Using Glade to create GTK+ Applications with FORTH.

euroFORTH 2010 - manfred.mahlow@forth-ev.de

September 8, 2010

Abstract

When talking about GUI development with
FORTH, one of the most expressed desires is to
have an IDE or a graphical editor. Some years
ago, when I wrote an object-oriented GTK-+
interface for cspForth, an IDE or graphical ed-
itor was not my concern. But, when I recently
decided to port the GTK+ interface to MIN-
FORTH, I remembered that often expressed de-
sire and had a look at Glade and found that
Glade and FORTH can be quite good compan-
ions.

What is Glade ?

Glade is a graphical user interface builder for
GTK+. It’s neither an IDE nor a code edi-
tor. It allows to design graphical user interfaces
saved as XML files. The XML files describe the
layout of the GUI, the properties of the widgets
and the signal handling. Since version 3.5.0 two
file formats are supported, an older one to be
used with Libglade and a newer one for Libgtk.

Using a GUI created with Glade is not a tough
task. The usual steps to write the required pro-
gram code are

1. Decision what library to use, Libglade or
Libgtk.

2. Initializing GTK+.

3. Creating a GladeXML or a GtkBuilder ob-
ject per widget hierarchy.

4. Loading the widget hierarchies from the
XMTF file into this objects.

5. Reading widget identifiers from the

GladeXML or GtkBuilder objects.
6. Writing signal handlers.
7. Assigning signal handlers to widgets.
8. Displaying the GUI.

9. Starting the GTK+ main loop.

A GUI created with Glade can be used with
any program language, as long as the language
gives access to the required Libgtk or Libglade
functions.

Glade and FORTH

FORTH and Glade can be great companions.
Let’s have a quick look at a small example, writ-
ten for MINFORTH 1.5(p).!

An Example ...

The Graphical User Interface

Our starting point is a GUI created with Glade.
The newer GtkBuilder format is used. The GUI
consists of two widget hierarchies, the main ap-
plication window (windowl in Fig. 1) and a
modal dialog (dialogl in Fig. 2).

Fig. 1 and Fig. 2 show the same Glade instance.
The only difference is the selected widget. In
Fig. 1 it’s window1, in Fig. 2 it’s dialogl.

The main window is a GtkWindow with only
one child, which is a GtkLabel (labell). The
dialog is a GtkDialog widget and has some
more children, packed into container widgets.
A GtkImage (imagel) and a GtkLabel (la-
bel2) are packed into a GtkHBox (hbox2) which
is packed into the dialogs internal GtkVBox
(dialog-vbox1) and two GtkButton widgets
(buttonl, button2) are packed into the dialogs
internal GtkHBox (dialog-action_ areal).

All packing has been done and all widget prop-
erties have been set with Glade. The only thing
that can not be done when using FORTH, is to
assign signal handlers with Glade. This is only
possible when using the program language C.

The GUI specification is stored in XML format
(Fig. 3) to be used with the GtkBuilder object
defined in Libgtk.

IMINFORTH 1.5(p) is MINFORTH 1.5 (for LINUX)
with some additional hooks and minor extensions for
the object-oriented GTK+ interface.

File Edit View Projects Help

L & PREE Y R
[Actions | 5 = |=: search widgets =
& = @ - — window1
using GtkBuilder with minFoRrTH 1.5(p) O NS

es |& wal |abell
| ¥ Toplevels L) - d'alégl
— This is a toplevel window. - B dialog-vbox1
O - (Il hbox2
= Closing this window will popup a modal dialog. & imagel
= =oe |abel2
= u a — coe dialog-action_areal

- buttonl
[Contai... | button2

= Objects

TEDRDB
1 Bl
M L = R

t
O~

Wy Control... |

] E M-

v

[window Properties - GtkWindow [wind...

General Packing Common Signals |,

Name: |window1
Accel Groups: |
W miar Tirma. | Tan | Ausal

[0T

Figure 1: Glade GUI editor, window1 selected

The GTK-+ Interface

To transform the GUI into a GUI application,
some program code is required. We’ll use an
object-oriented GTK+ interface here.

The GTK+ classes are mapped to classes of
the same name in FORTH. Classes are loaded
on demand as required.

A widget is an instance of its widget class. The
methods to create and initialize a widget and
to modify its properties are defined in its class.

Widget properties are implemented as instance
variables. Property and method names are
choosen to be close to the corresponding GTK+
names.

The FORTH Code

Now lets have a look at the program code in
Fig. 4.

The required classes are loaded in line 8 to 11.

A String object is needed for the name of the
XML file, a GtkBuilder object to load the GUI
specification from the file and a GtkDialog and
a GtkWindow object to get access to the GUIs
main window and to the dialog. The objects
are created in line 15 to 18.

In line 18 and 19 two signal slots are created to
be used to connect signals and signal handlers
to the main window(window1).

A first signal handler is defined in line 23. It
is called when a ’destroy’ signal is received by
the main window (windowl). It’s very simple
here. Its only task is to terminate the GTK+
event processing by leaving the GTK+ main
loop. It’s called with two parameters. Both are
not used here.

The second signal handler is defined in line
25 to 27. It is called, when the main win-
dow(window1) receives a ’delete-event’ signal
from the window manager. Its task is to open
the dialogl, wait for a button press, destroy the
dialog when a button is pressed and return a
button-specific value. A ’destroy’ signal will be
send to the main window (window1) if FALSE
is returned. This is the case if the '"QUIT’ but-
ton (button2) was pressed. Otherwise no ’de-
stroy’ signal will be emitted and the ’delete-
event’ signal will have no further effect.

In line 26 the GtkBuilder object (builder) is ini-
tialized from the XML file with the GUI speci-
fication for the dialog (dialogl). All widgets of
the dialogs widget hierarchy are created here.
Then, in line 27, the GtkDialog object for dia-
log1 is initialized by reading its widget identifier
from the builder object and the dialog is shown

File Edit View Projects Help

K

¥ Actions | < search widgets =
& = @ - Quit this Application ? - [windowl ‘
= el |zbel1
o |= @ Please click on the Cancel Button, if you —
v Toplevels do not want to quit this application. = dialogl
- H dialog-vbox1

| | cancel | | Quit | - [hbox2
& B imagel
= moat |ghel2
= — coe dialog-action_areal

- buttonl
m button2
mEe H Objects
I 5
m o [Dialogue Box Properties - GtkDialog [di...
o F General |Packing Common Signals &,
[.
= & Name: |dialogl
b- O Has | No

' separator:

=0 . f b
v Control... "
=

v

Figure 2: Glade GUI editor, dialogl selected

to the user (dialogl run), waiting for the user
to press one of the dialog buttons.

In line 29 to 34 the word to start the application
is defined.

In line 30 the GtkBuilder object (builder) is ini-
tialized from the XML file with the GUI spec-
ification for the main window (windowl). All
widgets of the main windows widget hierarchy
are created here.

In line 31 the GtkWindow object for the main
window (windowl) is initialized by reading its
widget identifier from the builder object.

Line 32 connects the on.destroy signal handler
from line 23 to the 'destroy’ signal at windowl,
using the signal slot cb.destroy and line 33 con-
nects the on.delete-event signal handler from
line 25 to the ’delete-event’ signal at windowl,
using the signal slot cb.delete.

The code in line 34 makes the main window
(window1) visible on the computer display and,
finally, the application is started in line 36.

Two modes of event processing are supported
here. If MINFORTH runs in a terminal win-
dow, the GTK+ events are processed in the
background while waiting for terminal input,
to preserve FORTHs interactivity. Otherwise a
GTK+ main loop is entered for event process-
ing.

GtkBuilder: GtkDialog exa

using GtkBuilder with MminForTH 1.5(p)

© @ GtkBuilder: GtkDialog examplel

- Quit this Application ?

jec
io0-mods
io-mode

EO752 ig

| %ncel | Quit

@ Please click on the Cancel Button, if you
do not want to quit this application.

Figure 5: The running GUI example.

Up and Running

Fig. 5 shows the running application with the
dialog waiting for user response after the close
button of the main window was clicked.

The Benefit of using Glade

The advantage of creating a GUI with Glade
instead of creating it from source code is, that
no code needs to be written to create the wid-
gets, to set the widget properties and to pack
the widgets into container widgets to get the

1 <?xml version="1.0"7>
2 <interface>

3 <requires lib="gtk+" version="2.16"/>
4 <!-- interface-naming-policy project-wide -->
5 <object class="GtkWindow" id="windowl"=>
6 <property name="border width">24</property>
7 <property name="title" translatable="yes">GtkBuilder: GtkDialog examplel</
property=
8 <property name="resizable">False</property>
9 <property name="window position"=center</property=
10 =<child>
11 <object class="GtkLabel" id="labell"=
12 <property name="visible">True</property=
13 <property name="label">Using ≪span size='xx-

large'>GtkBuilder< /span> with MINFORTH 1.5(p)

16 &1t;span size='x-large'>This is a toplevel window.
17

18

19 Closing this window will popup a modal dialog.

28 </property>

Figure 3: First twenty lines of Glades XML output.

1\ euroFORTH-2010/GtkBuilder/examplel.mf

2 SYSY Y Y ——S————————————_——_—_—_—_—_—__——_—.,
3%\ GtkBuilder 00P Library for MINFORTH MM-1600801
BB\ - e
5\ Copyright (C) 2010 manfred.mahlow@forth-ev.de

6\

B\ - e

8 requires String

9 requires GtkBuilder
10 requires GtkWindow

11 requires GtkDialog

12

13 forth definitions decimal

S
15 String new xml-file

16 GtkBuilder new builder
17 GtkDialog new dialogl

18 Gtkwindow new windowl GSignalSlot new cb.destroy

19 GSignalSlot new cb.delete

20

21 s" euroFORTH-2018/GtkBuilder/examplel.glade" xml-file !

22

23 : on.destroy (data oid --) 2drop gtk main_quit ;

24

25 : on.delete-event (event data oid -- f) 2drop drop

26 xml-file @ s" dialogl" builder init

27 dialogl init from builder dialegl run dialogl destroy ;

28

29 srun [--)

30 xml-file @ 5" windowl" builder init

31 windowl init from builder

32 ["] on.destroy ® windowl signal destroy cb.destroy connect

33 ['] on.delete-event © windowl signal delete-event cb.delete connect
34 windowl show all ;

35

36 run term? [if] cr ?? [else] gtk main bye [then]

R e R EEEE R T

38 \ Last revision: MM-180983

Figure 4: The FORTH code for the GUI created with Glade.

desired layout. Widgets that do not need to be
manipulated by the program require no code at
all.

Another advantage is that the GUI can be
changed aesthetically and widget properties
can be changed, without the need to change
the code. The only restriction is not to change
the widget names.

To see the benefit of using Glade take a look at
Fig. 6 and 7. It’s the listing of the code that is
required to create the same small GUI example
as in Fig. 4 but without using Glade.

Obviously the difference is significant and can
be expected to be much more significant when
writing real applications instead of small exam-
ples.

And - the same is true when using Libglade
instead of Libgtk. The advantage of Libgtk is,
that Libglade is not required at runtime.

References

[1] Andrew Krause. Foundations of GTK+ De-
velopment. Apress, 2007.

[2] Matthias Warkus. Das GTK+/GNOME
Entwicklerhandbuch. dpunkt.verlag, 2008.

[3] http://www.gtk.org/documentation.html

1%\ euroFORTH-2010/GtkDialog/examplel.mf

2 TYSYY Y _——————————_—_—_—_—_—_—_———".r
3\ GtkDialog examplel 00P Library for MINFORTH MM-108801
BB\ - e
5 ﬂ Copyright (C) 2010 manfred.mahlow@forth-ev.de

6\

B\ - e

8 requires GtkToplevel

9 requires GtkDialog

10 requires GtkHBox

11 requires GtkImageFromStock
12 requires GtkLabel

13

14 forth definitions decimal

5
16 GtkDialog new dialogl

17 GtkHBox new hbox2

18 GtkImage new imagel
19 GtkLabel new label2

20 String new markup2

21 GtkLabel new labell

7z String new markupl

23 GtkToplevel new windowl GSignalSlot new cb.delete-event
24 GSignalSlot new cb.destroy

25

26 176 chars markupl init

27 s" Using GTKBuilder " markupl

28 s" with MINFORTH 1.5(p)" markupl +!cr

29 s" " markupl +'cr

30 5" <span size='x-large'=This is a toplevel window.</span=" markupl +!cr
31 s" " markupl +!'cr

32 s" Closing this window will popup a modal dialog" markupl +!

33

34 118 chars markup2? init
35 s" Quit this Application ?=" markup2 !cr

36 5" " markup2 +'cr
37 s" Please click on the Cancel Button, if you" markup2 +!cr
38 s" do =u=not</u= want to guit this application." markup2 +!
39
40 : destroy (data oid --) 2drop gtk main quit ;
41
42 : delete-event (event data oid -- f)
43 nip nip %\ event and data are not used here
44 s" GtkDialog examplel" dialogl init GtkWindow @ dialogl transient-for !
45 6 dialogl border-width ! dialogl resizable no
46
Figure 6: FORTH code to create the GUI without using Glade, page 1.
47 false 6 hbox2 init dialogl vbox pack start defaults
48 s" gtk-dialog-guestion" imagel from-stock dialog-size init
49 hbox2 pack start defaults & imagel xpad !
58 markup2 @ label? init hbox2 pack end defaults
51 label2 use-markup yes label2 justify center 12 label2 ypad !
52
53 s" gtk-cancel" -4 dialogl add button
54 s" gtk-quit" false dialogl add button
55 false dialogl default-response ! dialogl run dialogl destroy ;
56
57 srun [--)
58 5" GtkDialog examplel" windowl init
59 24 windowl border-width ! windowl position center
60
61 markupl @ labell init windowl add
62 labell use-markup yes Tlabell wrap yes labell justify center
63
64 ['] delete-event O windowl signal delete-event cb.delete-event connect
65 ['] destroy @ windowl signal destroy cb.destroy connect
66
67 windowl show all ;
68
69 run term? [if] cr ?? [else]l gtk main bye [thenl
L R e e

71\ Last revision: MM-108983

Figure 7: FORTH code to create the GUI without using Glade, page 2.

