix
representation of types. If T is a type, T SET is the type whose elements are sets
of elements of type T. If U is also a type, T U PAIR is the type whose elements
are ordered pairs, with the first element of each pair belonging to T and the
second element to U.

We use sets as a general way of representing data. As well as the set opera-
tions of union and intersection, we provide operations that are more specifically
related to data updates and data queries. If R is a relation and U a relation
of the same type, R & U is the relation R updated by entries from U. This
expression is represented in Forth as R U OVERRIDE.

Type checking for an override operation consists of checking that both ar-
guments are relations of the same type. An operation that requires a slightly
more complex type analysis is “domain restriction”, denoted by <. If R is a
relation of elements between of type T and elements of type U, and if S is a
set of elements of type T, then S <1 R is the relation from T to U consisting of
the pairs in R whose first elements are in S. In terms of type checking with our
postfix type language, we need to check that the postfix representation of the
set S, which we wrote as 8, is of type T SET for some postfix type T and that
the postfix type of R is T U PAIR SET.

Sequences, in our canonical set representations, are just sets of ordered pairs
where the domain elements run from 1 to n. The type of a sequence of elements
from T is INT T PAIR SET. Not all data of this type are sequences of course.
Since sequences are just sets, is is permissible to take the union or intersection
of two sequences, though the result will only be a sequence under certain special
conditions. As an example of where taking the union of two sequences can be
useful, suppose we are given two sequences s and ¢ and we want to test whether
s is a prefix of t. A suitable test is s C¢ A (sUt) =¢.

13



3 Expression Grammar and Compilation Func-
tions

Our grammar is written in Hehner’s Bunch Theory. Appendix A describes this
notation. Appendix B gives the full grammar. We provide sufficient comments
in the text for a reader to follow our general approach without consulting the
appendices.

The top level rule for our grammar is:

E = E “" Ey, By

E is the bunch of strings in our infix expression language. Terminal symbols
are shown in quotes. The maplet symbol — is an infix symbol which yields an
ordered pair; it is the lowest precedence operator in the grammar, and is left
associative. FEy is the bunch of strings from our expression language which do
not contain — at the top level. In parsing an expression we first look for the
lowest precedence symbol, and since it is a left associative symbol we scan from
the right to find the rightmost occurrence of such a symbol in the expression.
Let PE be the function that takes a string which is a valid infix expressions,
and returns the string that would be generated by the first pass of the compiler,
then if e is any string from E and ey any string from FEy we have the following
properties:

PE(e “—" eg) = PE(e) PE(eg) “+—_7
PE(ey) = PEy(eo)

These cover the two cases, where the expression to be parsed contains a
maplet symbol at the top level, and where it does not. Note that we compile
the tagged maplet symbol — _, which will be used in the second pass to process
type information and produce a maplet operator for the final code.

The next level of precedence contains the symbols \,U, N, ®. Again these
are left associative. The associated grammar rule is:

EO — 544\77 SO, S“U77 SO’ S“m?? SO S“@” SO, El

Here, S is the bunch of all set expression, S; the bunch of strings from S
without any of \,U,N, @ at the top level, and E; the bunch of expressions from
Ey without any of \,U,N, & at the top level.

The rule tells us that any string from FEj is either a string from S followed
by one of \,U, N, & followed by a string from Sy, or else it is a string from Ej.

Let PS, PSy and PE; be functions that parse strings from S, Sy and Fj
respectively. Let op be one of U,N, &, ey a string from Ey, s a string from S,
sp a string from Sy, and e; a string from E;. Let space be a sting containing
just a space character. Then we can characterise PEy, the function to compile
code for strings from the bunch Ejy, with the following equations.

PEy(s op so) = PS(s) PSo(so) space op“_”
PE()(el) = PEl(el)

Moving to the next level of precedence we have the symbols for domain
restriction and domain subtraction, which are of necessity right associative:

14



s <1 r has the same type as r and hence s; <0 s2 < 7 must parse as s; <1 (52 < 7).
The grammar rule for this level is:

E1 = SQ<]Sl, SQ <l*Sl,E2

Now if e; is a string from FEj, s; a string from 57, so a string from Ss, op a
string from “<”,“<—" and e; a string from E; we can characterise the compiling
function PFE; as follows:

PE(s2 op s1) = PSa(s2) PSi(s1) space op “_7
PE1(62) = PEQ(@Q)

Other grammar rules involving binary operators lead to compiling functions
in the same way.

Now let us see how a set extension is compiled. The grammatical form of a
set extension is:

“{77 L LL}?’

Where L is a list of expressions, with grammatical description:

L=F L“>F

The set extension {1,0,z + 1} will compile to:
{_ %17 “INT ,_ €07 “INT” ,_ “x” ¢ INT “ 17 “ INT” +_ ,_ }_
Let the function that performs parsing of set extensions be PSE and the function
that parses a list be PL. Let list be a string from L, and e a string from e.
Then we can characterise PSE and PL with these equations.

PSE(“ {77 list “ }7’ — “ {777 PL(lZ'St) “ }777
PL(list,e) = PL(list) “,_” PE(e)
PL(e) = PE(e)

4 Lexical Analysis and First Pass Compilation

Whereas classical lexical analysis reads and distinguishes tokens by reading left
to right, we have a bidirectional lexical analyser which finds the lowest priority
connective at each scan. This is implemented by two Forth functions. RL-LEX
scans from right to left and is used to search for left associative connectives,
and LR-LEX scans from left to right and is used to search for right associative
connectives. These words take as input parameters a string address and a
sequence of tokens to be searched for. Where tokens are multi-character and
one token may be a prefix of another, the longer token is placed first in the
sequence to prevent spurious detection of the shorter token.! If a token is
found, the returned values are the part of the expression string that lies before
the token, the part that lies after, and the token. If no token is found, the
returned values are the expression string and two null values.

Whilst searching we only check for tokens at the “top level”. We are not at
the top level if we are currently inside some kind of bracket structure. The four
types of bracket defined in the expression language are precedence brackets (. .. ),
set brackets (...), sequence brackets |[...], and matching string quotes “...”.
Whilst performing a lexical scan, if a bracket is detected, we stop looking for the

1Where a symbol at a lower order of precedence is a prefix of a symbol with a higher order
of precedence there is a potential problem which we have not tried to solve.
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given tokens and look instead for the relevant brackets until we return to the
top level. For example if scanning right to left and a closing set bracket is found,
we then look for opening and closing set brackets until the original bracket is
matched; we ignore any sequence or structuring brackets, but we must change
mode if a quote bracket is detected, since within quotes any set brackets that
occur are part of a string literal rather than part of the expression’s structure.

The first pass compiler has a separate Forth function for each syntactic cat-
egory in the expression grammar. We obtain a collection of mutually recursive
functions. We use a uniform naming convention in which, for example, strings
from the syntactic category F are translated to postfix as described by the math-
ematical function PE, which is implemented by the Forth function PE. The top
level function PE, which can parse any expression, is the last function to be de-
fined, but is required by many of the functions that precede it, e.g by functions
that handle bracketed expressions. To handle this situation RVM-Forth has a
defining work 0P used in these circumstances as:

NULL OP PE ( now we can refer to PE but not execute it)
(define all compiler functions)

: P ( define the functionality required of PE) ... ;
> P to PE ( assign the functionality of P to PE)

Within the definition of P we look for the rightmost maplet symbol at the
top level:
P ( azl -- az2, parse an expression from E, leaving az2 the
first pass postfix translation of the expression azl. )
(: VALUE e :)
e STRING [ “—” , ] RL-LEX
VALUE BEFORE VALUE AFTER VALUE OP-STRING
OP-STRING NULL =
IF ( e did not contain a +— symbol at the top level)
BEFORE PEO
ELSE
BEFORE RECURSE AFTER PEO
SPACE~ OP-STRING _~ AZ~
THEN
1LEAVE ;

Within this definition, AZ~ performs catenation of asciiz strings (the string

form used in this project), SPACE™ appends a space to a string, and _~ appends
an underscore.
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As a second example we describe PE1, which looks for the right associative
domain restriction and domain subtraction operations.
PE1 ( azl -- az2, parse an expression from El, leaving az2,
the first pass postfix translation of the expression azl. )
(: VALUE e :)
e STRING [ “<—, <«” , ] LR-LEX
VALUE BEFORE VALUE AFTER VALUE OP-STRING
OP-STRING NULL =
IF ( e did not contain <— or < at the top level)
BEFORE PE2
ELSE
BEFORE PS2 AFTER PS1
SPACE™ OP-STRING _~ AZ~
THEN
1LEAVE ;

We see that these functions are very similar. They either fail to find any
symbols at the current precedence level and fall through into a function which
deals with higher precedence symbols, or they find a symbol, apply appropriate
functions to parse the text before and after the symbol, and catenate the results
followed by the operator with an appended underscore.

Where parsing functions are more complex, it is because the particular sym-
bol found reveals more about the before and after text. For example consider
the grammar rule:

By = 51%"E, Wi*"7" Wa, S1°>78, Si1"8%, Si 1A, Si | A, Es

In this case, after the string belonging to Fs is split into before and after
strings by RL-LEX, the functions to be applied to the before and after text depend
on the symbol that has been found. For example if the symbol is “—” we are
appending a value to a sequence. The text before the symbol is a set expression
from 57, to be processed by PS1, and following text is an expression from FEj,
to be processed by PE3. If, however, the symbol found is the catenation symbol
“we are catenating two sequences or two string expressions. In that case
the before text is from W; and the after text is from W5, and these are to be
processed by PW1 and PW2 respectively. Implementation of PE2 thus requires a
case analysis based on the symbol found.

The lexical analysers have a wider use than detecting infix symbols. For
example to parse a function application, which has syntactic form given by the
equation:

F — 52 44(”[1“)777 F “(’7LLL)77

We start from the right of the expression, move back one character, and search
for the token “(”. The before string is then the function expression and the
after string the argument list. To parse the argument list with function PL we
search right to left for a comma. If none is found the argument list is a single
expression to be proceeded with PE, if a comma is found the following text is
an expression to be processed with PE and the before text is again an argument
list to be recursively processed by PL.
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The first pass compiler collects type information from numeric literals and
numeric strings and from identifiers, whose type is held in a symbol table (as-
sumed to be already in existence). The result of a first pass compilation is a
postfix expression containing a mixture of special operators and type tagged
literals and identifiers. The special operators, which will run during the second
pass, are named with the names of the corresponding operators in the original
expression, with additional underscores: —_ U M. and so on. We could have
re-used the existing names and written the definition of these second pass op-
erations in a separate word list. However, the present choice of names serves
to help the reader (and ourselves) to remember which pass of the compiler is
currently being discussed.

5 Second Pass Type Checking

The intermediate postfix code produced by the first pass of the compiler may be
viewed as a tree which has the literals and identifiers which appear at its leaves
tagged with type information. As the intermediate code is executed, the types
of more complex sub-expressions, such as set structures, are derived, along with
the postfix code for these sub expressions.

We illustrate the technique by considering the compilation of some set ex-
tensions, where, in additional to deriving the types of the sets concerned, the
second pass compiler must perform type checks to ensure that all sets are homo-
geneous in the sense that any set may only contain elements of one particular
type.

A simple example would be compilation of 1,3,5. The first pass produces
the following text:

{_ “17 CINT ,_ ¢ 27 “INT” ,_ “ 3 “INT” }_

In the following trace we see how this is translated into two strings, representing
a Forth set expression and the type of the set. In the trace, strings which are
on the stack are represented by the form they take in the Forth source code,
and the distinction is made by whether they occur in the “Forth Code” column,
or the “Stack” column. NULL, a constant with value zero representing lack of
information about the types of a set element, is shown in the same way.

Forth Code Stack
Empty
{7 13 {” NULL
13 177 13 INT” 13 {” NULL 43 177 13 INT”
,_ 13 { 1 ’” “ INT??
13 37) 13 INT77 13 { 1 ,” [13 INT” 13 377 13 INT))
,_ 13 { 1 s 3 ,77 [13 INT”
[43 577 “ INT” “ { 1 s 3 ’” [43 INT” “ 5” [43 INT??
_ “ INT { 1,3,5, }” “ INT SET”

The {_ word places an initial set expression string (consisting of just an
open set brace) onto the stack followed by a NULL, signifying lack of information
about the type of the set’s elements.

The word ,_ takes four string arguments, a partial set expression, a repre-
sentation of the type of the set elements (or NULL if the type is not yet known),
an expression giving the current element, and an expression giving its type. It
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checks whether the type of the new element is the same as that of previous
elements, and extends the partial set expression to include the new element.

Finally, }_ takes the same four string arguments as ,_. It checks the type of
the final element, extends the set expression to include this element and adds the
closing brace, then prepends the type of the set element, returning the resulting
string as its first return value. Its second return value is the type of the set,
formed by appending “ SET” to the element type.

The use of the stack during the second pass provides for this approach to
cope seamlessly with nested set structures.

We now look at an example of a relation in which some elements are strings.
We consider the expression:

{* joe” — 90, “ Methuselah” — 900}

The first pass compilation yields

{_ % “ joe” “90” —_ ,_ ¢ “ Methuselah”” “ 900” +—_ }
and here we need nested quotes; we are building a calculus of partial expression
strings, and in such a partial expression string we now have a string literal.
After the second pass we obtain two stack items, the expression string;:

“ STRING INT PAIR { “ joe” 90 — , “ Methuselah” 900 — , }”
and its type, which is “ STRING INT PAIR SET”.

The new second pass operation introduced by this example is —_ This ex-
pects four string arguments: a first expression, its type, a second expression,
and its type. It produces two results: a new expression combining the previous
expressions as a pair, and the type of the pair. It checks the types are equal,
then catenates the expressions and appends a maplet symbol to obtain the new
expression. If T and U are the expression types, then the new expression has
type T U PAIR.

The second pass compiler for operations handling set and sequence descrip-
tions are shown below, omitting [_ and ]_ which are very similar to {_ and

Y.

: {_ “ {7 NULL ( NULL represents the lack of type information at
the start of a set expression construction ) ;

,_ ( set-exp:$ typel:$ element-exp:$ type2:$ -- exp’ type2 )
(: VALUE set-exp VALUE typel VALUE element-exp VALUE type2 :)
typel NULL <> IF
typel type2 STRING= NOT
ABORT“ Non-homogeneous types in set”
THEN
set-exp element-exp AZ~ “ , 7 AZ" type2
2LEAVE ;

: \u2la6_ ( expl:$ typel:$ exp2:$ type2:$ -- pair-exp:$ type:$ )
( \u21a6 is the maplet character )
(: VALUE expl VALUE typel VALUE exp2 VALUE type2 :)
expl exp2 AZ~ “ \u2la6” AZ~ typel type2 AZ~ “ PAIR” AZ"
2LEAVE ;

: }_ ( set-exp:$ typel:$ element-exp:$ type2$ -- set-exp’ set-type )

19



(: VALUE set-exp VALUE typel VALUE element-exp VALUE type2 :)
typel NULL <> IF
typel type2 STRING= NOT
ABORT“ mismatched type in final set element”

THEN
type2 SPACE~ set-exp AZ~ element-exp AZ~ “ , } 7 AZ"
type2 “ SET” AZ"

2LEAVE ;

As a final example of type checking instances of the domain restriction op-
eration, i.e expressions for the form S < R. Here, S must be an expression that
represents a set, and R an expression whose domain elements are of the same
type as S. If the type of R (expressed in postfix) is T U PAIR SET then the type
of S is T SET. The second pass operator < must check that each type has the
correct form, and that the type of the elements of S is equal to the type of the
elements of the domain of R. Here arity checks, scanning right to left, provide
the key to dismantling postfix type expressions into their component parts.

6 Conclusions and Future Work

We have described a two pass compilation technique applicable to fairly com-
plex expressions. We believe the technique will extend to the compilation of
full operations. The first pass of a compilation produces a parse tree, in which
literal values and identifiers, which form the leaves of the parse tree, are tagged
with type information. The operations at the nodes of the parse tree match
the operations of the expression language, but perform type analysis and com-
pilation functions. The first pass of the compiler is provided by a collection of
mutually recursive functions, each of which is designed to compile inputs taken
from a specific syntactic category, established in the grammar. The second pass
of the compiler is provided by definitions corresponding to operations appearing
at the non-leaf nodes of the parse tree.

10
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A  Bunch Notation and Grammars

Grammars are usually written in terms of “production rules”. We want to see
a grammar a a set of simultaneous equations on strings. We want, also, to
consider both non-terminal symbols, E, Ej etc. and terminal symbols “U”, “+"
etc. to be collections of strings, with non terminal symbols generally denoting
a plurality of possible strings.

Mathematical descriptions of grammars rely on set theory, but this has some
disadvantages. Set theory provides two things simultaneously: collection and
packaging: the set {1,3,5} both collects together the elements 1,3 and 4, and
packages them up as a new element. for grammar descriptions we want the
power to collect, without being obliged to package, That is we want the ability
to deal in plurality as well as elements.

In Eric Hehner’s Bunch theory, a bunch is the contents of a set. This 1,3,5
is the bunch that forms the contents of the set {1, 3,5} Collection and packaging
become orthogonal concepts. The comma is now an operation rather than
syntax. It signifies bunch union. Thus if A and B are bunches then A, B is
a bunch consisting of the elements from A and the elements from B.

In our description of grammar, we are dealing with bunches of strings. The
main operation is string catenation. We can write is as st but we elide the cate-
nation symbol and just write s . Where catenation is applied to bunches of more
than one element, it is lifted in an obvious way: if X = “John, Tom” and Y =
“Jones, Smith” then X Y = “JohnJones”, “JohnSmith”, “ TomJones”, “ TomSmith”

Relating our use of bunch notation to classical grammar descriptions, comma
can be thought of as choice, and juxtaposition as sequencing. Taking an example
line from the grammar:

A= A“+7 Ay, A“=" Ay, A
this tells us the bunch S is made up of strings from the three bunches A “+” Ay,
A “—=7 Ag and Ag. The bunch A “+ 7 Ay, consists of strings made up of a
string from A followed by “+ 7 followed by a string from Ag, and so on.

B Expression Language Syntax

Symbols listed in order of precedence, low precedence symbols first, symbols of
equal precedence are enclosed in brackets.

— (\NUnNe)(Qa-) (= "= N)H-)K/)"

Most binary connectives are left associative, the exceptions being < and <—
which are right associative.

Non terminal symbols for the grammar.

L a comma separated list of expressions E an expression A a lambda expres-
sion S an expression representing a set W an expression representing a string
or a set F' an expression representing a function application A an arithmetic
expression N numeric literal $ string literal I an identifier

Ey expressions from F without — at the top level.

E; expressions from Ey without \ U N &
Es5 expressions from E; without <1 <1—

E5 expressions from Fy without «— 7 > >— 7]
E, expressions from E without + —
E5 expressions from F,; without * /

11
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Eg expressions from Es without ~ (unary minus)

So expressions from S without \ U N @
S1 expressions from Sy without <1 <1—
Sy expressions from S; without «— 7 > >— 1|

Wp expressions from W without \ U N @
W7 expressions from W, without <1 <1—

~

Ws expressions from W; without «+ > 71

Ag expressions from A without + —
A expressions from Ay without * /
Ay expressions from A; without ~ (unary minus)

B.1 Expression grammar equations

F=F¢— ”E(),Eo

By = S\ "8y, §5U” 8y, SN "8y, 5% @ S, By

B = 54<1751,54“<19”85, B

By =514« ”E, Wyp«™?” Wa, S>> ”SQ, S1 4> ”SQ, 51 ) 7714, 512 l “A,Eg
By = A%+ 7 Ag, A“~ " Ay, By

E4 = Ao“ * ”Al,Aou/”Ah E5

Es = “"7 Ay, Fg

E6 . ]\77 $7 I7 F“(”L“)777 AU?L“”’ ‘C[”L“}”, “(”E“)”’ “(A ”IE“)”

S = S\ 7 S0, §4U” S, SN 7S, @7 So., S
So=514<178p,51“<1="5,5

S1= 81 B 87 S0, 81457 S, 15 7 oy 14T T AL S, | A, Sy
SQ — I7 I;’7 LU?L“”’ (é[?’L((}”’ “(775“)”’A

W = S\ 7Sy, S5 U7 S, SN S, S & o, Wo
Wo =514« ”So, S <]”SQ, Wi

Wi =814“«"E, Wi“ 7" Wa, 5141759, 814>"85,51“17A,5.“| A, Wy
W2 — 17 };‘7 A(”L“”’$’ “(” WAA)777>\

A:ALL_’_”AO’A“_”AO’AO
AO — A()“*”AlaAO“/”AlaAl
Ay =TT Ay Ay

Ay =7 Ay Ay

A2 — I’ F’ N’ LL(??ALL)??

A:“A”I“.”E
L=E,L"E
F — 52 LL()?L“)”7 FLL(77L“)”

12
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A Look at Gforth Performance

M. Anton Ertl*
TU Wien

Abstract

Gforth used to be an traditional threaded-code sys-
tem. In the last decade we integrated a number of
performance features into Gforth. Several of them
were evaluated individually, but an evaluation with
a more global perspective has been missing until
now. This paper fills this void: We have measured
the performance of Gforth releases from 0.5.0 to
0.7.0, on a wide variety of machines, and employ-
ing a wide variety of GCC versions for compiling
Gforth. We present that data and give explanations
for the performance differences.

1 Introduction

Up until and including gforth-0.5.0, Gforth em-
ployed quite traditional implementation techniques:
Indirect threaded code or, on some architectures,
direct threaded code.

Then we added a number of performance-
improving techniques, which were released with
Gforth 0.6 and Gforth 0.7: Primitive-centric hybrid
direct/indirect threaded code [Ert02] was mainly
an enabler for further optimizations. Dynamic
superinstructions with replication [RS96, PR98,
EGO03b, EG03a] probably have the most significant
effect on performance; these were all present in
Gforth 0.6. Static superinstructions were added in
Gforth 0.6.2, and static stack caching [EG04, EGO05]
in Gforth 0.7.0.

Moreover, Gforth-0.7.0 includes a number of
changes to make these and other optimizations
(in particular, explicit register allocation) more ef-
fective: Automatic build tuning, workarounds for
GCC bugs, and some architecture-specific improve-
ments.

In this paper, we take an overall look at these
changes and their performance effects on various
architectures.

Unfortunately, during the same time GCC was
also “optimized”, and that often resulted in signif-
icantly lower performance for Gforth. We found
workarounds for some of these problems, but the
question remains how effective they are across GCC

*Correspondence Address:  Institut fiir Computer-
sprachen, Technische Universitdt Wien, Argentinierstrafie 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

versions and architectures. So in this paper we also
look at how Gforth performs when compiled with
various GCC versions on various architectures.

2 Setup

2.1 Gforths

We compare four versions of Gforth, with an ad-
ditional three variants produced by running these
versions with an option that turns off a new fea-
ture. The Gforth versions and variants we looked
at were:

0.5.0 Uses traditional indirect or direct-threaded
code. Direct-threaded code is only supported
on some architectures, indirect threaded code
on all of them.

0.6.1 no dynamic This variant uses primitive-
centric  hybrid  direct/indirect  threaded
threaded code. It’s still threaded code, but
now colon definitions are compiled into a call
primitive followed by an address, variables
are compiled to 1it followed by the address,
etc. l.e., all threaded-code pointers point to
primitives. Dynamic superinstructions with
replication are disabled in this version (by
running Gforth with —-no-dynamic) in order
to make it as close in performance to 0.5.0 as
is easily possible, and to allow isolating the
effect of that optimization.

0.6.1 This variant enables dynamic superinstruc-
tions with replication [RS96, PR98, EGO03Db,
EGO03a] on platforms where they are available.
This feature works as follows: for a sequence of
code without branches, the native code of the
primitives is copied to a new place, and these
native code fragments are concatenated. The
direct threaded code points to these copies of
the native code, not the originals. Most of the
NEXTs are left away. Only when there is a
branch, call or execute in the threaded code,
a NEXT is needed. This feature reduces the
number of NEXTs executed and increases the
indirect branch prediction accuracy of the re-
maining NEXTs.
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Architecture CPU Clock rate
Alpha 21264B 800MHz 8MB L2
AMD64 Opteron 270 2000MHz 1MB L2, like Athlon 64 X2
Xeon 5450 3000MHz 2 x 6MB L2, like Core 2 Quad
ARM Xscale IOP 80321 600MHz
TA32 Pentium 4 (Northwood)  2267MHz 512KB L2
Athlon MP 2000MHz 512KB L2, like Athlon XP
Opteron 270 2000MHz 1MB L2, like Athlon 64 X2
Xeon 5450 3000MHz 2 x 6MB L2, like Core 2 Quad
TA64 Ttanium IT 900MHz
PPC PPC7447A (G4) 1066MHz 512KB L2
PPC970 (G5) 2000MHz
PPC64 PPC970 (Gb) 2000MHz
Figure 1: Machines

0.6.2 no superinst This variant has the same
performance features as 0.6.1. Static superin-
structions, the new performance feature of
0.6.2, are disabled.

0.6.2 This version adds static superinstructions, a
platform-independent feature. Static superin-
structions essentially combine a sequence of
primitives into one primitive. Unlike dynamic
superinstructions, which are created at Gforth
run-time, static superinstructions are created
beforehand and built into the Gforth engine.
Gforth 0.6.2 uses 27 and 0.7.0 uses 13 static
superinstructions.

0.7.0 simple stack caching This version tests if
the explicit register allocation option works,
and uses it if it works. Explicit register allo-
cation tells GCC what registers to use for var-
ious VM registers (stack pointers etc.). Oth-
erwise GCC often allocates the VM registers
in memory, so explicit register allocation can
provide a significant speedup on some archi-
tectures. Gforth 0.7.0 also contains several
other performance improvements that are of-
ten somewhat specialized: E.g., it supports in-
direct branch target alignment for dynamically
generated code, providing a speedup on Al-
pha; there are also performance improvements
in mixed-precision division. And a number of
architectures have better support in 0.7.0, al-
lowing them to employ dynamic superinstruc-
tions.

0.7.0 This variant adds multi-state static stack
caching: instead of keeping the number of stack
items in registers the same (usually one item
in the top-of-stack register) all of the time, the
number of stack items in registers can vary to
minimize the number of loads from and stores
to the stack memory, as well as stack pointer

updates. Most architectures have too few reg-
isters available in a way usable with GCC and
therefore can use only at most one register. On
the PPC and PPC64 architectures we use up
to three registers.

All versions of Gforth were compiled without en-
abling non-default performance features (such as
explicit register allocation on versions before Gforth
0.7.0). That is the way that Linux distributors
compile Gforth (and most Linux users get Gforth
through their distribution rather than building it
themselves). On the other hand, most Windows
users probably use the binary package built by
Bernd Paysan, and that uses non-default build op-
tions (in particular --enable-force-reg for ex-
plicit register allocation) to improve performance.
So, the presented results are not representative for
typical Windows installations.

A few other features that are not related to per-
formance and are not used for the benchmarks (e.g.,
the C library interface) were disabled in order to
help make the resulting binaries portable. We com-
piled the four Gforth variants once for each archi-
tecture and GCC version, and then ran the resulting
binaries on all machines of that architecture.

2.2 Hardware and OS

Figure 1 shows the hardware we used. Several ma-
chines were able to run binaries for two architec-
tures. All of these machines were running under
various versions of Linux, on various versions of
the Debian distribution. All machines had enough
RAM to run the benchmarks without swapping.

2.3 Benchmarks

Figure 2 shows the benchmarks we use. These are
all application benchmarks of significant size, and
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Program | Author | Description
bench-gc 1.0 Anton Ertl Garbage Collector
brainless 0.0.2 | David Kuehling | Chess

cd16sim v11 Brad Eckert CPU emulator

fcp 1.31-64 Tan Osgood Chess

lexex Gerry Jackson Scanner Generator

Figure 2: Benchmark programs used

hopefully their usage patterns are more representa-
tive of other CPU-intensive applications than some
of the smaller benchmarks that are often used (and
that have quite different behaviour from these and
other application benchmarks).

Each benchmark was run three times (on each
combination of Gforth variant, GCC version, and
machine), and the median of the three results was
used further on.

In a few graphs we show results for individual
benchmarks, but in most graphs we show an ag-
gregate of all benchmarks. We use the geometric
mean for aggregation (with each benchmark having
the same weight) [FW86].

Brainless produces different results on 32-bit and
64-bit systems, and probably would produce differ-
ent run-times even on a system that was always
equally fast in 32-bit and 64-bit mode. Therefore
we did not include brainless in the aggregate if we
compare 32-bit and 64-bit systems.

2.4 GCC versions

We tried to compile Gforth with as many GCC ver-
sions as possible. Fortunately, there is a wide vari-
ety of GCC versions available on Debian, and they
can be installed simultaneously. In addition, there
were some manually installed GCCs available on
some architectures.

2.5 Graphs

All graphs are scaled such that the highest-
performing system gets speed 1. Also, all graphs
are scaled logarithmically.

For graphs where each data point represents a
Gforth variant with no reference to a specific com-
piler, the fastest-performing variant out of those
that ran is shown. This should show what the vari-
ous versions of Gforth are capable of when not hin-
dered by GCC performance bugs.

In some graphs data points are missing, either be-
cause building that version of Gforth did not work,
or because one of the benchmarks failed (for all of
the Gforth compilations under consideration).

If a missing data point lies between two others
in a line graph, the line is drawn from the point
before to the point after, which is incorrect: It sug-
gests that the performance of the missing point is in

Gforth Performance

the middle, but actually there was no performance
at all for that point; however, trying to make these
cases more visible would probably add more confu-
sion than it would help, so we decided against it.

If a missing point is at the start or the end of the
line, it is just not shown. In some cases, there is
only one point in the line, which is then not shown.
Instead you see the label of the “line” to the right
of where the point is.

3 Results and Analysis

3.1 Overall performance

Figure 3 shows a performance summary: FEach
line represents an architecture/machine combina-
tion. The points on each line show the performance
of different Gforth versions/variants, for each the
fastest gforth-fast binary that the different com-
piler versions produced.

Overall, we can see that Gforth performance has
improved significantly between 0.5.0 and 0.7.0, e.g.,
by a factor of more than 3 for TA32 Xeon 5450, and
that factor seems pretty typical.

Another overall observation we can make is that
we managed to build all Gforth versions on all ma-
chines, even on architectures that were not available
to us for testing when we released the old versions of
Gforth (like ARM or PPC64), or that were not even
released when Gforth 0.5.0 was released in 2000, like
TA64 (released in 2001) and AMD64 (2003). This
shows that Gforth achieves its goal of portability
very well.

3.2 Gforth versions

Looking closer, the effect of different changes is dif-
ferent for different architectures:

From 0.5.0 to 0.6.1nd, the threaded code
model changed from classical direct or indirect
threaded code to primitive-centric direct threaded
code. In addition, on TA32 the top-of-stack is no
longer kept in a register (without explicit register
allocation); registers are scarce on IA32, and with-
out explicit register allocation GCC then spills the
stack pointer to memory, causing a significant slow-
down compared to not keeping the top-of-stack in
a register.

On the TA32 CPUs, switching to primitive-centric
direct-threaded code buys a speedup, because it
eliminates the cache consistency problems these
CPUs have with classical direct threaded code
(where code fragments are close to data) [Ert02,
Section 3], and which shows up in some of these
benchmarks, especially cd16sim. Interestingly, the
AMDG64 versions of Gforth 0.5.0 outperform the
TA32 versions on the same machine, even though
the AMDG64 versions have no architecture-specific
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Figure 3: Performance per cycle, geometric mean
of benchmarks (without brainless) of the best-
compiled versions on all machines

tuning at all. Classical direct threading showed a
benefit on the small benchmarks we usually use dur-
ing development, but obviously these small bench-
marks are not representative of large application
benchmarks.

Most other machines also show an improvement
from going to primitive-centric direct threaded
code, because they usually used indirect threaded
code in Gforth 0.5.0, and direct-threaded code is
faster on most architectures.

From 0.6.1nd to 0.6.1: This enables dynamic
superinstructions with replication on several ar-
chitectures (Alpha, TA32, PPC), and gives large
speedups on these machines. On architectures that
we did not have available for testing when releasing
0.6.1 (AMD64, ARM, 1A64, PPC64), this feature
is not supported (it requires architecture-specific
code for maintaining cache consistency) and there-
fore there is no change between 0.6.1nd and 0.6.1
on these architectures.

From 0.6.1 to 0.6.2ns There are no new perfor-
mance features, so performance should be the same
between these variants, and it generally is; we have
no good explanation for the speedup on the Alpha
21264B machine.
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From 0.6.2ns to 0.6.2 27 static superinstruc-
tions were enabled. They buy a small speedup even
on systems where dynamic superinstructions work,
because the native code for a static superinstruction
is optimized compared to the equivalent dynamic
superinstructions, which just consists of a concate-
nation of the code of its parts. Static superinstruc-
tions buy a larger speedup on systems where dy-
namic superinstructions are not supported, because
there the static superinstructions also buy a part of
the benefit that the dynamic superinstructions give
otherwise: fewer NEXTs and better branch predic-
tion. Looking at the individual benchmarks, static
superinstructions help most of the benchmarks, but
lexex is not affected.

From 0.6.2 to 0.7.0ssc there are a number of
new performance features, with different effects on
different architectures:

Several architectures (AMD64, ARM, IA64,
PPC64) became available for testing, and now
Gforth supports dynamic superinstructions with
replication on them; note how AMD64 and PPC64
now catch up to the performance of IA32 and PPC
on the same machines.

Automatic tuning: The build script automati-
cally tests whether Gforth works when built with
explicit register allocation and/or a C type for
double-cell integers, and enables these features if
they work (i.e. in the usual case). Explicit register
allocation gives significant speedups on [A32 and
AMDG64.

Branch target alignment inserts padding in the
native code such that the targets of branches are
aligned to cache line boundaries. This provides a
significant speedup on the Alpha; this feature is
also implemented for TA32 and AMD64 (but with
padding limited to 1 byte), but we have seen little
effect there (we also tried more padding).

We also added workarounds for GCC perfor-
mance bugs, resulting in more GCC versions having
good performance. This does not show up much
in these graphs, which show only the binary from
the best-performing GCC, but it is responsible for
much of the speedup on PPC: For Gforth 0.6.2, the
best-performing GCC for PPC was 2.95, and it per-
forms similarly for Gforth 0.7.0, but there gcc-4.3
performs a little better.

We have also implemented faster mized-precision
division, but we do not think that this shows up in
these benchmarks.

From 0.7.0ssc to 0.7.0, multiple-state static
stack caching is enabled. Unfortunately, on most
architectures GCC cannot use more than one regis-
ter for this purpose; so in addition to always keeping
one stack item in a register, Gforth 0.7.0 can now
also keep no stack item in a register, and switch be-
tween these two states to minimize the work needed.
In theory this improves the performance for se-
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quences like ! 5, but as we can see, for most ar-
chitectures (except PPC and PPC64) there is no
speedup in application benchmarks.

On PPC and PPC64, GCC can use enough reg-
isters for keeping up to 8 stack items in registers,
and up to 3 registers are useful [EGO05], and that’s
what Gforth 0.7.0 uses on these architectures; static
stack caching provides a speedup then. We suspect
that there are also enough registers usable on 1A64
and SPARC, but have not tested this.

3.3 Architectures and machines

We can also look at Fig. 3 to compare architectures
and machines.

If you look for the best-performing system for
running Gforth, the Xeon 5450 performs best per
cycle among the machines we tested. In addition,
it also has the highest clock rate, so it has the best
absolute performance.

Another interesting question is whether to use
64-bit (AMD64, PPC64) or 32-bit (IA32, PPC) bi-
naries of Gforth if you do not need 64-bit cells.
In theory there is a speed advantage on AMDG64
over IA32, because AMD64 has more registers avail-
able; unfortunately GCC makes no productive use
of these registers when compiling Gforth; perfor-
mance disadvantages of the 64-bit versions are the
doubled memory requirement for all cells, including
the threaded code, resulting in more cache misses;
also, on the Xeon 5450 (and Core 2, but not on
Opteron/Athlon 64), decoding is a little slower in
64-bit mode. On PPC64, there is no register ad-
vantage and no decoding slowdown.

Looking at the results, the 32-bit versions beat
the 64-bit versions. There are some differences be-
tween the benchmarks here: cd16sim and fcp show
the same performance in both architectures on the
Opteron, but on Xeon the 32-bit architecture is a
little faster (probably due to the decoding slow-
down). For benchgc and lexex, the slowdown of the
64-bit version is significant (more than a factor of
1.2). This may be caused by the benchmarks doing
something differently depending on cell size. E.g.,
for benchgc the cell size may change when and how
often garbage collection is called. Or it could be a
result of more cache misses.

For the PPC970, there is a slowdown in the 64-
bit version even for cd16sim and fcp. One reason
for that could be that we had fewer GCC versions
available for PPC64 than for PPC; however, gcc-
4.1 performed well for PPC and was available for
PPC64, so we are not very confident that this ex-
planation is correct. Unfortunately, we don’t have
any other explanation.

Another remarkable thing is how close the per-
formance of the TA32 Opteron is to the TA32
Athlon MP; this confirms that the K8 (Opteron,
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Figure 4: Benchmarking vs. debugging engine

Athlon 64) is really mostly a 64-bit variant of the
K7 (Athlon MP, XP).

Another interesting result is that all TA32 and
AMDG64 machines beat all the others in performance
per cycle in Gforth 0.7.0; even the Pentium 4, which
has a well-deserved reputation for raising the clock
rate at the cost of lower performance per cycle beats
all the other architectures.

This is probably due to the indirect branch pre-
dictors of these CPUs rather than the architec-
ture itself; and these branch predictors benefit from
dynamic superinstructions with replication. Even
though dynamic superinstructions reduce the num-
ber of executed NEXTs (and thus the number of ex-
ecuted indirect branches) by a factor of more than 3,
there are still a lot of indirect branches executed,
and they cost a lot unless correctly predicted.

You can see this effect especially well by look-
ing at the PPC7447A line and comparing it to
the TA32 lines. In Gforth 0.5.0 and 0.6.1nd,
it is the runner-up machine (after the Xeon) in
performance-per-cycle, but with the enabling of dy-
namic superinstruction and replication, it is passed
by the Opteron and Athlon MP, and the Pentium 4
also comes close. Finally, it is passed by the Pen-
tium 4 with the enabling of explicit register allo-
cation in Gforth 0.7.0 (PPC has enough registers
that GCC performs good register allocation even
without explicit register allocation).
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Figure 6: Benchmarking vs. debugging engine
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3.4 Gforth-fast vs. gforth

Gforth comes with two engines: the debug-
ging engine gforth and the benchmarking engine
gforth-fast. The debugging engine performs
some actions that cost performance, and it disables
various performance features to allow better error
reporting. How much does this cost, and has it
changed over time, and why?

Figure 4 shows the graph for the PPC7447A.
Already in Gforth 0.5.0, the debugging engine is
slower, because it maintains a copy of the IP and
RP virtual machine registers in memory (to allow
better error reporting on invalid memory accesses
etc.).

Both benefit to a similar amount from switching
from indirect-threaded code to primitive-centric di-
rect threaded code in 0.6.1nd; there is also a change
in the way that IP is maintained that has no obvi-
ously visible effect on the PPC7447A, and is there-
fore explained later for a machine where the effect
is visible.

Gforth-fast benefits a little more from dynamic
superinstructions with replication in 0.6.1, proba-
bly because before it stalled longer waiting for the
branches to resolve (whereas gforth was still busy
maintaining IP and RP). There is no change in
0.6.2ns, as expected.

In 0.6.2, gforth-fast gains static superinstructions
and a corresponding speedup, whereas the debug-
ging engine does not enable static superinstructions
in order to be able to report at which primitive an
exception occured.

Both engines benefit from improvements in
0.7.0ssc (for this machine probably from GCC per-
formance bug workarounds). On this machine
gforth-fast profits from the more sophisticated stack
caching in 0.7.0, whereas this stack caching is dis-
abled in the debugging engine to support better re-
porting of stack underflows.

While the graphs for most other machines can be
explained in a similar way, there are a few interest-
ing deviations:

Figure 5 shows the graph of the IA32 Xeon. For
gforth-0.5.0, IP is maintained in memory by using
a global variable for it, which requires loading it at
every access. Starting from gforth 0.6, IP is kept in
a register, but is stored to memory on every instruc-
tion boundary. This eliminates the loads and also
guarantees that the in-memory IP always points to
a primitive. Apparently the stores alone are very
cheap!, resulting in performance for the debugging
engine from 0.6.1nd to 0.6.2ns that is very close to
the performance of gforth-fast. On other IA32 ma-
chines the performance of the debugging engine is
actually slightly higher for these versions, but we

1Loads alone are also relatively cheap, but round trips
through memory are usually expensive.
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have no explanation for that.

Gforth 0.7.0 does not automatically tune the de-
bugging engine to use explicit register allocation (to
make building Gforth more robust and faster), so in
the step from 0.6.2 to 0.7.0ssc we see the speedup
from explicit register allocation in gforth-fast, but
no speedup in gforth.

The slowdown for the debugging engine from
0.6.2 to 0.7.0ssc is due to workarounds for GCC per-
formance bugs. These workarounds do have a cost;
they pay for themselves on many compiler versions,
but on the ones that don’t need them they still cost.

Figure 6 shows the graph of the AMD64 Xeon.
Unlike TA32, we have no classical direct thread-
ing with its cache consistency problems and also no
spilling of SP, so the performance changes very little
from 0.5.0 to 0.6.1nd. In addition, GCC manages
to avoid loading IP from memory in 0.5.0 (resulting
in code like for 0.6.1nd).

Dynamic superinstructions with replication are
disabled in Gforth 0.6 on AMD64, so we see no
speedup from that, and a flat line for the debug-
ging engine until 0.6.2. In 0.7.0ssc one would ex-
pect dynamic superinstructions with replication to
take effect, and they do for gforth-fast, but not for
the debugging engine. The reason is that the debug-
ging engine accesses a global variable (the saved IP)
in every primitive, and on AMDG64 global variables
are referenced in a PC-relative way. This makes
each primitive non-relocatable, effectively disabling
dynamic superinstructions with replication for the
debugging engine on AMDG64.

3.5 GCC versions

All the graphs until now only showed the perfor-
mance with the best-performing GCC version. Here
we look at how well the different gforth-fast versions
perform on different GCC versions on a few differ-
ent architectures.

Figure 7 shows the graph for the PPCT7447A.
Gforth 0.5.0 and 0.6.1nd do not perform any op-
timizations that are broken by newer GCC ver-
sions, so their lines are relatively flat. Gforth 0.6.1-
0.6.2 gain performance by using dynamic superin-
structions with replication and work around GCC
performance bugs up to gce-3.3, but gee-3.4 (re-
leased in 2004, i.e., after Gforth 0.6.2) and later
introduced new performance bugs that disable dy-
namic superinstructions in these versions. Gforth-
0.7.0 works around these performance bugs success-
fully, but in doing so apparently falls pray to a gce-
3.2 performance bug that disables dynamic superin-
structions with replication. The GCC version that
works best across all Gforth versions is gec-2.95.

Figure 8 shows the graph for the TA32 Xeon.
Again, gce-2.95 shows the best performance across
the board, and is the only compiler that builds
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Gforth 0.5.0. Gce-3.3 gratuitiously changed the
code order, breaking gforth-0.6.1 as a result. We
worked around this problem in 0.6.2.

The workarounds in Gforth-0.6.2 for GCC per-
formance bugs work up to gcc-3.3 and then fail.
Gee-3.4 is particularly bad in sharing one indirect
branch for all the NEXTSs, completely disabling the
branch predictor of the CPU (GCC PR15242); that
bug also causes the slowdown of 0.6.1nd on gce-3.4.
Gcee-4.0-4.2 fixed this bug, restoring at least a part
of the performance, but the PR15242 problem is
back in gce-4.4.0, giving us bad performance again.

Gforth 0.7.0 successfully works around the per-
formance bugs having to do with code ordering and
indirect branches in GCC < 4.3, but gee-4.0 and 4.1
spill important virtual machine registers, hurting
performance. In addition to resurrecting PR15242,
gce-4.4.0 (released after Gforth-0.7.0) features a
new (or worsening) performance bug that makes
NEXT longer and slower, resulting in the slowdown
shown in the graph. This performance bug uncov-
ered a bug in the implementation of static stack
caching in Gforth 0.7.0 (and that bug is responsible
for there being no result for 0.7.0 with static stack
caching and gcc-4.4.0).

Figure 9 shows the graph for the AMD64 Xeon.
Unfortunately, gcc-2.95 is not available for AMDG64.
Gforth < 0.6.2 does not use dynamic superinstruc-
tions with replication on AMDG64 anyway, so the
lines for these Gforth versions run mostly in par-
allel, reflecting the presence of PR15242 in gcc-3.4

—0.7.0 simple stack cache
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and 4.4.0, and their absence in the other version,
with one exception: gcc-4.3 exhibits the PR15242
problem for gforth-0.5.0, but not for gforth-0.6.x.
Gforth-0.7.0 successfully works around the GCC
bugs that disable dynamic superinstructions with
replication. The cause for the performance varia-
tions between the gcc-4.x versions seems to be a
performance bug that makes NEXT longer (and
slower) in varying amounts between these versions.

4 Future work

This work uncovered some performance issues (in
particular the unnecessarily long NEXT) that we
plan to work around.

In addition, there are some performance ideas
that we plan implement, in particular inlining
[GE04).

Finally, this performance evaluation should be
enhanced by comparing Gforth with other Forth
systems. One challenge here is finding a large
enough set of application benchmarks that run on
all Forth systems.

5 Related work

Instead of working around GCC bugs as we do,
one could also fix GCC. Prokopski and Verbrugge
[PV08] propose a good method for letting GCC
preserve the order of basic blocks and similar as-
sumptions that are helpful for implementing code-
copying optimizations like dynamic superinstruc-
tions. They don’t just disable or restrict optimiza-
tions; they record the basic block order at the start
and then restore it at the end (if possible), or report
an error (if not).

6 Conclusion

The performance of default-compiled Gforth has
improved a lot between Gforth 0.5.0 (2000) and
0.7.0 (2008), typically by a factor of 3.

The most significant factor for that performance
improvement is the introduction of dynamic su-
perinstructions with replication. While that was
relatively easy to implement as a prototype, mak-
ing it work on a wide range of architectures and
GCC versions is a larger effort: First, it requires
a small amount of architecture-specific code; more
significantly, new GCC versions often break this fea-
ture, requiring programming workarounds for these
performance bugs. So while this feature was in-
troduced in Gforth 0.6.x, in many practical cases
(e.g., various Debian packages) it was disabled in
these versions. Gforth 0.7.0 includes a lot of work
to make this feature more widely available.
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There are also many other performance features,
but they often only have a small effect (e.g., static
superinstructions) or only on one or a few archi-
tectures (e.g., automatic tuning to enable explicit
register allocation, which helps a lot on IA32). The
combined effect of all these optimizations is quite
significant, though.

Another interesting result is that Gforth has
proven to be very portable, with even the very old
Gforth 0.5.0 running on architectures and being
compiled with compilers that did not exist when
it was released.
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Abstract

Porting Forth applications between host Forth systems is less difficult than many people
assume. It just requires discipline, management, preparation and a minimal ego. This paper
discusses how to perform a successful port with reference to several ports I have been
involved with. Some guidelines for both producers and consumers are suggested.

Introduction

Successful code tends to have a long lifetime and to evolve over time.

The MPE Forth cross compiler has evolved from a code base originally supplied in 1982.
Although hardly a line of code from the original sources has survived unchanged, the code is
a direct descendant of the original.

The Candy Construction Project Modelling and Project Control software from Construction
Computer Software (CCS) in Cape Town is approaching one million lines of Forth source
code dating from the early 1980s. Over that period it has been ported between two CPU
architectures (M68000, i386) and four operating systems (HP98xx, DOS16, DOS32,
Windows) as well as several Forth hosts from several suppliers.

Hanno Schwalm recently ported his fJACK audio interface to VFX Forth. The code base now
runs on iForth and VFX Forth under both Windows, Linux and OSX where the host supports
it.

Bernd Paysan is currently porting his Minos/Theseus GUI design tools from the original
BigForth host to VFX Forth for Linux.

Brad Eckert provided the FAT file system used with the MPE Forth cross compilers.

The Forth Scientific Library (FSL) has been ported to many different Forth systems and was
probably the first example of a significant Forth source code library being widely ported. Its
success is in no small measure due to the assumption that library code should be ported. The
FSL uses the same harness approach as is discussed here.

The issues involved in porting Forth source code are very little different from those in porting

source code in any other language. My observation is that standards have helped a great deal
in making Forth source code more portable.
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Why do the port?

The motivations for porting Forth code depend heavily on whether the code is an application
or a library.

Maintainers of applications usually see themselves as tool users rather than tool makers.
Although this line is blurred in large applications, many companies producing applications
see the compiler as outside their core competency. Why should a manufacturer of
construction planning software or mass spectrometers write Forth compilers? Using a third-
party compiler enables then to take advantage of improvements introduced for all users rather
than just those required by the application. In turn, if their current Forth system does not
support a particular operating system, e.g. Intel OSX, the authors can turn to a Forth host that
does support that operating system.

Source code libraries gain by widespread use. You don't reinvent the wheel, you use existing
code. You don't waste time learning the details of a web protocol, an audio interface or a
GUI, you use existing tools and get your job done faster. Successful libraries influence
standards and make other peoples lives easier. Successful use of libraries enables you to do
more with your time.

Why not do the port?

The main reason for not doing a port, either from one system or to another, is that you need
your code to be smaller or faster. In the desktop world, size is no argument for any Forth
application I know of, and both compilers and PC hardware improve over time. The
speed/space reason is often advanced in the embedded systems world as it would force a
hardware change. In many instances this is a fallacious argument.

The majority of embedded Forth applications are produced in volumes of less than 10,000
units per year. Changing from a 8/16 bit CPU with 60kb of Flash and 4kb of RAM to a much
faster 32 bit CPU with 512kb Flash and 64kb of RAM and vastly more peripherals will cost
in the range of 1 to 2 dollars/EU/pounds, and greatly extend the lifetime and potential
features of the product. The additional hardware cost is easily saved in reduced software
development costs.

MPE has had several clients who have stayed with what they know, only to come back five
years later saying that they now need to change and that the five years have been very
expensive.

When should | port?

Most people port code to another platform when they need to make a step change in the
capability of the application.

Programmers of desktop applications may need to move to a new platform or use a feature or
library that is unique to a particular Forth host. Embedded systems developers make the
change when they run out of memory on an 8/16 bit system or need facilities such as USB,
file systems or TCP/IP stacks. Don't even think about bank switching — it will cost you a
fortune!

Whatever the reasoning, the decision to port must be considered and the porting process
managed.
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Process

The successful application ports that I have been involved with have all followed a similar
process. Library ports to a new host follow the same basic process.
1) Preparation — eliminate host specific code and/or move it to a host-specific harness.
2) Line in the sand — draw a line in the code. What's below it can be changed between
hosts, what's above it cannot be changed.
3) Dual build — compile the same code base on the old and the new hosts and retest on
both hosts
4) Decision time — can you add your new features to the both hosts, or must you
abandon one? If you are moving from DOS to Linux or Windows, your objective
may well be to abandon DOS.
5) New features — only at this stage should you introduce new features.

I have observed an application of 800,000 lines of Forth source code ported in six months
using this process.

Preparation

If you rely on host-specific features, they will break your code later. To avoid this, move all
such code to a host-specific harness file or directory of files. The harness for your existing
host should be fully documented in the source code. The harness will become the model for
the new hosts.

Code that causes problems includes standard words that have host-specific extensions, e.g.
some Forths use range checks in /STRING whereas many do not. It is far better to rename
this version to something else. A global search/replace on your source tree is much cheaper
than days spent chasing bugs. Other nightmares come from words that are common, but have
different meanings and semantics on different hosts, e.g. FOR and NEXT.

Many Forth systems use a vectored I/O model for redirecting KEY, EMIT and friends to
different devices or displays. You will need to find a way to isolate the differences from your
application code.

Other sources of error will come from words that effectively split execution into two words,
but do not use : and ; to do it. The ANS standard does not permit words to define other
words inside themselves and some compilers take advantage of this. Such words will need
host-specific hooks into the compiler.

Remove all coded definitions, rewrite them in high level for the harness model. You can
always rewrite them later if you have to. Forth assemblers for the same host CPU are very
rarely compatible, so remove problems before they occur.

This phase essentially forces you to perform a code review of your source tree. Do not be
surprised if you find and correct existing bugs!

Line in the sand

The objective is find a place in your load order above which no code needs to be changed to
make the application work on the new host. You will not get right immediately, but is
important that the setting of the line is managed and that programmers buy into the idea.
There must be a manager of the process.
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There's always a big temptation to put conditional compilation into the code above the line.
This only indicates that that some piece of code should be changed and the host-specific parts
moved into the harness layer. The porting process is a matter of constant negotiation between
the partners.

Dual build

The point of the process is to be able to test that the new version runs identically to the one
on the old host. You must be able to share data between them.

Do not add new features. This is only a port, you do not want to be debugging new features
yet.

At the end of this stage you will have two harnesses — one for the old system, one for the
new.

Decision time

If you are porting a library, you have now completed you first port. Your harnesses need to
be reviewed. It is in your own interest to reduce the size of the harnesses where possible — it
will make future ports easier.

When porting an application, you are probably not going to be able to make all users convert
to the new system immediately. Therefore you need to make a decision as to whether to
maintain the dual build for a while so that the old host can be extended too, or whether to put
the application on the old host on “care and maintenance only”. This decision is essentially a
commercial decision.

Where you are porting between (say) Windows and Linux, you will probably have already
made, or be in a good position to make, decisions about how to manage the differences
between GUIs. Embedded systems developers will be in a position to review speed, space
and power budgets.

It is important to (try to) predict what evolution the code will make over the next few years. If
you have moved from Windows to Linux, will you want to go to OSX as well? Now that
you've moved from a 16 bit CPU to a 32 bit CPU, will you want a file system and a TCP/IP
stack? What will be the consequences of these decisions on your harnesses, e.g. for vectored
I/O.

New features

Now that you have made your decisions and reviewed the harness code, you can plan your
new features.

Application developers who have chosen to abandon the old host will be very tempted to
optimise the code base for the new host. Be very cautious. The process of building the
harness has also contributed to layering the software, which has its own benefits. Where you
can profitably take benefit is in removing code that has equivalents in the new host. In
embedded systems, the appearance of vectored I/O in the new host may permit considerable
simplification.

Library developers should seriously consider doing another port. The effect of another port is

to consolidate the harness code. The result of this to make it much easier for third parties to
do their own ports, which in turn increases the take-up of the code.
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Guidelines

Harness documentation

Documentation is like sex: when it is good, it is very, very good, and when it is bad,
it is better than nothing. Dick Brandon

Yes, this guideline comes first. The harnesses are the specification by example.

The documentation should be in the source code. Programmers don't use Word or
OpenOffice, they use UltraEdit or Vi. Stack comments must be accurate, and every word
should have at least a one-line description. Literate programming tools for Forth are
available. It may take 10% longer to write the code, but you'll save more time during testing
and debugging. Once you start documenting your code as just a part of programming, you
will see the advantages and apply it to all code.

Put the design notes at the top of each section.

Keep it simple
Debugging is twice as hard as writing the code in the first place. Therefore, if you

write the code as cleverly as possible, you are, by definition, not smart enough to
debug it. (Brian Kernighan)

The competent programmer is fully aware of the strictly limited size of his own skull;
therefore he approaches the programming task in full humility, and among other
things he avoids clever tricks like the plague. (Edsger Dijkstra)

Simple, well factored code is the key to maintainable code. Guru code and clever tricks will
bite you later. Identify these, re-factor them, and move the nasty bits to the harness layer. An
example comes from the MPE assemblers, which can be switched between opcode-first
(prefix) and opcode-last (postfix) modes. This is done using ?PREFIX to separate the
opcode construction code according to when it has to be executed. The original code is a
Forth classic by Bob Smith from the 1987 FORML conference.

: prefix? \ -- t/f ; true if in prefix mode
<prefix> @ ;

2variable aprior

?prefix \ struct -- struct' ; executes previous opcode
prefix? if

r> \ struct ret-addr --

aprior 2@ 2swap aprior 2! \ exchange with contents of APRIOR

>r \ will use previous return address
endif

’

Opcode descriptions often take the form:
opType \ opcode -- ; --
create , does> ?prefix .. ;

This code makes several assumptions that are dangerous:
1) The return address is a single cell on the top of the Forth return stack.
2) It performs a flow control which makes assumptions about the return stack depth.
3) What follows is effectively a nameless word and the compiler is not told about it.

36



Porting Forth Applications and Libraries EuroForth 2009

A Dbetter solution that only makes the return stack assumption follows.

(?prefix) \ struct -- struct' ; executes previous opcode
This word assumes that the return address is on the top
of the return stack and that an xt is inline. It exits
the caller.
r> @ \ -- struct xt
prefix? if
aprior 2@ 2swap aprior 2! \ exchange with contents of APRIOR
endif

o e

execute \ use previous xt
: ?prefix \ -—— ; finish and start nameless word
\ This word assumes that the return address is on the top of the
\ return stack and that it can compile an xt inline.
postpone (?prefix) here 0 , \ (?PREFIX) gets xt inline
state off smudge
:noname swap ! lcsp

; immediate

This code still makes the return stack assumption. This is safe on most hosted systems, which
is acceptable but still host-dependent. However, it still makes assumptions about the compiler
and data alignment. We can fairly easily reduce it to the return stack assumption only.

(?prefix) \ struct -- struct' ; executes previous opcode
This word assumes that the return address is on the top
of the return stack and that an xt is inline. It exits
the caller.
r> aligned @ \ -- struct xt
prefix? if
aprior 2@ 2swap aprior 2! \ exchange with contents of APRIOR
endif
execute \ use previous xt

P

?prefix \ == ; finish and start nameless word

\ This word assumes that the return address is on the top of the
\ return stack and that it can compile an xt inline.
postpone (?prefix) align here 0 , \ (?PREFIX) gets xt inline
>r postpone ; :noname r> ! lcsp
; immediate

What is also interesting about the changes is that the resulting code is more robust and makes
assembler macros easier to handle.

Fix bugs first

Fixing a piece of code with two bugs in in is much more difficult than fixing one bug. So fix
any bugs as soon as you detect them. Never, ever, leave a bug alone.

Crash early and crash often

When MPE wrote its first Windows Forth back in the days of Windows 3.1, we made many
mistakes. A natural consequence was programmers wrote extremely defensive code. When
we wrote VFX Forth for Windows, we didn't do that. VFX Forth is brutally intolerant of
programming errors, but has good integration with the Windows exception handler. When
CCS moved their application to VFX Forth, there were initially complaints that previously
working code was crashing. After a month or two it emerged that VFX Forth was revealing
bugs that had lurked in the production code for years. When these bugs were fixed, both
systems had been improved.
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The good thing about a crash is that it's a show-stopper — you have to fix it.

People

The trouble with C++ is that it requires gurus to maintain it. Gurus don't do
maintenance. (Anon)

People are part of the design. It's dangerous to forget that. (Anon)
Never attribute to malice that which can be explained by stupidity. (Hanlon's Razor)
Stupidity maintained long enough is a form of malice. (Richard Bos's corollary)
A man who is right every time is not likely to do very much. (Francis Crick).
Porting an application or library is not a competition, it's a collaborative exercise. People
skills are an important part of the process. Once your code is shared, you will have to deal

with a wide range of people with a wide range of expectations.

Keeping your ego out of the way is just part of the process. None of us is capable of being
correct all the time.

Conclusions
Porting a library or application is mainly a matter of discipline and management.

The harness approach is practical and proven over a number of ports.

People and their management are part of the solution.
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Forth Type Checker
by

Jirgen Pfitzenmaier
pfitzen@web.de

Abstract

Forth engine <-—--> Type Checker

Installation & next wversion

monolithic --> library + ocaml runtime
pforth

Reading input

from file --- from keyboard

automatic testing
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Declaring Types

much like in the current standard

\T Execution: (u -- x n) \
\T Compilation: (x —— ) Runtime: ( ——- x)
\T Assume: Execution: (x —— Xx)
\T Cast: Execution: (n —— ) (F: —-— r)
Standard Types
xd I <
/\ / /\ \ \ \ \ \
/N | [ | \ \ \ \
ud d xt un flag wid dior fam fileid
N/ /N7 |
\/ /  +n state
+d / |
c—addr char
|
___ a—-addr
/ | \
| | |
f-addr sf-addr df-addr
colon-sys do-sys
case—sys of-sys
orig dest

Finer types for loops

loop—-sys

loop—sys—u loop—sys—n
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Exit as Forward Connection

nest-sys like-nest-sys

How to empty the Stack

i*x J*x k*x empty

Reserved for future use

obj class frame

Full Declaration prevents internal shifting

Compilation: ( —— ) Runtime: ( x —— x )

is NOT equal to
Runtime: ( x —— x )
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Delay type check for one token

RESTRICT
IMMEDIATE
IMMEDIATERESTRICT

Example 1

badl \' T ( u —— u)
-1+
;  \ end of badl

badlb \T ( u —-- u)
-1 +
; \ end of badlb

goodl \T ( n —— n)
-1+
; \ end of goodl

Example 2
Constant as a simple constraint

good2 \T ( —- n)
4
; \ end of good2

good2b \T ( -— 4)
4
; \ end of good2b
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Example 3

IF ELSE THEN and dependent types

bad3 \T (x true —— x x) | (x false —— char.addr)
IF
DUP DUP
ELSE
PAD
THEN

; \ end of bad3

bad3b \T (x true —— x x x) | (x false —-— char.addr)
IF
DUP DUP
ELSE
PAD
THEN

; \ end of bad3b

good3 \T (x true -—- x x x) | (false -- char.addr)
IF
DUP DUP
ELSE
PAD
THEN

; \ end of good3

good3b \T (x_{1} true ——- x_{1} x_ {1} x_{1}) | (false —-- char.addr)
IF
DUP DUP
ELSE
PAD
THEN
; \ end of good3b

Example 4

Casting Types

FLOATSTACK? \T ( —-- flag)
S" FLOATING-STACK" environment?
\T Cast: (false —-- false) | (i*x true —— n true)
if 0<>
else false
then
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Example 5

Floating Point Stack

floatl [ floatstack? ] [IF] \T (F: r r —— r)
[ELSE] \T (r v —— 1)
[THEN]
F+

; \ end of floatl

locall \T Cast: (nn —— n n) ; DOKU warum cast vor local-def
{mn-—-—} \T (nn-—n n)

n dup m * dup n *
; \ end of locall

local?2 \T Cast: (n n —— n n)
{ vl v2 | 11 12 —— } \T (nn —)
vl . v2 . cr
vl v2 + —> 11
11 . 12 . cr
; \ end of local2
exitl \T (false —- +n) | (true —-- +n +n)
IF
1
THEN
2
; \ end of exitl
exit2 \T (false -- +n) | (true —-— +n)
IF
1 EXIT
THEN
2

; \ end of exit?2
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Example with ABORT and CASE

POSTPONE \T ( -— ) ; CORE 6.1.2033
bl word find
CASE
0 OF ." Postpone could not find " count type cr ABORT ENDOF

1 OF compile, ENDOF \ immediate
-1 OF (compile) ENDOF \ normal
ENDCASE
; immediaterestrict

Problem with matching types

abort?2 \T (+n —— n)
CASE
1 OF 1 ENDOF
2 OF 2 2 ENDOF
ENDCASE
; \ end of abort?2

abort3 \T ( empty —-— ) (R: empty —— ) \
\T | ( k*x —— -1) (R: k*x —— )
-1 throw

; \ end of abort3

RECURSE in action

recl \T (n —-— n)
DUP 2 > IF
DUP 1 - * RECURSE
THEN
; \ end of recl

66




Using CREATE and DOES>

2VARIABLE \T ( —— ) nameExecution: ( —-— d.a-addr ) ; DOUBLE 8.6.1.0440
create 0 , 0, \T AllowRebind: (—— d.a-addr)
; \ end of 2variable

CONSTANT \T (x_{1} —-- ) nameExecution: (-—— x_{1}) ; CORE 6.1.0950
\ XXX im ANS fehlt der index 1
CREATE , \T AllowRebind: (x —— )
DOES> \T ( x_{1}.a-addr —- x_{1} )
@
; \ end of constant

loopl \T (n —-)
5 do cr loop
; \ end of loopl

loop2 \T (n —--)
5 do J 4 = if LEAVE then loop
; \ end of loop?2

Dirty Failures

dirtyloop \T (n --)
5 do if LEAVE then loop
; \ end of dirtyloop

dirty \T ( —— )
R> DROP
; \ end of dirty

?EXIT \T Compilation: ( —— ) Runtime: (x —--) Runtime: (R: nest-sys —-) \
\T | Compilation: ( —— ) Runtime: (x —— )
postpone IF postpone EXIT postpone THEN
; immediate
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