
Formulating Type Tagged Parse Trees as Forth

Programs.

Dr Campbell Ritchie and Dr Bill Stoddart
Formal Methods and Programming Research Group

Teesside University, UK

August 24, 2009

Abstract

We describe a two pass compilation technique for converting infix ex-
pressions to postfix, in which a first pass produces a type tagged tree and
a second pass provides type checking and generates Forth code.

The expression language we consider includes sets and sequences, or-
dered pairs, relations, functions, lambda expressions, strings and arith-
metic expressions. The type theory we employ in our infix expression
language is an extension of that of the B Method, which is based on the
use of power set and product operations as type constructors.

The main interest as a Forth research topic is the ease with which
the compiler can be implemented in Forth. The first pass compiler is a
set of mutually recursive functions that produce a type tagged tree. The
second pass is implemented by providing a Forth definition corresponding
to operations found at the non-terminal nodes of the parse tree, and over
which is distributed the responsibility of performing type checking and
compilation of the final executable code. Due to the close correspondence
between parse trees and postfix expressions, the parse tree can be iden-
tified with a Forth program and the execution of the second pass of the
compiler with the execution of this program.

1 Introduction

We consider the translation to postfix (Forth) of an expression language whose
terms include sets, ordered pairs, higher order functions, lambda expressions,
strings and arithmetic expressions. We use strong typing on set expressions,
so that all elements of a set must be of the same type. Set and sequence
expressions can be nested. Some forms may be represented in multiple ways,
e.g. small sets of integers can be represented as bitsets, as well as in a standard
format. Functions may be represented as executable code, or as sets of ordered
pairs with element lookup.

The translation to Forth ensures the source expression is correctly typed, and
deals with any conversions required to cope with differing data representations.

This work is part of an attempt to create a reversible high level language
with a formal semantics and with a compiler that targets a reversible version of
Forth, the “Reversible Virtual Machine” or RVM.

1

We use a two pass compiler in which the first pass produces a type tagged
parse tree. Since there is a close correspondence between parse trees and postfix
expressions, we are able to think of the tree as a Forth program.

These ideas, in a basic form, were presented at last years Euro-Forth, but
using an expression language limited to integer and floating point arithmetic ex-
pressions. When compiling the expression 1+2.5, the output from the first pass
is “ 1” INT “ 2.5” FLOAT +_, and this is a Forth program which produces the
output from the second pass, and its type. INT and FLOAT are constants denot-
ing types. The operation +_ expects four arguments, these being two expression
strings and their types, which can be either INT or FLOAT. The operation +_
generates two stack outputs, the postfix expression, “1 FLOAT 2.5 F+” and its
type, FLOAT. The implementation technique provides the possibility of operators
which are polymorphic, providing different functions according to the type of
their arguments.

Analogously to +_ we have operations -_, *_ and so on. Each operation in
the language has a corresponding operation definition used in the second pass
compiler, whose name is formed by appending an underscore to the original op-
eration name. This is used in place of the original name in the output generated
by the first pass of the compiler, and is executed during the second pass of the
compiler.

This convention is maintained in the present paper. However, we now have
two problems that were not present in the previous discussion. Firstly, since
strings are now a part of our expression language, we need to represent string
expressions which contain string expressions. We do this by using the facility,
provided by Unicode, of using opening and closing quotes, as in:

“ “jim” 7→ 1234, “fred” 7→ 2345 ”
A second problem is that as well as the atomic types INT and FLOAT we now

have type expressions of arbitrary complexity. We represent these types by the
strings that will denote them in the final Forth code.

The remainder of the paper is structured as follows. In Section 2 we discuss
aspects of our expression language, including sets, sequences, ordered pairs, and
types. In section 3 we discuss the formal syntax of the expression language,
using the syntax definition to derive the functions used to implement the first
pass of the compiler. In Section 4 we consider lexical analysis and the first pass
of the compilation process that generates type tagged trees. In Section 5 we
discuss the second pass, showing how type information is passed up the tree
and how type checking and nested set and sequence structures are handled. In
Section 6 we conclude and discuss future work.

2 Sets and Types

We write mathematical expressions in maths font and fragments of Forth code
in teletype font. The set extension {1, 2, 3} is written in RVM Forth as
INT { 1 , 2 , 3 , }. As is usual in Forth, we adopt a programming style
in which each lexical item is a Forth operation. INT provides the type of the
set elements. The operation { opens a new set construction. The commas
within the set construction represent an operation that takes an element from
the stack and compiles it into the current set, and the operation } closes the set
construction and leaves a reference to the set on the stack.

2

The set {{1, 2}, {4}} has elements which are sets of integers. It may be rep-
resented in RVM Forth as

INT SET { INT { 1 , 2 , } , INT { 4 , } , }

The following set of string and integer pairs:
{“Bill” 7→ 2673, “Campbell” 7→ 2680, “Frank” 7→ 2680} may be rendered in

Forth as:
STRING INT PAIR { “ Bill” 2673 7→ , “ Campbell” 2680 7→ ,

“ Frank” 2680 7→ , }.
We refer to sets of pairs as “relations”. The set of left hand elements (in this

case {“Bill”, “Campbell”, “Frank”} is the relation’s domain, and the set of right
hand elements is its range. We can apply relations as functions. If the relation
just given is applied to the argument “Bill” the result will be 2673. If the
relation is called R this would be represented in the infix expression language
as R(“Bill”) and in Forth as “ Bill” R APPLY.

If the relation is inverted and applied to the value 2680 there is a choice of re-
sults: “Frank” or “Campbell”. Such choices may be made non-deterministically
and be revised on backtracking.

Our types consist of basic sets, such as INT and STRING, together with the
constructors SET and PAIR. In this paper we are only concerned with the postfix
representation of types. If T is a type, T SET is the type whose elements are sets
of elements of type T. If U is also a type, T U PAIR is the type whose elements
are ordered pairs, with the first element of each pair belonging to T and the
second element to U.

We use sets as a general way of representing data. As well as the set opera-
tions of union and intersection, we provide operations that are more specifically
related to data updates and data queries. If R is a relation and U a relation
of the same type, R ⊕ U is the relation R updated by entries from U . This
expression is represented in Forth as R U OVERRIDE.

Type checking for an override operation consists of checking that both ar-
guments are relations of the same type. An operation that requires a slightly
more complex type analysis is “domain restriction”, denoted by C. If R is a
relation of elements between of type T and elements of type U , and if S is a
set of elements of type T , then S C R is the relation from T to U consisting of
the pairs in R whose first elements are in S . In terms of type checking with our
postfix type language, we need to check that the postfix representation of the
set S , which we wrote as S, is of type T SET for some postfix type T and that
the postfix type of R is T U PAIR SET.

Sequences, in our canonical set representations, are just sets of ordered pairs
where the domain elements run from 1 to n. The type of a sequence of elements
from T is INT T PAIR SET. Not all data of this type are sequences of course.
Since sequences are just sets, is is permissible to take the union or intersection
of two sequences, though the result will only be a sequence under certain special
conditions. As an example of where taking the union of two sequences can be
useful, suppose we are given two sequences s and t and we want to test whether
s is a prefix of t . A suitable test is s ⊆ t ∧ (s ∪ t) = t .

3

3 Expression Grammar and Compilation Func-
tions

Our grammar is written in Hehner’s Bunch Theory. Appendix A describes this
notation. Appendix B gives the full grammar. We provide sufficient comments
in the text for a reader to follow our general approach without consulting the
appendices.

The top level rule for our grammar is:

E = E “7→” E0, E0

E is the bunch of strings in our infix expression language. Terminal symbols
are shown in quotes. The maplet symbol 7→ is an infix symbol which yields an
ordered pair; it is the lowest precedence operator in the grammar, and is left
associative. E0 is the bunch of strings from our expression language which do
not contain 7→ at the top level. In parsing an expression we first look for the
lowest precedence symbol, and since it is a left associative symbol we scan from
the right to find the rightmost occurrence of such a symbol in the expression.
Let PE be the function that takes a string which is a valid infix expressions,
and returns the string that would be generated by the first pass of the compiler,
then if e is any string from E and e0 any string from E0 we have the following
properties:

PE (e “7→” e0) = PE (e) PE (e0) “ 7→ ”
PE (e0) = PE0(e0)

These cover the two cases, where the expression to be parsed contains a
maplet symbol at the top level, and where it does not. Note that we compile
the tagged maplet symbol 7→ , which will be used in the second pass to process
type information and produce a maplet operator for the final code.

The next level of precedence contains the symbols \,∪,∩,⊕. Again these
are left associative. The associated grammar rule is:

E0 = S“\”S0, S“∪”S0, S“∩”S0 S“⊕”S0,E1

Here, S is the bunch of all set expression, S1 the bunch of strings from S
without any of \,∪,∩,⊕ at the top level, and E1 the bunch of expressions from
E0 without any of \,∪,∩,⊕ at the top level.

The rule tells us that any string from E0 is either a string from S followed
by one of \,∪,∩,⊕ followed by a string from S0, or else it is a string from E1.

Let PS , PS0 and PE1 be functions that parse strings from S , S0 and E1

respectively. Let op be one of ∪,∩,⊕, e0 a string from E0, s a string from S ,
s0 a string from S0, and e1 a string from E1. Let space be a sting containing
just a space character. Then we can characterise PE0, the function to compile
code for strings from the bunch E0, with the following equations.

PE0(s op s0) = PS (s) PS0(s0) space op“ ”
PE0(e1) = PE1(e1)

Moving to the next level of precedence we have the symbols for domain
restriction and domain subtraction, which are of necessity right associative:

4

s C r has the same type as r and hence s1 C s2 C r must parse as s1 C (s2 C r).
The grammar rule for this level is:

E1 = S2 C S1, S2 C−S1,E2

Now if e1 is a string from E1, s1 a string from S1, s2 a string from S2, op a
string from “C”,“C−” and e2 a string from E2 we can characterise the compiling
function PE1 as follows:

PE1(s2 op s1) = PS2(s2) PS1(s1) space op “ ”
PE1(e2) = PE2(e2)

Other grammar rules involving binary operators lead to compiling functions
in the same way.

Now let us see how a set extension is compiled. The grammatical form of a
set extension is:

“{” L “}”
Where L is a list of expressions, with grammatical description:
L = E , L “ ,” E
The set extension {1, 0, x + 1} will compile to:

{ “ 1” “ INT” , “ 0” “ INT” , “ x” “ INT” “ 1” “ INT” + , }
Let the function that performs parsing of set extensions be PSE and the function
that parses a list be PL. Let list be a string from L, and e a string from e.
Then we can characterise PSE and PL with these equations.

PSE (“ {” list “ }” = “ { ” PL(list) “ } ”
PL(list , e) = PL(list) “, ” PE (e)
PL(e) = PE (e)

4 Lexical Analysis and First Pass Compilation

Whereas classical lexical analysis reads and distinguishes tokens by reading left
to right, we have a bidirectional lexical analyser which finds the lowest priority
connective at each scan. This is implemented by two Forth functions. RL-LEX
scans from right to left and is used to search for left associative connectives,
and LR-LEX scans from left to right and is used to search for right associative
connectives. These words take as input parameters a string address and a
sequence of tokens to be searched for. Where tokens are multi-character and
one token may be a prefix of another, the longer token is placed first in the
sequence to prevent spurious detection of the shorter token.1 If a token is
found, the returned values are the part of the expression string that lies before
the token, the part that lies after, and the token. If no token is found, the
returned values are the expression string and two null values.

Whilst searching we only check for tokens at the “top level”. We are not at
the top level if we are currently inside some kind of bracket structure. The four
types of bracket defined in the expression language are precedence brackets (. . .),
set brackets (. . .), sequence brackets [. . .], and matching string quotes “. . . ”.
Whilst performing a lexical scan, if a bracket is detected, we stop looking for the

1Where a symbol at a lower order of precedence is a prefix of a symbol with a higher order
of precedence there is a potential problem which we have not tried to solve.

5

given tokens and look instead for the relevant brackets until we return to the
top level. For example if scanning right to left and a closing set bracket is found,
we then look for opening and closing set brackets until the original bracket is
matched; we ignore any sequence or structuring brackets, but we must change
mode if a quote bracket is detected, since within quotes any set brackets that
occur are part of a string literal rather than part of the expression’s structure.

The first pass compiler has a separate Forth function for each syntactic cat-
egory in the expression grammar. We obtain a collection of mutually recursive
functions. We use a uniform naming convention in which, for example, strings
from the syntactic category E are translated to postfix as described by the math-
ematical function PE , which is implemented by the Forth function PE. The top
level function PE, which can parse any expression, is the last function to be de-
fined, but is required by many of the functions that precede it, e.g by functions
that handle bracketed expressions. To handle this situation RVM-Forth has a
defining work OP used in these circumstances as:

NULL OP PE (now we can refer to PE but not execute it)

.... (define all compiler functions)

: P (define the functionality required of PE) ... ;
’ P to PE (assign the functionality of P to PE)

Within the definition of P we look for the rightmost maplet symbol at the
top level:
: P (az1 -- az2, parse an expression from E, leaving az2 the
first pass postfix translation of the expression az1.)
(: VALUE e :)
e STRING [“7→” ,] RL-LEX
VALUE BEFORE VALUE AFTER VALUE OP-STRING
OP-STRING NULL =
IF (e did not contain a 7→ symbol at the top level)

BEFORE PE0
ELSE
BEFORE RECURSE AFTER PE0
SPACE^ OP-STRING _^ AZ^

THEN
1LEAVE ;

Within this definition, AZ^ performs catenation of asciiz strings (the string
form used in this project), SPACE^ appends a space to a string, and _^ appends
an underscore.

6

As a second example we describe PE1, which looks for the right associative
domain restriction and domain subtraction operations.
: PE1 (az1 -- az2, parse an expression from E1, leaving az2,
the first pass postfix translation of the expression az1.)
(: VALUE e :)
e STRING [“C−, C” ,] LR-LEX
VALUE BEFORE VALUE AFTER VALUE OP-STRING
OP-STRING NULL =
IF (e did not contain C− or C at the top level)

BEFORE PE2
ELSE
BEFORE PS2 AFTER PS1
SPACE^ OP-STRING _^ AZ^

THEN
1LEAVE ;

We see that these functions are very similar. They either fail to find any
symbols at the current precedence level and fall through into a function which
deals with higher precedence symbols, or they find a symbol, apply appropriate
functions to parse the text before and after the symbol, and catenate the results
followed by the operator with an appended underscore.

Where parsing functions are more complex, it is because the particular sym-
bol found reveals more about the before and after text. For example consider
the grammar rule:

E2 = S1“←”E , W1“a”W2, S1“B”S2, S1“−B”S2, S1 ↑ A, S1 ↓ A, E3

In this case, after the string belonging to E2 is split into before and after
strings by RL-LEX, the functions to be applied to the before and after text depend
on the symbol that has been found. For example if the symbol is “←” we are
appending a value to a sequence. The text before the symbol is a set expression
from S1, to be processed by PS1, and following text is an expression from E3,
to be processed by PE3. If, however, the symbol found is the catenation symbol
“a”, we are catenating two sequences or two string expressions. In that case
the before text is from W1 and the after text is from W2, and these are to be
processed by PW1 and PW2 respectively. Implementation of PE2 thus requires a
case analysis based on the symbol found.

The lexical analysers have a wider use than detecting infix symbols. For
example to parse a function application, which has syntactic form given by the
equation:

F = S2 “(”L“)”, F “(”L“)”

We start from the right of the expression, move back one character, and search
for the token “(”. The before string is then the function expression and the
after string the argument list. To parse the argument list with function PL we
search right to left for a comma. If none is found the argument list is a single
expression to be proceeded with PE, if a comma is found the following text is
an expression to be processed with PE and the before text is again an argument
list to be recursively processed by PL.

7

The first pass compiler collects type information from numeric literals and
numeric strings and from identifiers, whose type is held in a symbol table (as-
sumed to be already in existence). The result of a first pass compilation is a
postfix expression containing a mixture of special operators and type tagged
literals and identifiers. The special operators, which will run during the second
pass, are named with the names of the corresponding operators in the original
expression, with additional underscores: 7→ ∪ ∩ and so on. We could have
re-used the existing names and written the definition of these second pass op-
erations in a separate word list. However, the present choice of names serves
to help the reader (and ourselves) to remember which pass of the compiler is
currently being discussed.

5 Second Pass Type Checking

The intermediate postfix code produced by the first pass of the compiler may be
viewed as a tree which has the literals and identifiers which appear at its leaves
tagged with type information. As the intermediate code is executed, the types
of more complex sub-expressions, such as set structures, are derived, along with
the postfix code for these sub expressions.

We illustrate the technique by considering the compilation of some set ex-
tensions, where, in additional to deriving the types of the sets concerned, the
second pass compiler must perform type checks to ensure that all sets are homo-
geneous in the sense that any set may only contain elements of one particular
type.

A simple example would be compilation of 1, 3, 5. The first pass produces
the following text:
{ “ 1” “ INT” , “ 2” “ INT” , “ 3” “ INT” }
In the following trace we see how this is translated into two strings, representing
a Forth set expression and the type of the set. In the trace, strings which are
on the stack are represented by the form they take in the Forth source code,
and the distinction is made by whether they occur in the “Forth Code” column,
or the “Stack” column. NULL, a constant with value zero representing lack of
information about the types of a set element, is shown in the same way.

Forth Code Stack
Empty

{ “ {” NULL
“ 1” “ INT” “ {” NULL “ 1” “ INT”
, “ { 1 ,” “ INT”
“ 3” “ INT” “ { 1 ,” “ INT” “ 3” “ INT”
, “ { 1 , 3 ,” “ INT”
“ 5” “ INT” “ { 1 , 3 ,” “ INT” “ 5” “ INT”
} “ INT { 1 , 3 , 5 , }” “ INT SET”

The {_ word places an initial set expression string (consisting of just an
open set brace) onto the stack followed by a NULL, signifying lack of information
about the type of the set’s elements.

The word ,_ takes four string arguments, a partial set expression, a repre-
sentation of the type of the set elements (or NULL if the type is not yet known),
an expression giving the current element, and an expression giving its type. It

8

checks whether the type of the new element is the same as that of previous
elements, and extends the partial set expression to include the new element.

Finally, }_ takes the same four string arguments as ,_. It checks the type of
the final element, extends the set expression to include this element and adds the
closing brace, then prepends the type of the set element, returning the resulting
string as its first return value. Its second return value is the type of the set,
formed by appending “ SET” to the element type.

The use of the stack during the second pass provides for this approach to
cope seamlessly with nested set structures.

We now look at an example of a relation in which some elements are strings.
We consider the expression:

{“ joe” 7→ 90, “ Methuselah” 7→ 900}

The first pass compilation yields
{ “ “ joe”” “ 90” 7→ , “ “ Methuselah”” “ 900” 7→ }

and here we need nested quotes; we are building a calculus of partial expression
strings, and in such a partial expression string we now have a string literal.
After the second pass we obtain two stack items, the expression string:
“ STRING INT PAIR { “ joe” 90 7→ , “ Methuselah” 900 7→ , }”
and its type, which is “ STRING INT PAIR SET”.

The new second pass operation introduced by this example is 7→ This ex-
pects four string arguments: a first expression, its type, a second expression,
and its type. It produces two results: a new expression combining the previous
expressions as a pair, and the type of the pair. It checks the types are equal,
then catenates the expressions and appends a maplet symbol to obtain the new
expression. If T and U are the expression types, then the new expression has
type T U PAIR.

The second pass compiler for operations handling set and sequence descrip-
tions are shown below, omitting [_ and]_ which are very similar to {_ and
}_.

: {_ “ { ” NULL (NULL represents the lack of type information at
the start of a set expression construction) ;

: ,_ (set-exp:$ type1:$ element-exp:$ type2:$ -- exp’ type2)
(: VALUE set-exp VALUE type1 VALUE element-exp VALUE type2 :)
type1 NULL <> IF
type1 type2 STRING= NOT
ABORT“ Non-homogeneous types in set”

THEN
set-exp element-exp AZ^ “ , ” AZ^ type2

2LEAVE ;

: \u21a6_ (exp1:$ type1:$ exp2:$ type2:$ -- pair-exp:$ type:$)
(\u21a6 is the maplet character)
(: VALUE exp1 VALUE type1 VALUE exp2 VALUE type2 :)
exp1 exp2 AZ^ “ \u21a6” AZ^ type1 type2 AZ^ “ PAIR” AZ^

2LEAVE ;

: }_ (set-exp:$ type1:$ element-exp:$ type2$ -- set-exp’ set-type)

9

(: VALUE set-exp VALUE type1 VALUE element-exp VALUE type2 :)
type1 NULL <> IF
type1 type2 STRING= NOT
ABORT“ mismatched type in final set element”

THEN
type2 SPACE^ set-exp AZ^ element-exp AZ^ “ , } ” AZ^
type2 “ SET” AZ^

2LEAVE ;

As a final example of type checking instances of the domain restriction op-
eration, i.e expressions for the form S C R. Here, S must be an expression that
represents a set, and R an expression whose domain elements are of the same
type as S . If the type of R (expressed in postfix) is T U PAIR SET then the type
of S is T SET. The second pass operator C must check that each type has the
correct form, and that the type of the elements of S is equal to the type of the
elements of the domain of R. Here arity checks, scanning right to left, provide
the key to dismantling postfix type expressions into their component parts.

6 Conclusions and Future Work

We have described a two pass compilation technique applicable to fairly com-
plex expressions. We believe the technique will extend to the compilation of
full operations. The first pass of a compilation produces a parse tree, in which
literal values and identifiers, which form the leaves of the parse tree, are tagged
with type information. The operations at the nodes of the parse tree match
the operations of the expression language, but perform type analysis and com-
pilation functions. The first pass of the compiler is provided by a collection of
mutually recursive functions, each of which is designed to compile inputs taken
from a specific syntactic category, established in the grammar. The second pass
of the compiler is provided by definitions corresponding to operations appearing
at the non-leaf nodes of the parse tree.

10

A Bunch Notation and Grammars

Grammars are usually written in terms of “production rules”. We want to see
a grammar a a set of simultaneous equations on strings. We want, also, to
consider both non-terminal symbols, E , E0 etc. and terminal symbols “∪′′, “+′′

etc. to be collections of strings, with non terminal symbols generally denoting
a plurality of possible strings.

Mathematical descriptions of grammars rely on set theory, but this has some
disadvantages. Set theory provides two things simultaneously: collection and
packaging: the set {1, 3, 5} both collects together the elements 1,3 and 4, and
packages them up as a new element. for grammar descriptions we want the
power to collect, without being obliged to package, That is we want the ability
to deal in plurality as well as elements.

In Eric Hehner’s Bunch theory, a bunch is the contents of a set. This 1, 3, 5
is the bunch that forms the contents of the set {1, 3, 5} Collection and packaging
become orthogonal concepts. The comma is now an operation rather than
syntax. It signifies bunch union. Thus if A and B are bunches then A,B is
a bunch consisting of the elements from A and the elements from B .

In our description of grammar, we are dealing with bunches of strings. The
main operation is string catenation. We can write is as sat but we elide the cate-
nation symbol and just write s t . Where catenation is applied to bunches of more
than one element, it is lifted in an obvious way: if X = “John,Tom” and Y =
“Jones,Smith” then X Y = “JohnJones”, “JohnSmith”, “TomJones”, “TomSmith”

Relating our use of bunch notation to classical grammar descriptions, comma
can be thought of as choice, and juxtaposition as sequencing. Taking an example
line from the grammar:

A = A “ + ” A0, A “− ” A0, A0

this tells us the bunch S is made up of strings from the three bunches A “+” A0,
A “ − ” A0 and A0. The bunch A “ + ” A0, consists of strings made up of a
string from A followed by “ + ” followed by a string from A0, and so on.

B Expression Language Syntax

Symbols listed in order of precedence, low precedence symbols first, symbols of
equal precedence are enclosed in brackets.
7→ (\ ∪ ∩ ⊕) (C C−) (← a B B− ↓ ↑) (+ −) (∗ /) ~
Most binary connectives are left associative, the exceptions being C and C−

which are right associative.
Non terminal symbols for the grammar.
L a comma separated list of expressions E an expression λ a lambda expres-

sion S an expression representing a set W an expression representing a string
or a set F an expression representing a function application A an arithmetic
expression N numeric literal $ string literal I an identifier

E0 expressions from E without 7→ at the top level.
E1 expressions from E0 without \ ∪ ∩ ⊕
E2 expressions from E1 without C C−
E3 expressions from E2 without ← a B B− ↑ ↓
E4 expressions from E without + −
E5 expressions from E4 without ∗ /

11

E6 expressions from E5 without ~ (unary minus)

S0 expressions from S without \ ∪ ∩ ⊕
S1 expressions from S0 without C C−
S2 expressions from S1 without ← a B B− ↑ ↓

W0 expressions from W without \ ∪ ∩ ⊕
W1 expressions from W0 without C C−
W2 expressions from W1 without ← a B B− ↑ ↓

A0 expressions from A without + −
A1 expressions from A0 without ∗ /
A2 expressions from A1 without ~ (unary minus)

B.1 Expression grammar equations

E = E“ 7→ ”E0,E0

E0 = S“ \ ”S0,S“ ∪ ”S0,S“ ∩ ”S0,S“⊕ ”S0,E1

E1 = S2“ C ”S1,S2“−C ”S1,E2

E2 = S1“← ”E ,W1“ a ”W2,S1“ B ”S2,S1“B ”S2,S1“ ↑ ”A,S12 ↓ “A,E3

E3 = A“ + ”A0,A“− ”A0,E4

E4 = A0“ ∗ ”A1,A0“/”A1,E5

E5 = “~”A1,E6

E6 = N , $, I ,F“(”L“)”, “”L“”, “[”L“]”, “(”E“)”, “(λ ”IE“)”

S = S“ \ ”S0,S“ ∪ ”S0,S“ ∩ ”S0,S“⊕ ”S0,S0

S0 = S1“ C ”S0,S1“ C−”S0,S1

S1 = S1“← ”E ,S1“ a ”S2,S1“ B ”S2,S1“B ”S2,S1“ ↑ ”A,S1“ ↓ ”A,S2

S2 = I ,F , “”L“”, “[”L“]”, “(”S“)”, λ

W = S“ \ ”S0,S“ ∪ ”S0,S“ ∩ ”S0,S“⊕ ”S0,W0

W0 = S1“ C ”S0,S1“ C”S0,W1

W1 = S1“← ”E ,W1“ a ”W2,S1“ B ”S2,S1“B ”S2,S1“ ↑ ”A,S1“ ↓ ”A,W2

W2 = I ,F , “”L“”, $, “(”W “)”, λ

A = A“ + ”A0,A“− ”A0,A0

A0 = A0“ ∗ ”A1,A0“/”A1,A1

A1 = “~”A1,A2

A1 = “~”A1,A2

A2 = I ,F ,N , “(”A“)”

λ = “λ ”I “ • ”E
L = E ,L“, ”E
F = S2“(”L“)”,F“(”L“)”

12

