27th EuroForth Conference

September 23-25, 2011

TU Wien
Vienna, Austria

-
f g) 4

P,

|\ 5

NS

T -.-_-—-_-'_v'-_

7 .
il
. VL]

A Z 8

3 'rw;
i

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 27th Euro-
Forth finds us in Vienna for the third time. The three previous EuroForths
were held in Vienna, Austria (2008), in Exeter, England (2009), and in Ham-
burg, Germany (2010). Information on earlier conferences can be found at
the EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there were no submissions to the refereed track. Nevertheless, I thank the
program committee for its willingness to serve.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings. In addition, the printed proceedings
include slides for talks that will be presented at the conference without being
accompanied by a paper and that were submitted in time.

These online proceedings also contain late presentations that were too
late to be included in the printed proceedings.

Workshops and social events complement the program.

This year’s EuroForth is organized by Ewa Vesely and Anton Ertl.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)

David Gregg, Trinity College Dublin

Phil Koopman, Carnegie Mellon University

Jaanus Poial, Estonian Information Technology College, Tallinn
Bradford Rodriguez, T-Recursive Technology

Bill Stoddart, University of Teesside

Reuben Thomas, Adsensus Ltd.

Contents

Non-refereed papers

Stephen Pelc: Standardize Forth OOP Now 5
Willi Stricker:

A Processor as Hardware Version of the Forth Virtual Machine 8
Leon Wagner: Forth on the ARM Cortex-M1 FPGA Development Kit .. 12
Nick J. Nelson: Crash Never i, 24

Gerald Wodni, M. Anton Ertl: SWIG & The Forth Net: Hands-On 32

Late paper
M. Anton Ertl: Ways to Reduce the Stack Depth 36

Late presentations

Andrew Haley: What are we going to do about volatile? 42
Bernd Paysan: net2o: Application Layer 46

Standardise Forth OOP Now EuroForth 2011

Standardise Forth OOP Now

Stephen Pelc
MicroProcessor Engineering
133 Hill Lane

Southampton SO15 SAF
England

t: +44 (0)23 8631 441

f: +44 (0)23 8033 9691

e: sfp@mpeforth.com

w: www.mpeforth.com

Abstract

There are so many Forth OOP implementations that is has become impossible in practice to
share Forth code that uses an OOP package. This is the opposite of standardisation and
promotes neither portable programs nor portable programmers. This paper suggests a
rather brutal approach to promoting one Forth OOP.

Introduction

MPE has had to deal with several OOP packages over the years. In looking at packages we
have been offered recently, several have come with their own OOP packages. These are in
addition to the three OOP packages supplied with MPE's hosted Forths. Accepting these
packages as delivered would then require MPE to maintain a minimum of six OOP packages.

Such a solution is fraught with workload and does not encourage other programmers to write
to a common standard. Rather the reverse, it encourages programmers to write yet another
Forth OOP package.

Brad Rodriguez' survey [1] of 1996 included 17 packages. The situation is surely worse now.
Forth OOP has been an active topic for nearly 25 years — Dick Pountain's book [2] appeared
in 1987.

Solution

Arguing that Java is better than C++ is like arguing that grasshoppers taste better
than tree bark. (Thant Tessman)

Good judgement comes from experience, and experience comes from bad judgement.
(Fred Brooks)

Discussing existing Forth OOP is mostly an exercise in discussing deficiency, with individual
authors protecting their package at the expense of the community. Since nobody is prepared
to accept that another package is good enough, the only solution is to start again, abandoning
all the existing packages.

All authors of existing OOP packages have to accept that, in one way or another, their
packages are unacceptable to other people. We then just have to pick one package to be the
basis of common practice. This is not a Forth200x exercise, it is much more a Forth library
exercise.

Standardise Forth OOP Now EuroForth 2011

Objectives

1) Acceptable notation

2) Documented

3) Portable

4) Debuggable

5) Champion to maintain it

Acceptable notation
People are part of the design. It's dangerous to forget that. (Anon)

The notation has to be acceptable both to users and to people who consider themselves to be
experts in the Forth OOP field — this probably includes everyone who has written one. I have
no strong opinions on this topic.

Documented

Documentation is like sex: when it is good, it is very, very good; and when it is bad,
it is better than nothing. Dick Brandon

If the package is not documented it does not really exist in a usable form. Documentation is
not just the manual, it includes the commenting in the source code. Undocumented code is
just lazy code by someone who does not care about other people — it's the opposite of social
programming.

There are two forms of documentation, user and implementer. Both must exist.

At the very least, in the source code every word shall have a stack comment and a description
of what it does.

Portable

In order to gain traction, the package must be available on the popular commercial and Open
Source Forth systems.

In order to achieve this, people have to be able to port the package. They will be able to do
this if the package is well documented for the implementer as well as the user.

Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to
debug it. (Brian Kernighan)

The competent programmer is fully aware of the strictly limited size of his own skull;
therefore he approaches the programming task in full humility, and among other
things he avoids clever tricks like the plague. (Edsger Dijkstra)

Someone who is porting this code will make mistakes, so the code must be simple enough to
be debugged. For this reason, it will have to be much better than most existing packages.
Writing portable code is not easy.

The portability requirement has the perhaps unfortunate side-effect of ruling out packages
that require particular implementation techniques. However, such packages tend to be
difficult to port to systems without that particular implementation. It is rare to find a notation
that cannot be implemented, but not uncommon to find a notation that is much easier with a
particular implementation.

Standardise Forth OOP Now EuroForth 2011

Debuggable

1t has been discovered that C++ provides a remarkable facility for concealing the
trivial details of a program - such as where its bugs are. (David Keppel)

The trouble with C++ is that it requires gurus to maintain it. Gurus don't do
maintenance. (Anon)

One reason that people find OOP code hard to debug is that one of the design decisions is
encapsulation — you don't know what is going on. Debugging requires you to be able override
the encapsulation should you need to.

Some level of application-level debugging should be built in to the package. Some users like

tools such as a “dot parser” to open up a class, for example
MyLine.pl.x0 @:

applies the @: method to the x0 component of the line defined by points p1 and p2.

Championed

No package succeeds unless it has an interested, active and enthusiastic maintainer. There is
a large number of Forth OOP packages which have no active maintainer.

Conclusions

Collaborative software development is no longer difficult. A large number of web sites exist
to support software development and exposure. Standardising an OOP package is not about
the Forth200x process, it is about common practice.

The hardest part of the process is to realise that common practice is more important than
preserving the minutiae of a package that you are familiar with.

I have my own opinion about where [want to start from [3], but fully realise that it may not
be the final design, but is just a suitable starting point.

Acknowledgements

A large number of people have informed my opinions on Forth OOP packages in recent
years. Among them are
Leon Wagner, Manfred Mahlow, Doug Hoffman, Peter Knaggs

References

[1] A Survey of Object-Oriented Forths, Brad Rodriguez, 1996
http://www.bradrodriguez.com/papers/oofs.htm

[2] Dick Pountain Object-oriented Forth
Academic Press Limited, London, 1987

[3] FMS — Forth Meets Smalltalk, Doug Hoffman, 2010
http://soton.mpeforth.com/flag/fms/

A Processor as Hardware Version of the Forth Virtual Machine

Willi Stricker
Springe, Germany,
September, 12, 2011

The structure of the Forth system

in contrast to other programming languages the Forth System consists of several components:
« Forth virtual machine
« programming language
« operating system

The Forth virtual machine
In general the Forth virtual machine is based on a microprocessor of any kind and created by software. It is,
at least theoretically, identical for every microprocessor and has a unique interface between hardware

The real Forth processor

It is obvious to combine the hardware part of the Forth virtual machine with its sofware part to a real Forth
machine that is made of hardware exclusively. This is now called the real Forth processor and is possibly
made for instance by means of a modern programmable hardware (programmable logic like FPGAS).

To evaluate its properties, ist is necessay to find the differences between the Forth virtual machine and a
~general“ microprocessor of common construction. Mainly there are two features:

1. There is a parameter stack instead of the customary registers

2. Every instruction is just an address.

The Forth virtual machine and the Forth system have two kinds of instructions:

1. Primitives

They are written in assembler code of the used processor. They correspond to the machine code instructions
(assembiler instructions) of a general microprocessor.

2. High level instructions

Instructions that ar written in Forth (instructions that are combined of primitives). They correspond with
subroutines of general microprocessors.

As mentioned bevore, both kinds of instructions in a Forth system are represented by addresses and are
accesed by them.

The Forth virtual machine contains an ,inner interpreter* mostly named ,NEXT-routine". It is a ,program
switch” for both kinds of instructions. For distinguishing them the instructions need an instruction prefix

that is a (sub)program address. For primitives that is the address of their own assembler program, for high
level instructions it is the address of a small subroutine (mostly called ,DOCOL-routine), pushing the return
address to the return stack and branching to the subroutine (replacing a call instruction). High level
instructions are terminated by a return instruction (;S = SEMIS-routine), that returns to the calling instruction
by popping the address from the return stack and jumping to it.

The coclusion is: There is ho explicit call instruction in a Forth system.

The Forth virtual machine makes no statements about hardware properties. That is especially true for the
interrupt system. Generally the hardware of the microprocessor is used. But by the way that is true for all
common programming languages.

Demands for a real Forth processor
It should have the same (software) features like the Forth virtual machine and additional hardware features
of a micro processor.

The construction of a real Forth processor

Afterwords a model is shown that meets the above conditions as much as possible.
It got the name STRIP (STack Related Instructions Processor)

it contains the following hardware equipment:

« aseparate parameter stack and a separate return stack each

« aninterrupt interface

« the means to connect external or internal memory

« the means to connect internal or external input and output elements

it uses only three pointer registers:
1. parameter stack pointer: SP
2. return stack pointer: RP
3. instruction pointer: IP

There are no additional pointers or registers (especially no flag register!)

Minimum instruction set:

In Forth systems generally a set of primitives are available programmed in assembler. For the real Forth
processor they have to be constructed in hardware. To minimize the hardware a “minimum instruction set” is
provided chosen due to the following critera:

It contains only instructions that are mandatory for the design of a complete Forth system and additional
instructions that are mandatory for hardware control.

System instructions (used by the compiler only)

;S (-) return = pop the address from the return stack and store it to IP
LIT (- data) load immediate data on stack
BRANCH (-) branch to the following address

?BRANCH (data-) branch to the following address if data equals zero, else continue

Indirect instruction and subprogram call
EXECUTE (address -) execute instruction (address on top of stack)

Access to the parameter and the return stack pointer

RP@ (-RP) getRP

RP! (RP -) store RP

SP@ (-SP) getSP

SP! (SP -) store SP

Return-Stack manipulation:

R> (- data) pop data from return stack
>R (data -) push data to return stack

Parameter-Stack manipulation (random access to the parameter stack):

DROP (data -) drop data from stack
PICK (position - data) load data from relative stack position
-PICK (data position -) store data on relative stack position

Memory access
@ (address -> data) fetch data from memory address

! (data address ->) store data on memory address

Logic functions
INVERT (data - result) bitwise NOT

AND (datal data2 - result) bitwise AND

OR (datal data2 - result) bitwise OR

arithmetic functions

+C (datal data2 - result carry) add datal to data2 with sum and carry (Isb)
v2ic (data - carry result) shift right one bit, with result and carry (msb)

Special byte instructions

CSWAP (bytel|byte2 - byte2|bytel) swap bytes in data

cC@ (address - O|byte) fetch byte from address (upper byte = 0)

C! (byte address -) store byte to address (only lower byte, upper byte is discarded)

Processor control instructions (interrupt instructions)
DISINT (-) disable Interrupts

ENINT (-) enable Interrupts

These 26 instructions are sufficient for the construction of a complete Forth system (remark: some of these
instructions are not defined or usual in Forth).

The real Forth processor has two particularities against the Forth virtual machine.

1. No instruction prefix

as discribed earlier, the Forth virtual machine needs an instruction prefix to distinguish primitives and high
level instructions by the NEXT routine. This is omitted in the real Forth processor. So memory space and

access time is saved. Now the type of insruction has to be determined by the program address. While the
primitives don't have real addresses pseudo addresses are created instead in a reserved address space.

2. Return bit

Every code address is an even one (two bytes of code). So the right most bit (least significant bit) is always

zero! This bit is free for another information and used as ,return bit*. The return bit causes a return after the

addressed instruction has been executed, independently weather the instruction is a primitive or a high level
one. In a subroutine the last instruction gets a return bit. The explicit return instruction is omitted.

While programming there are situations, that need an explicit return instructions. So in the previously defined
instruction set a new insruction is inserted (NOP = no operation) and the return instruction is replaced by a
NOP with a return bit:

NOP (-) No Operation

The following special cases need a return instruction with address:

Trivial case: A subprogram must have at least one instruction, even if it does nothing. The only instruction is
the return.

Structures (branch instructions): A branch always needs a valid address to branch to, that mostly is the
address of the following instruction. But on the end of a subprogram there is no instruction left, so it needs a
NOP (with a return bit).

The STRIP Forth processor in reality

First objective of its construction obviously is high speed. So as much as possible has to be executed
concurrently. Then the time of execution is resricted only by accessing external memory (access time). This
limits the minimum of time. Therefore as few as possible accesses to the memory (bus) should happen.
The stacks are separated physically from the main memory. They are accessable by stack instructions only.
As a result the processor has access to both stacks and main memory concurrently.

The STRIP kernel contains the three pointers, their control and the whole instruction set. It uses a clock-
signal and has interfaces for the parameter stack, the return stack, an interrupt interface, and data and
address busses for memory and peripheral elements (memory mapped 1/O).

The kernel is extended to a working processor by adding a clock element, parameter and return stacks and
an reset/interrupt controller.

A complete working STRIP Forth system needs additional memory (RAM and/or ROM) for data and
programs, as well as a program and debug interface. Furthermore it is possible to add input/output elements.

Timing
The Subroutine call and most of the primitives need only one bus access and with it only one clock cycle!
Two bus accesses and clock cycles are used only for instructions

« that need an additional parameter: LIT, BRANCH, ?BRANCH,

- that access memory: @, !, C@, C!,

- that need a second cycle with a return bit; R> with Return bit, RP! with Return bit.

10

Notes:

instructions with operands need two memory spaces, instructions with memory access only one. Instructions
with a return bit don't need an additional bus access and no additional time. Exceptions only the instructions
RP! and R>, they need a second cycle for the return (without bus access).

Pseudo addresses for primitives

In the Forth virtual machine the primitive instruction are assembler code with memory addresses. For the
STRIP Forth processor pseudo addresses are defined. These addresses (numbers) address primitives and
are not usable for high level instructions. But they can be used for memory. The pseudo addresses are
placed into an area outside the program memory. It is a good idea to put them on the start of the memory
map (starting with addrerss zero).

With the minimum instruction set 26 addresses are used. In a 16 bit system 52 bytes are necessary. In
practice 64 (2°) bytes are reserved for pseudo addresses.

Restart and interrupts
For the restart memory space is reserved for the restart address. For the interrupts there is also one space
each for its address that contains the start of its corresponding interrupt service routine.

The restart is an primitive, activated by hardware. It needs one clock cycle (address fetch).

An interrupt is activated by hardware asynchronously. It is checked in SO by the kernel and executed after
the concurrently fetched instruction is executed. The interrupt doesn't need any overhead time beside its own
program.

Final conclusion and construction

The STRIP Forth processor is firstly programmed into an FPGA (Actel eval kit with APA 075 with 3075 Tyles
and 3 kb RAM) that is sufficient for a 16-bit system for experimental proving of the processor.

11

Forth on the ARM Cortex-M1 FPGA Development Kit

Forth on the ARM Cortex-M1 FPGA Development Kit

Abstract

Leon H. Wagner
FORTH, Inc.

www.forth.com

This paper describes the instantiation of an ARM Cortex-M1 CPU core on an
Altera Cyclone III FPGA and the development of a simple Forth application to
run on it.

The CPU core used here is the ARM Cortex-M1 FPGA Development Kit from ARM,
Ltd. The Altera Quartus II environment is used to design an ARM system, includ-
ing memory and embedded peripherals. SwiftX-ARM is used to develop and
interactively test a simple Forth application on the newly instantiated Cortex-M1
core in the FPGA.

Section 1: Overview

1.1 About SwiftX

SwiftX is FORTH, Inc.’s interactive cross compiler for the development of appli-
cations for embedded microprocessors and microcontrollers. SwiftX is based on
the Forth programming language and is itself written in Forth.

SwiftX has been ported to the following microprocessor and microcontroller
families:

Atmel, Cirrus, Nuvoton, NXP, ST Microelectronics (and other) ARM cores
Freescale ColdFire

Freescale 6801 / Renesas 6303
Freescale 6809

Freescale 68HC11

Freescale 68HC12 (S12, S12X, etc.)
Freescale 68HCS08

Freescale 68K

Aeroflex UTMC 69R000

Intel (NXP, SiLabs, others) 8051
Atmel AVR

Renesas H8H (H8/300H, H8S)
Intel (AMD, other) i386

Overview

12

Forth on the ARM Cortex-M1 FPGA Development Kit

e Texas Instruments MSP430
e Patriot PSC1000
e Harris RTX2010

SwiftX cross-compilers run in the SwiftForth programming environment. They
inherit all the features of SwiftForth and extend its interactive development
environment to manage multiple program and data spaces as well as to generate
the code and data that fill them.

1.2 About the ARM Cortex-M1 FPGA Development Kit

The ARM Cortex-M1 FPGA Development Kit, available free of charge from ARM,
Ltd., is delivered as an SOPC Builder design optimized for the Altera Cyclone III
FPGA Starter Kit. The ARM system bus has been adapted to the Altera Avalon
system interface for this implementation. However, there are no architectural
changes from the standard ARM Cortex-M1 Core.

The Cortex-M1 processor is intended for deeply embedded applications that
require a small processor (i.e., low gate count) integrated into an FPGA. The pro-
cessor core implements the ARM architecture v6-M Thumb Instruction Set Archi-
tecture (ISA) with some 32-bit Thumb-2 extensions.

ARM Cortex-M1 FPGA Development Kit is fully compatible with Altera’s SOPC
Builder and Quartus II tools. This application note demonstrates how to build a
simple system from the ARM Cortex-M1 FPGA Development Kit and a few of the
standard Altera peripheral IP blocks, then generate a bitfile of the whole system
and program it onto a Cyclone III device.

1.3 Requirements

Overview

The following items are required to implement the system described in this
application note:

SwiftX-ARM from FORTH, Inc. (www.forth.com)

Quartus II (subscription or web edition), version 8.0 or later, from Altera. We
used Quartus II Web Edition 11.0 for this paper. (www.altera.com)

ARM Cortex-M1 FPGA Development Kit. (www.arm.com)
Cyclone III Starter FPGA Kit. (www.altera.com)

A simple USB-to-serial port converter, such as the DEV-09873 from Sparkfun
Electronics. (www.sparkfun.com)

13

Forth on the ARM Cortex-M1 FPGA Development Kit

Section 2: Working with Quartus Il and SOPC Builder

This section describes the development of a Quartus II project using the SOPC
Builder tool to fabricate the ARM Cortex-M1 core with memory and peripherals.
The system is synthesized and downloaded to a Cyclone III FPGA Starter Kit for
testing.

We are using the Windows version of Quartus II and are placing our project files
in the directory c:\projects. Make any necessary adjustments to path names if
you are using the Linux version of Quartus II.

2.1 Starting a new Quartus Il Project

Launch Quartus II, dismissing any startup wizards or tips. Select File > New Proj-
ect Wizard and fill in the blanks as follows:

¢ Set the working directory for the project to C:\projects\cm1\fpga.

e Name the new project cml.

e Set the top-level design entity name to cm1_top.

e Click the “Next” button (say “Yes” to create the new project directory).

e When you get to the “Add Files” step, just skip it for now. We’ll add some files
after we build the ARM Cortex-M1 system in SOPC builder.

e For the “Family & Device Settings” step, select the device that matches the one on
your Cyclone III FPGA Starter Kit (e.g., EP3C25F324C6).

e Click “Next” through the remaining wizard screens and “Finish” on the last one.

2.2 Working with SOPC Builder

The Quartus II SOPC Builder tool is used to build and integrate the ARM Cortex-
M1 CPU, clocks, memory, PIO, and UART components. The Cortex-M1 CPU core
is supplied by ARM, Ltd. The remainder of the IP components are from Altera
and are distributed with the Quartus II system.

Select Tools > SOPC Builder in Quartus II and follow the directions in the follow-
ing sections to build the ARM Cortex-M1 system.

For “System Name” in the “Create New System” dialog box, enter “cm1” and
select Verilog as the HDL. Do not use the same name assigned to the top-level
entity.

2.2.1 Adding the ARM Cortex-M1 core

Look for “ARM Cortex-M1 Processor” in the Component Library pane of the
SOPC Builder window, select it as shown in Figure 1 and click the “Add” button?.

Working with Quartus Il and SOPC Builder

14

Forth on the ARM Cortex-M1 FPGA Development Kit

Component Library

) #

Project
“.-[H New component...
Library
=
-i----A'.raIun Werification Suite
+E| ridges and Adapters

CLIE s T S Y

Figure 1. ARM Cortex-M1 Processor component selection

Configure the ARM Cortex-M1 processor as follows:

Uncheck the “Debug enabled” box

Set number of IRQs to 8

Set ITCM size to 16 kB

Uncheck “Read only” for the ITCM

Check “Initialize ITCM contents”

Set ITCM “From file” field to itcm.hex (this should be the default)

Set DTCM size to 8 kB

Uncheck “Initialize DTCM contents”

Click the “Finish” button to add the ARM Cortex-M1 core to the SOPC design

2.2.2 Adding parallel 1/0 (PIO)

The SwiftX demo for the Cortex-M1 will use a 4-bit PIO to drive the four user
LEDs and read the four user pushbuttons on the Cyclone III FPGA Starter Kit
board.

From the Component Library, select Peripherals > Microcontroller Peripherals >
PIO and click the “Add” button. Configure the PIO component as follows:

Set the width to 4 bits

Set direction to “InOut”

Set the output port reset value to 0xOF

Leave the rest of the PIO option boxes unchecked

Click the “Finish” button to add the PIO to the SOPC design

2.2.3 Adding a UART

The SwiftX Interactive Development Environment uses a fast serial port as its

1.1f the ARM Cortex-M1 Processor item is not present, use Tools > Options to add the
path to ARM/CortexM1_DevKit/Component/arm_avalon_cortexm1 to the IP Search
Path.

Working with Quartus Il and SOPC Builder

15

Use

Connecti...

[l

Forth on the ARM Cortex-M1 FPGA Development Kit

Cross-Target Link (XTL) debug interface.

From the Component Library, select Interface Protocols > Serial > UART (RS-232
Serial Port)!. Configure the UART component as follows:

Under “Basic Settings,”, use the defaults (no parity, 8 bits, 1 stop bit, 2 synchro-
nizer stages, no RTS/CTS, no EOP).

Select a fixed baud rate of 115200 with error tolerance of 0.01
Leave the remaining options unchecked

Set the transmitter baud rate to “Actual” (not “Accelerated”)
Click the “Finish” button to add the UART to the SOPC design

2.2.4 Connecting the components

In SOPC builder, click on the “Filter” button and set the Filter pull-down to “All”
so you can see all the connections.

Set the bus, clocks, and interrupt connections as well as the component base
addresses and IRQ as shown in Figure 2.

Name Description Clock Base End IRCQ
= clk_0 Clock Source

clk Clock Cutput clk_0
E arm_cortexmi_0 ARM Cortex-M1 Processor

clock Clock Input clk_0

master Avwvalon Memory Mapped Master [clock]

irg Interrupt Receiver [clock] IRD 0O IRD 7
B pio_0 PIC! (Parallel 'Oy

clk Clock Input clk_0

=1 Awalon Memory Mapped Slave [clk] 0xa0000000 |0xa000000E
E wart_0 UART (RS-232 Serial Port)

clk Clock Input clk_0

&1 Avalon Memory Mapped Slave [clk] 0xa0000100 |0x=000011F

irg Interrupt Sender

Figure 2. Component connections and settings

The base address for the PIO is 0OxA0000000 and the UART is 0xA0000100. Use
IRQ O for the UART “interrupt sender” element.

2.2.5 Generate the SOPC system

Click the “Generate” button to generate the system. When prompted to save the
file, name it cm1.sopc.

After the generation is complete, you should see the “System generation was
successful” message in SOPC Builder’s output pane. Click the “Exit” button to
close the SOPC Builder window, saving any changes to the cm1.sopc file.

1.Do not use the JTAG UART component.

Working with Quartus Il and SOPC Builder

16

Forth on the ARM Cortex-M1 FPGA Development Kit

2.3 Adding the Top-Level Design

We need to add a top-level design file to make some connections to the ARM
Cortex-M1 core and peripherals generated by SOPC Builder. We’ll do this with a
simple block diagram/schematic file.

Select File > New and choose “Block Diagram/Schematic File” in the New dialog
box, then click “Ok.” A blank block1.bdf workspace should appear in the right
window pane. Follow these steps to create and save the top-level design file:

Double-click in the center of the schematic grid workspace. This should open the
Symbol dialog.

In the “Libraries” pane, expand the “Project” item and select cm1. This should
show the cm1 block entity in the right pane.

Click “Ok”.
Position the block roughly in the center of the schematic and click to position it.

Now we need to tie a few of the unused inputs to Vcc and Gnd levels:

Double-click on the schematic to open the Symbol dialog.

Expand the Quartus Libraries item and select Primitives > Other > Vcc.
Click on the schematic to place Vcc next to the cm1 node’s DBGRESETn input.
Select a Node tool and connect Vcc to DBGRESETn.

Double-click on the schematic to open the Symbol dialog.

Expand the Quartus Libraries item and select Primitives > Other > Gnd.
Click on the schematic to place Gnd next to the cm1 node’s EDBGRQ input.
Select a Node tool and connect Gnd to both EDBGRQ and NMI inputs.

Use the Selection tool and select the entire cm1 object.

Right-click on cm1 and select “Generate Pins for Symbol Ports.”

Save the schematic file as cm1_top.bdf.

In the Project Navigator pane, select the Files tab, right-click on cm1_top.bdf and
select “Set as Top-Level Entity.”

Figure 3 shows a representation of the top-level design schematic.

oo emi IS

——|clk_0 RS
—|reset_n

DBGRESETn_to_the_arm_cortexm1 HALTED_from_the_arm_cortexmfi—F*F=—_> HALTED_from_the_arm_cortexm1_0

EDBGRQ_to_the_arm_cortexm1_0 LOCKUP_from_the_arm_cortexmf—F=— > LOCKUP_from_the_arm_cortexm1_0

e

NMI_to_the_arm_cortexm? 0 | oo A I

- fin_po

r_t

_to_the_pia_0[3..0] T4 —=—in_port_to_the_pio_0[3..0] out_port_from_the_pio_0[3;

QUTRUT

out_port_from_the_pio_0[3..0] P

s imd_to_the_uat 0 OB ——d_to_the_uart_0 txd_from_the_uart_—=-FEsT ted_from_the_uart 0 il

ceeedpst oo —————— T

Figure 3. Top-Level design schematic

Working with Quartus Il and SOPC Builder

17

Forth on the ARM Cortex-M1 FPGA Development Kit

2.4 Synthesizing the System

The files generated by SOPC Builder along with our top-level design need to be
analyzed so we can assign pin connections to the outside world.

Select Processing > Start > Start Analysis and Elaboration so Quartus II can ana-
lyze the design and figure out its pins and connections. The process should
complete with the message “Analysis & Elaboration was successful.”

2.4.1 Assigning nodes and pins

¢ Select Assignments > Assignment Editor to make the pin assignments.

e In the Assignment Editor window, click on a cell in the “To” column and select
Node Finder. Select “Pins: all” (“Look in:” should be ecm1_top) and click “List” to
see all the internal pins.

¢ Select the pins listed in the “Signal” column of Figure 4 and add them to the pane
on the right.

¢ In the assigment editor, set the Assignment Name field for all pins to “Location”
and enter the physical pins listed in Figure 4 into the Value column and set the
Enabled column to “Yes” for each pin.

e Close the Assignment Editor, saving the new assignments when prompted.

NET NAME SIGNAL PIN
50MHZ clk_0 V9
CPU_RST N reset_n N2
HSMC_SCL rxd_to_the uart_ 0 F3
HSMC_SDA txd_from_the uart_0 E1
KEYO0 in_port_to_the_pio_0[0] F1
KEY1 in_port_to_the_pio_0[1] F2
KEY2 in_port_to_the_pio_0[2] A10
KEY3 in_port_to_the_pio_0[3] B10
LEDO out_port_from_the_pio_0[0] P13
LED1 out_port_from_the_pio_0[1] P12
LED2 out_port_from_the_pio_0[2] N12
LED3 out_port_from_the_pio_0[3] N9

Figure 4. Pin assignments

2.4.2 Compiling the system

Copy the itcm.hex object file from the projects\cm1\firmware project directory to
the projects\cm1\fpga directory. If there is no itcm.hex file in the SwiftX project
directory, launch the SwiftX project in that directory and do a “Build” to compile
the ARM Cortex-M1 SwiftX kernel.

Then go back to the Quartus II window and select Processing > Start Compila-
tion. The compilation step takes a few minutes to complete. When it is done,

Working with Quartus Il and SOPC Builder

18

Forth on the ARM Cortex-M1 FPGA Development Kit

there will be some warnings in the output window, but there should be no error
messages.

2.4.3 Programming the FPGA

Connect a USB port on the computer running Quartus II to the USB Blaster
embedded on the Cyclone IIT FPGA Starter Kit board. Select Tools > Programmer
and under Hardware Setup, select the USB Blaster, setting its mode to JTAG.

Select the cm1.sof file! and click the “Start” button. Figure 5 shows the program-
mer dialog box after loading the FPGA.

@ Programmer - ¢:/projects/cml/fpga/cml - cml - [eml_time_limited.cdf] [E‘_u
File Edit Wiew Processing Tools Window Help S

& Hardware Setup... | |USB-Blaster [USB-1] Mode: |ITAG 5 Progress: 100% [Succe&;f;j‘
Enable real-time ISP to allow background programming (for MAX II and MAX V devices)
o File Device Checksum Usercode Program/ \Verify Blank- Examine Security Erase ISP
W Start Configure Check Bit CLAMP

ami_time_imtedsof EpacasFis ovsszaee reeereer [N T N NN WNN W W

b Stop

ﬂﬂ Auto Detect
¥ Delete

@ Add File...

4 b

»

¥ change File..

B save File

2 Add Device..
foup
w Down

EP3C25F324

Figure 5. Programmer dialog box

The target board should start running the ARM Cortex-M1 SwiftX program from
itcm.hex.

1.The exact name of the SOF file may vary.

Working with Quartus Il and SOPC Builder

19

Forth on the ARM Cortex-M1 FPGA Development Kit

Section 3: Working with SwiftX

3.1 Connecting the debug interface

A serial port is used for the debug interface from the SwiftX Interactive Develop-
ment Environment to the target ARM Cortex-M1 CPU inside the Cyclone III FPGA.
The four pins on the Cyclone III FPGA Start Kit board originally intended for 12C
connections have been reassigned in our design to be used as the UART pins.
The pin assignments are as follows:

SDA TXD
SCL RXD
3V3 N/C
GND GND

Connect a USB cable from the computer running SwiftX to a USB-to-serial con-
verter! connected to the target board as noted above.

3.2 Establishing an interactive session

Click on the “Debug” button in the SwiftX tool bar (or select Tools > Debug or
press the F9 shortcut key) to establish a serial connection with the target CPU
and launch an interactive debug session. The output in the SwiftX debug window

should look something like this:?

INCLUDE DEBUG

Start End Size Used Unused Type Name
0000 3FFF 16384 7640 8744 CDATA PROG
20000000 200010FF 4352 12 4340 | DATA |IRAM
20000100 20001FFF 7936 2316 5620 UDATA URAM

TARGET READY
SwiftX/ARM Cortex-M1 Altera ok

Interactive development and testing can now proceed as described in the SwiftX
Reference Manual and the SwiftX ARM Target Reference Manual.

3.3 Project source files

The project directory projects\cml\firmware contains the usual set of files as
documented in the the SwiftX Reference Manual. In addition to these, the follow-
ing project-specific files are supplied:

1.TTL levels required.
2.Exact memory usage may vary.

Working with SwiftX

20

Forth on the ARM Cortex-M1 FPGA Development Kit

reg_fpga.f — Defines the memory-mapped register interface to the Altera PIO and
UART components.

xtl_uart0.f — Implements the target side of the serial cross-target link (XTL)
debug interface using the Altera UART added to the design in 2.2.3.

leds.f — Uses the Altera PIO core component to interface to the four user LEDs
on the Cyclone III Starter FPGA Kit board.

buttons.f — Uses the Altera PIO core component to interface to the four user
pushbuttons on the Cyclone III Starter FPGA Kit board.

demo.f — Implements a high-level WINK function and assigns a “walking” LED
wink pattern to a SwiftX BACKGROUND task.

The output file generated by the SwiftX BUIL D process is itcm.hex. It must be cop-
ied or moved into the projects\cm1\fpga directory prior to compiling the FPGA
project in Quartus, as described in 2.4.2.

3.4 Demo Application

Conclusion

The demo application consists of a background task that drives the LEDs in a
“chase” pattern. The user pushbuttons are tested in the main application loop to
change the speed of the chasing pattern (by setting the LED on/off time to a lon-
ger or shorter period) and to perform an “all on” LED test.

Excerpts from the Forth source files are included in the next section.

The instantiation of the ARM Cortex-M1 processor on an Altera FPGA using
SOPC Builder is a simple task that can be accomplished even by someone with
limited FPGA programming experience.

Additional memory and peripherals can be added in SOPC Builder for a much
more elaborate implemenetation. Custom logic can be included in the design
from the top level using conventional FPGA tools.

Porting a Forth cross compiler and interactive debug environment to this CPU is
no more daunting than a port to a conventional CPU.

Working with SwiftX

21

Forth on the ARM Cortex-M1 FPGA Development Kit

Section 4: Program Listings

4.1 LED Outputs

{
LED control

ILED writes a pattern to the 4 LEDS in bits [3:0] of the PIO output

register.
.. }
: ILEDS (x --) INVERT PIO_BASE ! ;
: [LEDS (--) 0 ILEDS ;

4.2 Button inputs
{ ..
Read switches
?PRESSED returns true if button defined by mask is pressed.
BUTTON1..BUTTON4 define masks for passing to ?PRESSED.
.. }

?PRESSED (mask -- flag) PIO_BASE @ AND 0= ;

1 CONSTANT BUTTON1
2 CONSTANT BUTTON2
4 CONSTANT BUTTON3
8 CONSTANT BUTTON4

4.3 Demo program

LED demo program
LEDTIME holds the number of milliseconds for LED on and off period.

FAST, MEDIUM, and SLOW are the number of milliseconds for three speeds.
SPEED sets LEDTIME to u milliseconds.

CHECK-BUTTONS does the following based on button(s) pressed:
Button 1: Set slow speed
Button 2: Set medium speed
Button 3: Set fast speed
Button 4: Turn all LEDs on

LED-CHASE performs one loop of the LED "chase"” sequence.
CHECK-BUTTONS is called just before the on or off delay time.

CHASER is the task assiged to performthe chasing LEDs behaviour.
/CHASER starts the task.

DEMO initializes the LEDS and time period, then starts the task.
VARIABLE LEDTIME \ Millisconds on/off time

50 CONSTANT FAST

100 CONSTANT MEDIUM

250 CONSTANT SLOW

SPEED (u --) LEDTIME | ;

Program Listings

22

Forth on the ARM Cortex-M1 FPGA Development Kit

: CHECK-BUTTONS (--)
BUTTON1 ?PRESSED IF SLOW SPEED THEN
BUTTON2 ?PRESSED IF MEDIUM SPEED T HEN
BUTTON3 ?PRESSED IF FAST SPEED THEN
BUTTON4 ?PRESSED IF $0F ILEDS THEN ;

LED-CHASE (--) 1

4 0D0 DUP ILEDS CHECK-BUTTONS LEDTIME @ MS 2* LOOP

4 0D0 2/ DUP ILEDS CHECK-BUTTONS LEDTIME @ MS LOOP DROP ;
[U] |'S] |R| BACKGROUND CHASER

: /CHASER (--) GHASER ACTIVATE
BEGIN LED-CHASE AGAIN ;

DEMO (--)
0 ILEDS MEDIUM SPEED GHASER BUILD /CHASER ;

Program Listings

23

EuroForth 2011
Crash Never

N.J. Nelson B.Sc. C. Eng. M.L.LE.T.
Micross Automation Systems

4-5 Great Western Court
Ross-on-Wye

Herefordshire

HR9 7XP

UK

Tel. +44 1989 768080

Email njn@micross.co.uk

Abstract
Two approaches are contrasted in the search for reliability of a large and
complex Forth system.

1. Introduction

In our terms, the reliability of a program means that it continues to work without
stopping, for a very long period - at least months and maybe years.

Two possible approaches can be imagined for obtaining software reliability:

a) "Crash early, crash often"

You make a system that is extremely intolerant of programming errors, and thus
try to force them to reveal themselves at an early stage.

b) "Crash never"

You accept that you can never be a perfect programmer. You make a system
which tries to struggle on despite programming errors.

It is a combination of these approaches which we have been using (mostly by
accident) for many years.

2. Crash early, crash often

This approach is best suited to applications which can be thoroughly and
systematically tested. Every possible program path can be simulated, and
hopefully a wide variety of potential data.

This does not always work, no matter how many resources are put into the
testing process. It has been claimed that Bill Gates managed to "blue screen"
every new version of Windows in front of a live audience.

24

3. Crash never

This is perhaps better labelled "Don't crash in front of the customer". This
approach is better for systems for which thorough testing is not an economic
possibility. In our case, it's not economic because each copy of our software is
different, and is sold only once. And the reason it is different is that it is
controlling a set of mechanical equipment which is unique to each customer.

4. Why do programs crash?

First, we need to set aside logical errors. For example, the customer may inform
you "every time I press this button this happens, instead of that". These are
usually not programming errors, but errors of specification (the mechanical
engineer explained it wrongly to the programmer). Logical errors are usually
easy to fix. By crash I mean that all or part of the program stops working.
Typical causes for this are:

a) Invalid address errors

b) Huge, or infinite loops

c) Division by zero, or overflow

d) Race, or gridlock conditions

5. Invalid address errors, and what to do about them

Most invalid addresses are caused by stack errors. In a Forth environment, the
compiler does not check the number and type of parameters which are passed to
and from a word (function). This leads to the possibility of accumulating stack
errors, even if there is no logical error in the function. Depending on how
frequently a function is called, this may result in an invalid address either
immediately, or at some time in the future.

: DIE-IMMEDIATELY
1000000 0 DO DROP (or DUP, if you fancy) LOOP

: DIE-IN-A-MONTH
BEGIN DROP 1000000 WAIT AGAIN

In a Windows program, the majority of the code handles responses to messages
that Windows sends you - for example when a key is pressed or the mouse is
moved. It so happens that the compiler that we have been using for many years
(MPE ProForth V2.1) creates a new stack, every time a new message is
processed. Quite by accident, an extremely fault-tolerant system is created - the
system is largely immune to the most common programming error! It is due to
this one factor (and certainly not to our own programming expertise) that we
have a reputation for producing highly reliable software.

25

Of course, more sophisticated Windows programs consist of more than reponses
to Windows messages. Additional threads of execution (TASKs in Forth) are
created, to carry out background processing. These tasks essentially consist of
infinite loops, called at predetermined intervals, and are therefor prone to die-in-
a-month syndrome. Our solution is to create a stack guardband.

SETDEPTH (n——-- ?) \ Set stack depth as protection against under/overrun
DEBUGGING 0= TURNKEY? OR \ Always protect if in turnkey mode
STACKPROTECT @ OR IF \ And in debug mode, if stack protection on
BEGIN
DUP 1+ DEPTH <> \ Depth not as required
WHILE
DUP DEPTH < IF \ Too much
NIP \ Down a bit
ELSE \ Too little
0 SWAP \ Up a bit
THEN
REPEAT
ELSE
DROP \ The requested depth
THEN
TASK: MYTASK(---) \ My processing task
BEGIN
10 SETDEPTH \ Guard against stack errors
50 WAIT \ Do it every 50ms
DO-SOME-WORK \ The background work
AGAIN

26

Although by far the majority of invalid address errors are caused by stack
mistakes, they can also be caused by other factors, such as the miscalculation of
an index into an array. There is nothing we can do to immunise the system
against these, so the response is to indicate in as much detail as possible the
location of such an error, whenever it occurs.

Exception trace

| An attermnpt to access an invalid address was made
* Current thread: MAIM
= Last window: TRACKMET - Apex Las Vegas
Last message to main windows: Wh_TIMER
Wparam:100 Lparam: 20867772
Last PLC message received: E
Word: (I-LOOP)

Cancel

The message box describes

* the type of exception

 the thread in which it occurred

* details of the last window message which was started

* special information about a particularly error-prone communications

function

* the name of the Forth word which caused the exception.
This is a very valuable tool. The code required to produce this information is
complex, and in this paper, there is only time to examine the outmost word. Any
delegate is welcome to see the full source if they are interested. Note that the
detail is highly compiler dependent, and adjustments would be needed for other
compilers.

27

(EXCEPTION-HANDLER) { | e
WINAPPHANDLE@
LOAD-ADDR @ @

si

-— } \ Display exception message box

GET-EXCEPTION-STRING $>ASCIIZ

ZCRLEF Z+ Z"" Current thread: " Z+
SELF ZTHREAD Z+
ZCRLF 7+ zZ"" Last window: "

Z+

CURR-WINDOW HANDLE ZWINNAME Z+

ZCRLF Z+ Z"" Last message to main windows:

Z+ LASTWM @ WMNAME Z+
LASTWM @ WM COMMAND = IF

ZCRLF Z+ 2zZ"" Command: "
LASTCM @ ZTEXT Z+
THEN
ZCRLF Z+ Z"" Wparam:"
ZFORMAT 7+ Z"" Lparam:"
ZFORMAT Z+

ZCRLF Z+ Z"" Last PLC message received:

LASTPLCMESSAGE Z+

ZCRLF Z+ 2Z"" Word: " Z+
word

LOAD-ADDR @ 4 + @ ABS>REL
structure

112 +
floating save area

12 cells+ @ -> esi

esi FORTH-BASE -

ZCRLF Z+ TRACESTRING Z+
information

Z"" Exception trace"

MB APPLMODAL MB ICONHAND or MB OKCANCEL OR

WINMESSAGEBOX IDCANCEL =
cancel?
BYE
THEN
TRACESTRING OFF
LOAD-ADDR @ OFF
ABORT

; ASSIGN (EXCEPTION-HANDLER

Z

Z+ LASTWPARAM Q@
Z+ LASTLPARAM Q@

IF

)

+

IDENTIFY-IP Z+

Z+

\
\
\
\

\
\
\

Owner

Get exception code
Convert to string

Show name of thread

Show name of last window
Show last main message
It was a command message
Show command

Last w 1 params to main

Show last PLC message

Attempt to identify Forth

Get base of context

Offset for

Get Esi

Concatenate trace

Display box, did user

Clear trace
Reset so cold will work OK
Warm restart

TO-DO EXCEPTION-HANDLER

28

6. Huge, or infinite loops, and what to do about them
There are two types of loop errors:

a) DO..LOOPs with miscalculated input parameters

b) BEGIN.. with miscalculated WHILE or UNTIL parameters

6a. Miscalculated DO.. LOOPs

Modern PCs are rather speedy, and can process very large loops without
noticeable delay. Nevertheless, if a DO.. LOOP is asked to execute, say, a
million times, then it is reasonable to assume there may be something wrong.

i Development =2 i

l ke 1234567 0 DO LOOP toeo heavy!!! Do you want to EXIT? Word: MYWORD

The word which contains the offending loop is shown. A definition of the words
DO, ?DO and LOOP is required to achieve this, and again code is available to
anyone interested.

6b. BEGIN.. with miscalculated WHILE or UNTIL parameters

The effect of these, when included in a Windows message, is that the system
becomes unresponsive to the mouse and keyboard. If such a problem happens
very infrequently, it can be extremely hard to find. Fortunately, although our
programs run continuously for very long periods, in practice there is only an
operator interacting with the system for a small percentage of that time. If we
were able to detect a non-responsive program, and close then restart it
automatically, then if we're lucky the customer might not notice! At the very
least, we may buy some time to locate the error.

This is one of those occasions when age is an advantage. We can remember
writing code for early primitive microprocessors, which were very prone to
disruption caused by electromagnetic incompatibility. We therefore "invented"
(contemporaneously no doubt with many others) a simple and foolproof external
circuit which, if not reset regularly by the software, would in turn reset the
microprocessor. We called it the "prodder", and it later became ubiquitous in
microcontrollers, as the watchdog.

29

We therefore came up with a software analog, called "Prod". This is a simple
independent buddy program, which is started automatically by the main
program. It has two functions:

a) It sends regular messages to the main window of the main program. If this
does not respond promptly, it forces the main program to close.

b) It tests regularly for the presence of the main program, and if it is not present,
it restarts it, and closes itself.

The latter also deals with another issue. Sometimes, Windows simply closes a
misbehaving application without calling its exception handler. This may be
because the Forth program has corrupted its own code.

The Prod program satisfies the "simple and foolproof™ test - it is only 150 lines
long.
The important work is done by a 1s Windows timer.

PRODWIN-TIMER (hwnd,mess,wparam, lparam---res) \ 1 second timer

1 RESTART-TIMER +! \ Increment restart timer
NULL ABS>REL PARAMETER-BUFFER $>ASCIIZ \ See if main window still
there
WINFINDWINDOW IF
0 RESTART-TIMER ! \ Clear restart timer
THEN
1 HUNG-TIMER +! \ Increment hung timer
HTRACKNET @ ISHUNGAPPWINDOW 0= IF \ Program is responding
0 HUNG-TIMER ! \ Clear hung timer
THEN
HUNG-TIMER @ HUNG-TIME U> IF \ Exceeded hung time
HTRACKNET @ FALSE TRUE ENDTASK DROP \ Kill it
THEN
RESTART-TIMER @ RESTART-TIME U> IF \ Exceeded restart time
START-TRACKNET \ Start the main program
PRODWIN-CLOSE \ Close self
ELSE \ No message yet
4DROP 0 \ Continue
THEN

’

7. Division by zero, or overflow, and what to do about it

It always amazes me that Microsoft and Intel between them invented a problem
that was never there before. Just because you divide by zero, they decide to
throw a tantrum and close you down! When one had to write the code for a
division by hand, this was never an issue. The correct answer to divide by zero is
infinity - or at least the closest to infinity that the computer can approximate. So
the fix is simply to rewrite the various Forth words to trap for zero, and give the
correct answer immediately. I'm not sure, philosophically, whether there is a
difference between plus and minus infinity, but I always carry the sign of the
dividend into my maximum value, on the basis that I didn't really mean zero, I
just meant a rather small number.

30

8. Race, or gridlock conditions and what to do about them

These problems are usually caused by incorrect interaction between threads. For
example, thread A is waiting for X to be set before it sets Y. But thread B is
waiting for Y to be set before it sets X.

Again, experience with microcontrollers is useful. These devices often have a
large number of potential hardware interrupts triggered by peripherals that
require attention - for example, when a serial port has received a character. It is
very tempting to write an interrupt service routine for each peripheral in use. But
it soon becomes clear that the interaction between the various interrupt service
routines (ISRs) and the main program is a major source of programming errors.
It is much safer to use a single, timer-driven ISR, and poll all the peripherals.
This eliminates all inter-ISR problems. The minimum possible work should be
done by the ISR itself, and its interaction with the main program should use only
one integer for each distinct operation, so that the interrupt never needs to be
disabled and re-enabled to prevent partial data update.

The same principles can be extended to Windows threads.

a) Keep the number of threads to the absolute minimum. For example, if several
processes all need attention every 100ms, they should all be called from the
same thread. Then, the grouped processes can communicate with each other
without special consideration.

b) Do only the absolutely necessary work within the thread - usually either time-
consuming, or time-critical operations.

c) Use the Windows messaging system for thread to window communication - it
is debugged more thoroughly than anything you could write yourself, and
handles all the hard bits.

d) Avoid all the locking mechanisms (such as critical sections) like the plague.
They are a prime cause of software errors.

e) Instead, define extremely simple and exactly specified inter-thread
communication using single integer reads and writes that cannot be interrupted
by the task scheduler.

9. Conclusion

A reliable Windows program can be written in Forth by using a combination of
techniques including fault tolerance, highly targeted detection, and adherance to
strict programming principles.

NJN
September 2011

31

N O Ut W N

SWIG & The Forth Net: Hands-On

Gerald Wodni* M. Anton Ertl
Euroforth 2011

Abstract

We have shown the basic functionality of SWIG and The Forth Net in the past. Now we want
to provide two basic examples which explain how to use them and to show how easy it is to create
C-interfaces or Forth-libraries and share them.

1 MySQL in Forth

As all mayor Forth-systems provide an interface to call libraries written in the C-programming-language,
it should be quite easy to load and use a library like MySQL. But as all of them have their very own
interface with their own set of words, this task can be quite cumbersome. The Forth extension for SWIG
[1] attempts to provide an easier way, by creating a C-source-file which is platform independent and once
it gets compiled, outputs the interface information for the target Forth-system.

First we need to create an interface file for SWIG|2]:

%module mysql

%insert ("fsiinclude")

7{

#include <mysql/mysql.h>
%}

%include <mysql.h>

Line 1 tells SWIG the name of our module.

Lines 2-5 put Line 4 into the output-file in the section “fsiinclude”, which happens to be right after the
default #include-directives.

Line 7 orders SWIG to parse mysql.h .

Having completed the interface file we invoke SWIG:
$ swig —forth —stackcomments —includeall —I/usr/include/mysql —o mysql—fsi.c mysql.i

Depending on our system we may add some more include directories (-I...). The resulting file (mysql-
fsi.c) is platform independent and is exactly what we can upload to The Forth Net (see Section 2), or
share in general.

On the target machine we compile the mysql-fsi.c file using the machine’s C-compiler, which includes
the C-headers and thereby assigns the correct values for constants, the correct typedefs and cares about
all other C-related problems.

We get a binary which we assume to be named mysqgl.fsx . Executing it will print the selected
system’s C-interface definition. Redirecting it into mysql.fs gives us the desired Forth-source-file which
we can simply include.

$ mysql.fsx —gforth > mysql.fs

*TU Wien; gerald.wodniQgee.at
TTU Wien; anton@mips. complang.tuwien.ac.at

We now have enabled Forth to access MySQL. See Appendix A for a simple example of the library in
action. All of the above steps after creating the interface file can be done at once by using the Makefile
of Appendix A. If we want to share our newly created library, Section 2 gives an example of how to do
just that.

2 Library for The Forth Net

Let us consider we wrote a library for 3D-graphics and want to share it. However, in order to make this
library truly system independent and easily accessible, we have to introduce some new words explained
below. All words start with “f” which relates to The Forth Net[3].

frequire (... "file" — ...) Some Forth-systems use the working directory as the base directory for in-
cluding files by relatives paths. Others use the file which is currently parsed as the base directory.
To circumvent ambiguities for our library we could use absolute paths. Unfortunately this decision
would force an absolute path on all users, which is not an option. frequire prepends the libraries
base path on the current system to "file” and loads it.

finclude (... "name" — ...) Loads the library by including its main file.

fget (... "mame" — ...) Downloads the library from The Forth Net[4] to the libraries-root-path.

Using these words we can now extend respectively write our library. Our directory structure is as
follows:
3d
| 3d.fs
| models
model.fs
sphere.fs
cube.fs
| data
t:tree.tga
water.tga
| doc
| README.txt
| VERSIONINFO

“3d.fs” is the libraries main file which is included by the user who uses “finclude 3d”. The library allows
the user to draw cubes and spheres, so “3d.fs” will provide them by using “frequire models/cube.fs” and
“frequire models/sphere.fs”. Cubes and spheres use words which are common amongst all models, and
are defined in models/model.fs, so both files use “frequire models/models.fs” (we always address files
from the libraries base-path).

All other files are optional: the directory “data” provides the library with some textures, “doc” holds the
documentation, which explain the user how to use the 3d-library. The content of the file “VERSIONINFQO”
is displayed on The Forth Net when browsing different versions, and hold some information about recent
improvements or bug fixes.

The final step of sharing our library is to upload it to The Forth Net. This is accomplished by creating
a new project, clicking manage, zipping the contents of the directory 3d (not including the directory
itself), and submitting them as a new version.
From this moment on others can fetch the library by using “fget 3d”

© 0 N O U W N

O Or Ot Ot Ot O O O O Wi B R B R B R B R s W W W W W W W W W W RN RNDNDNNNDNDNDDN == e e
O~ O Utk WK O © WO Uk WNHOO©OWNO®U R WNRFEO©OWNOU B WNHFHO©WOWO U B W+~ O

A MySQL Demol|5]

\ (c) 2011 by Gerald Wodni
\ very small example for interfaceing with the c—api of mysql

\ load binary shared library
s"_mysqlclient" add-lib

\ include functions and constants
finclude fsi—mysql—client

\ display O—terminated string
.cstr (addr —)

begin
dup c@

while
dup c@ emit
char+

repeat drop ;

\ — real program ——
\ create connection element
0 mysql init constant connection

\ connect
connection s\"_localhost\0" drop s\"_forth\0" drop s\"_h4x0r\0"
drop s\"_forth\0" drop 0 0 0 mysql real conmnect [if]
."_connection_established" cr
[else]
."_connection_error" cr bye
[then]

\ launch query

connection s\"_SELECT_x_FROM_ ‘systems ‘_\0" drop mysql query [if]
."_Query—Error:_" connection mysql error .cstr cr bye

[then]

\ print result
tab 9 emit ;
show—result (—)
\ get result
connection mysql use result

begin
dup mysql fetch row ?dup
while
connection mysql_ field count 0 utdo
dup @ tab .cstr
cell+
loop drop
cr
repeat

mysql free result ;

"_Result:" cr
show—result

connection mysql close
."_connection_closed" cr

bye

0~ O U W N

A FSI-Makefile[5]

SWIG = swig

OUTPUT = mysql

INTERFACE = mysql.1i

OPTIONS = —forth —mo—sectioncomments —stackcomments —includeall)

—I/usr/include /mysql —I/usr/include)\
—I/usr/lib/gcc/i486—linux—gnu/4.1/include/

$ (OUTPUT) . fs : $(OUTPUT). fsx
./$(OUTPUT) . fsx —gforth > $(OUTPUT). fs

$ (OUTPUT). fsx : $(OUTPUT). fsi
$(CC) —o $(OUTPUT). fsx $(OUTPUT)—fsi.c

$ (OUTPUT) . fsi :
$(SWIG) $(OPTIONS) —o $(OUTPUT)—fsi.c $(INTERFACE)
.PHONY: clean
clean:
rm —f $(OUTPUT)—fsi.c
rm —f $(OUTPUT). fs
rm —f $(OUTPUT). fsx
References

[1] Gerald Wodni and M. Anton Ertl. SWIG-Gforth-Extension. In Euroforth, 2009.

[2] David M. Beazley et al. Simplified Wrapper and Interface Generator (SWIG). URL http://wuw.
swig.org.

[3] Gerald Wodni and M. Anton Ertl. The Forth Net, 2010.
[4] Gerald Wodni. The Forth Net. URL http://theforth.net.
[5] Gerald Wodni and M. Anton Ertl. SWIG Erweiterung fiir Forth Neuigkeiten, 2011.

Ways to Reduce the Stack Depth

M. Anton Ertl*
TU Wien

Abstract

Having to deal with many different data can lead to
problems in Forth: The data stack is the preferred
place to store data; on the other hand, dealing with
too many data stack items is cumbersome and usu-
ally bad style. This paper presents and discusses
ways to unburden the data stack; some of them are
used widely, others are almost unknown or new.

1 Introduction

The data stack is the primary mechanism for pass-
ing data around in Forth. Its advantages include:
words that deal only with the stacks are reentrant,
i.e., they can be used recursively and in several tasks
running at the same time; and straight-line code us-
ing the stack can be factored easily (just split any
subsequence off into a separate colon definition).

The limitations of the data stack are: It can con-
tain only cell-sized items. And while it may con-
tain many items, accessing more than a few alter-
natingly requires quite a bit of stack shuffling and
is hard to read; idiomatic in Forth usage tries to
avoid stack shuffling.

However, some problems inherently have to deal
with more than the about three data items that can
be managed without too much shuffling.

A commonly-used example problem is drawing a
rectangle specified, e.g., by the lower left and up-
per right point, using line-drawing primitives that
take the start point and the end point: If each point
is specified by two numbers, the rectangle is repre-
sented by four numbers. Moreover, each number is
needed after the first line is drawn, so just before
the first line primitive we would have the four num-
bers for the rectangle on the stack, plus the four
numbers needed for the line primitive. Many differ-
ent ways have been suggested for dealing with this
example problem and others.

This paper looks at various ways to deal with
such problems, and discusses the advantages and
disadvantages.

*Correspondence Address: Institut fiir Computer-
sprachen, Technische Universitdt Wien, Argentinierstrafie 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

2 Grouping data in memory

One approach is to store much of the data in one
or few structures in memory, and putting only the
address of the structure(s) on the stack. The disad-
vantage here is that it requires managing the mem-
ory for the structures; this includes specifying who
is responsible for deallocating the memory.

In our rectangle example, we might represent
each point as a structure, both in the input of our
rectangle word and in the calls to the line-drawing
words, but this would mean that we would have to
allocate, fill, and later deallocate at least two such
point structures (for the lower right and upper left
point of the rectangle), and let the caller deallocate
the structures (somewhat contrary to the Forth id-
iom of consuming stack items):

: line-line (pl p2 p3 --)
\ draw a line between pl and p2
\ and one between p2 and p3
over line line ;

: rect (11 ur --)
over point-x @ over point-y @ make-point
(11 ur ul)
>r 2dup r@ swap line-line r> free-point
over point-y @ over point-x @ swap make-point
(11 ur 1r)
>r 2dup r@ swap line-line r> free-point ;

Of course, we could pass in the data to rect in
a structure and pass it to 1ine on the stack, so the
memory management would not show up in rect,
but that would be less instructive, failing to show
that memory management overhead occurs.

Given that Forth does not normally have auto-
matic memory management (aka garbage collec-
tion), I tend to avoid such solutions where possible.

3 Multiple Stacks

A common way to deal with many stack items is to
put some of them on the return stack. The return
stack allows no shuffling and only direct access to
the top item, and data has to be moved or copied
back to the data stack for computations, so this
is usually limited to just one or two items. The
disadvantage of this strategy is that we lose the nice
factoring property of data-stack-only code: there

36

Ertl

are some straight-line code sequences in code using
the return stack that cannot simply be split of into
a separate colon definition.

Floating-point code keeps floating-point numbers
on the separate FP stack, so the number of items
on the data stack (and the number of items on the
FP stack) is usually smaller than in equivalent in-
teger code, and there is usually much less shuffling
necessary.

As an example, consider the following word from
the integer matrix multiplication benchmark:

: innerproduct (a b -- n)
\ a points to a column in a matrix
\ b points to a row in a matrix
0 row-size 0 do
>r over @ over @ * r> + >r
swap cell+ swap row-byte-size +
r>
loop
>r 2drop r> ;

Note that this code already reduces the stack load
by passing row-size and row-byte-size in con-
stants. A floating-point variant of the word looks
like:

: finnerproduct (a b -- r)
Oe row-size 0 do
over f@ over f@ fx f+
swap float+ swap row-byte-size +
loop
2drop ;

All the return stack usage went away.

The main disadvantage of the FP stack is the
additional implementation cost: managing another
memory area for this stack, per task; and having
another stack pointer that has to be saved and re-
stored by context switches and in exception han-
dling.

Some people have suggested additional stacks,
e.g., an address stack or a string stack. This has
not really caught on yet. In addition to the costs
mentioned above one often wants to use operations
like - on addresses and, e.g., string lengths. Keep-
ing these types on separate stacks would require
moving these data between the stacks for such op-
erations, which will increase the stack noise in some
cases.

4 Locals

Locals offer a way to deal with lots of data. E.g., for
our rectangle example a solution using locals would
be:

Ways to Reduce the Stack Depth

: rect {: x1 y1 x2 y2 -- :}
x1 y1 x1 y2 line
x1 y2 x2 y2 line
x2 y2 x2 y1 line
x2 y1 x1 y1 line ;

The result is readable and this approach scales to
dealing with many data.

Despite these advantages, using locals has been
vilified often by a considerable portion of the Forth
community. One disadvantage of this approach is
that we lose the nice factoring properties of data-
stack-only code, but using the return stack has the
same disadvantage without having the same accep-
tance problems as locals.

A common argument against using locals is that
locals discourage proper factoring; they only dis-
courage it in the same way that the return stack
does, but maybe the complaint really is that due to
the scalability they fail the encourage factoring in
the same way that stack-based approaches do; i.e.,
that locals take away the pressure to factor for less
active data at a time, because words that deal with
lots of data still remain manageable.

The question then is why we want a more highly
factored program. If locals achieve that goal (say,
readability) with less factoring, do we need more
factoring? If not, maybe we should be aware of
and strive for the desired property instead of just
avoiding some programming language features.

5 Global/user variables

5.1 . within single definitions

Another related approach is using global variables.
As long as you use them inside a single colon def-
inition, the readability and scalability is similar to
using locals. And in contrast to locals, in some
respects they keep the nice factoring properties of
data-stack-only code. The disadvantages are that
the result is not reentrant or usable recursively un-
less special measures are taken.

The most serious problem, though, is: if you
make use of the factoring properties, now the data
does not just flow through the stack from caller to
callee and back, but through an arbitrary set of
global variables. This makes the data flow hard to
track, and makes programs hard to maintain. If you
want to avoid that, you lose the factoring property
with globals just as you lose it with locals.

Also, one nice property of normal factors is that
they are often useful for other purposes; however,
factors involving globals do not have a nice stack-
based calling interface, but something more compli-
cated, so they are usually not nice factors.

In conclusion, while globals are in theory less of

37

Ertl

an obstacle to factoring than locals, it’s usually bet-
ter to avoid this kind of factoring.

If we use user variables to make the word reen-
trant in the presence of multiple tasks or threads,
the variables consume space in each task, all the
time. With cooperative multi-tasking, we can avoid
that as long as the variables live only between task
switches (which creates another maintenance prob-
lem), but with true concurrency this trick no longer
works; and we want to use true concurrency on the
increasingly pervasive multi-core CPUs.

5.2 . across definitions

Global/user variables are sometimes used as addi-
tional input or output parameters for words. An
example in standard words is #, which takes base
as additional input and produces additional output
in the pictured numeric output buffer.

This global state complicates the interface, which
reduces reusability and causes maintenance prob-
lems. An example is trying to debug code between
<# and #> using .s.

One programming practice for reducing these
kinds of problems is to save the global variable be-
fore changing it and restoring it before returning to
the caller. An example of this practice is:

: hex.-helper (u --)

hex u. ;
: hex. (u --)
base @ >r

[’] hex.-helper catch
r> base ! throw ;

However, this practice is somewhat cumbersome
to program and Charles Moore prefers to just set
global state whenever that is needed [Bro04, Page
212]; this is a bad idea for reusability, but Moore
does not value reusability of code.

6 Context wrappers

Saving, changing, and restoring a global variable
can be factored out into a context wrapper. E.g.,
Gforth has a word base-execute that saves base,
changes it, executes an xt, then restores base. A
usage example is:

: hex. (u--)
[’] u. $10 base-execute ;
\ base-execute (xt u --)

Another example is execute-parsing, which
saves the input stream, sets it to the passed-
in string, executes an xt, and restores the input
stream. A usage example is $create, which takes

Ways to Reduce the Stack Depth

the name of the created word from a string instead
of the input stream:

: $create (c-addr u --)
[’] create execute-parsing ;
\ execute-parsing (c-addr u xt --)
A third example of this pattern is

>string-execute which redirects the console
output (e.g., type) into a string. This allows the
programmer to construct strings from many or
complicated words without having to deal with
intermediate strings on the stack.

: fe.>string (r -- c-addr u)
[’] fe. >string-execute ;
\ >string-execute (xt -- c-addr u)

The general convention used in Gforth (with the
exception of base-execute, which came before the
convention) is to pass the execution token into the
context wrapper on the top of stack, because it is
usually a literal.

An advantage of context wrappers is that they
make it possible to use words that would otherwise
be specific to some global resource (e.g., the console
output in case of fe.) in a more general way; with-
out a word like >string-execute, if you want to
transform an FP number into engineering notation,
you have to reimplement most of fe. yourself.

So context wrappers do not only make it possible
to reduce stack shuffling in new code, but also to
reuse some code in ways for which it has not origi-
nally been written.

Gforth also has the words infile-execute and
outfile-execute that allow to use console input
(key) or output (type) words for input from or out-
put to a file. A special advantage of using a context
wrapper here is that it restores the old, working
setting if an error is thrown; in contrast, if an error
occurs during a global redirection of console 1/0,
the user has problems recovering from the error (es-
pecially if input is redirected).

The wusual implementation of context uses
global/user variables and saves the contents of these
variables on the return stack when performing a
context wrapper. The disadvantage of this ap-
proach is that each context requires space for an-
other user variable in each task.

Hanson and Proebsting [HP01] discuss a related
concept: dynamically scoped variables; they also
present several implementation techniques that may
require less memory (but more run-time) than ap-
proach of using global/user variables with saving.

38

Ertl

7 Implicit Parameters and Re-
sults

A common pattern in reducing the number of items
on the data stack is implicit parameters and re-
turn values. The context in context wrappers and
global/user state like base are two examples of this
pattern.

Another one is the loop control parameters in do
loops. The equivalent begin loops would often have
too many items on the stack to manage easily.

Finally, a number of object-oriented Forth exten-
sions have an implicit current object, e.g., this in
objects.fs [Ert97]; in this objects extension, the
current object is set automatically from the top-of-
stack when entering a method and the old current
object is restored when leaving the method. By con-
trast, in Bernd Paysan’s oof.fs model, the current
object is set explicitly, but is then used implicitly
whenever calling a method. In both objects exten-
sions, the current object is used implicitly when ac-
cessing fields of the current object.

8 Registers

ColorForth has the programmer-visible register A,
which is used for memory accesses (e.g., Forth’s !
becomes ColorForth’s A! !); moreover, the top of
the return stack R serves a similar function. Virtual
machine models with even more registers have been
proposed [Pel08].

A value in A does not have to be kept on the
stack, reducing stack load. This is supported by @+
'+ a fetch and store that autoincrement the address
in A.

These registers are global resources and share
many of the disadvantages of globals. However,
their usage model is somewhat different from or-
dinary globals:

e Most globals are specific for one particular pur-
pose, whereas any word that accesses memory
will set A in ColorForth. So, the usage of regis-
ters is much more temporary, and programmers
typically don’t expect the contents to survive
across calls (unlike, usually, globals). So, they
don’t reduce the stack load across calls.

e Interrupt handlers and task switchers will pre-
serve the contents of the registers across the
interrupt or for the next execution of the task,
so the registers can be used in reentrant code.

Ways to Reduce the Stack Depth

9 Example: Postscript Graph-
ics Model

The Postscript graphics model demonstrates some
of the ideas presented up to now in action. Here is
the rectangle example, written in Forth, but with
Postscript graphics operators as words:

: rectangle (x y wh --)
2swap moveto
over 0 rlineto
0 swap rlineto
negate 0 rlineto
closepath stroke ;

First, we have adapted the parameters of
rectangle (width and height instead of the coordi-
nates of the other corner), because that requires less
stack shuffling in combination with the Postscript
graphics operators. Now, to the essential parts:

Postscript has the current point as implicit pa-
rameter. We start out by setting the current point
with moveto.

Then we draw the first line with rlineto; the
current point determines the start of the line, and
the basis for our relative operation!, so we change
x by w and y by 0; rlineto also sets the current
point to the end point of the line.

The next rlineto draws the second, vertical line
of our rectangle, the third rlineto draws the third
line.

Actually, these words did not draw lines, they cre-
ated a path in the (implicit) graphics state (which
contains the current point and other information).
Now we add a final line to the path with closepath
that goes back to the start of the path.

Finally, stroke draws the lines described by the
path onto the canvas (the in-memory representa-
tion of the page). It takes a number of addi-
tional implicit parameters into account: line width,
colour, dash patterns, corner shape, scale and rota-
tion (more generally, a transformation matrix).

As we can see, Postscript makes effective use
of implicit parameters through the global graph-
ics state. To avoid some of the problems of global
state, Postscript provides gsave to save the current
graphics state on a dedicated graphics state stack,
and grestore to change it back to the old value.

10 Staged Execution
Another way to reduce the number of items on the

stack at any one time is to divide the computation
into different stages. The first stage deals with some

1In addition to the relative rlineto, which takes a coordi-
nate relative to the current point, Postscript also has lineto,
which draws a line to an absolute coordinate.

39

Ertl

of the data and generates code for the second stage,
the second stage deals with more data, and either
completes the computation or generates code for a
further stage, etc.

As an example, consider innerproduct from the
matrix multiply benchmark. The single-stage ver-
sion (already shown in Section 3) looks like this:

: innerproduct (a b -— n)
0 row-size 0 do
>r over @ over @ * r> + >r
swap cell+ swap row-byte-size +
r>
loop
>r 2drop r> ;

a b innerproduct .

This version already uses a number of techniques
to reduce the stack depth: a do loop to get rid of
the stack items for loop control; the number of el-
ements in the vectors (row-size), and the strides
(cell and row-byte-size) are not passed in through
the stack; and the return stack is used for the in-
termediate result.

Here is a version that divides the execution into
two stages:

: gen-innerproduct (alrow] [*] -- xt)
\ xt is of type (b[*][column] -- n)
>r :noname 1>
0]] literal SWAP
[[row-size 0 do ~~ 1]
dup @
[[dup @]] literal * under+ cell+
[[row-byte-size + loop
drop 1] drop ;
(R

a gen-innerproduct b swap execute .

This code uses the syntax 11 x y [[, which is
equivalent to postpone x postpone y, but more
readable. The staged code uses the same stack
depth reduction techniques (except the return
stack, which becomes unnecessary) as the origi-
nal code, but it adds staged execution; this results
in less stack shuffling, and no need to use the re-
turn stack (except to get the parameter a past the
:noname. The second stage then contains an un-
rolled loop that contains the values from the vector
a; in source code it would look like this (for a three-
element vector a containing 5, -3, 2):

:noname
0 swap
dup @ 5 * under+ cell+
dup @ -3 * under+ cell+
dup @ 2 * under+ cell+
drop ;

Ways to Reduce the Stack Depth

Of course, this technique incurs the CPU and
memory costs of generating the code for the sec-
ond stage, and is normally only efficient if the sec-
ond stage is used several times (if it is used often
enough, it can be significantly more efficient than
the single-stage code [LL96], if the Forth compiler
supports fast code generation); and the program-
mer may have to deal with recovering the memory
for the generated code.

So, this technique is not very general-purpose,
but it still is an interesting addition to the arsenal
of stack depth reduction techniques.

11 Pipelines

An program can be organized as multiple tasks that
are connected in a pipeline. One reason for this or-
ganization is that it allows the flexible composition
of useful reusable parts; that is the main reason for
using pipelines in Unix. Another benefit of pipelines
is that the tasks of a pipeline (pipeline stages) can
be executed in parallel.

In the context of our topic the benefit is that
each task has its own stack; if we have multiple pa-
rameters to pass in and multiple data to handle,
hopefully each task needs only a part of these pa-
rameters and only needs to deal with a part of the
data, reducing the stack depth pressure in that task,
compared to a program that tries to do it all in a
single task.

I am not aware of an implementation of this idea,
but it should not be hard to implement on a multi-
tasking Forth system. In any case, the following is
just a somewhat elaborate idea, not something you
can use as programmer at the moment.

The following code fetches a vector x from mem-
ory, multiplies it with an FP number a, and adds the
product vector to another vector y in memory. This
is a common linear algebra function (called SAXPY,
DAXPY, etc. in BLAS, depending on the type). In
our pipelined implementation each of these steps
(fetching, multiplying, adding) has its own pipeline
stage:

: v@ (f-addr nstride ucount --)
0 7do
over f@ fput
tuck + loop
endput 2drop ;

: vix ((ra -—-)
begin fget? while
fover f* fput repeat
fdrop ;

40

Ertl

: v+! (f-addr nstride --)
begin fget? while
over f@ f+ over f!
tuck + repeat

2drop ;

: faxpy (ra f-addr-x nstride-x

f-addr-y nstride-y ucount --)
rot rot 2>r [’] v@ xxx|
[’ vix £
2r> v+!

Here the input parameters are the start address
address, stride?, and size of x, the value of a, and
the address and stride of y (the size is the same as
for). So we have five cell-sized parameters and one
FP parameter, too many for handling in one func-
tion with stack manipulation words only (therefore
I present no version without pipelining).

In our pipelined version each pipeline stage only
has to handle a few of the parameters, and conse-
quently there is little stack manipulation code. The
interface word faxpy sees them all, but only has to
pass them to the stages, which is relatively simple.

Each pipeline stage passes its FP result with fput
to the next stage, which receives it with fget?.

The connections between the stages are implicit,
so we can only have a linear pipeline. Linear
pipelines have been good enough for a lot of work
in Unix, but one still might want to consider less re-
stricted options (ideally, any data-flow DAG); the
main disadvantage would be that we then have to
identify which connection an fput or fget? refers
to, and since this identifier would be passed on the
data stack, this would increase the stack load. An-
other disadvantage of data-flow graphs beyond trees
is that simple pipeline implementations can lead to
deadlocks.

12 Conclusion

In this paper we look at various ways to reduce the
stack load. There is no silver bullet, except locals.
Yet, using a combination of the other techniques,
most of the time it is possible to keep the stack
load manageable even if we do not use locals: us-
ing the return stack, the counted loop parameters
and various implicit parameters present in the Forth
system.

The Postscript graphics model shows how a prob-
lem that appears hard for stack-based languages can
be solved using such techniques.

We also present the more exotic (in Forth) tech-
niques of staged execution and pipelines, which pro-

2The stride parameter allows using the function on vec-
tors that are not consecutive in memory, e.g., a column or
diagonal of a matrix.

41

Ways to Reduce the Stack Depth

vide additional weapons against high stack item
pressure.

References

[Bro04] Leo Brodie. Thinking Forth. Punchy Pub-
lishing, 2004. reprint of the 1984 edition.

[Ert97] M. Anton Ertl. Yet another Forth objects
package. Forth Dimensions, 19(2):37-43,

1997.

[HPO1] David. R. Hanson and Todd A. Proebsting.
Dynamic variables. In SIGPLAN 01 Con-
ference on Programming Language Design

and Implementation, pages 264-273, 2001.

[LL96] Peter Lee and Mark Leone. Optimizing
ml with run-time code generation. In
SIGPLAN ’96 Conference on Program-
ming Language Design and Implementa-

tion, pages 137-148, 1996.

[Pel08] Stephen Pelc. Updating the Forth virtual
machine. In 24th EuroForth Conference,

pages 24-30, 2008.

100 sley) puy “wa|qoid S|IE|OA € S| 819y} ‘05

. Swia)sAs palsoy pue 9gx Joj wajqoid e Ajuo s siyl 1eyy 910N,
Jwajgoid ajuejoa syl s, " Bng e J0U S},

:paiidal oym ‘eA8)S O} |IBWS U. JusS |

uoneAno

leypad ‘

TT3Un
demsyazedwoo a923UNOD
+ N dnp p x°3uUunoo
utbeq

1J81UN0D paJeys B 10} WOIP! UOWWOD B Syealq Siy |
dems p IS93UNOD + Z P IOSJUNOD

0] JuUsjeAIinba ap0oo suIydRW OlUl
+ z dnp P x°3unoo

PaIdwod Yoy X4A

uoneAlon

leypad ‘

$8100 810W PUB BI0W BARY [[IM SBUIYOBW 8NN
Jalieq zHY & 8 0} SWoss alay |

‘yonw Aq jou Inq ‘subisep
ayoed pue auljadid mau yim pasealoul a4 [|IiS UeD 8dUBWIOLd

Jamols Apybis 106 aney BuiyiAue ji pue ‘sieak
[eJ9A8S 10} Buisealoul UBaq J0U BARY SPaads Y00|0 ‘I9ASMOH

se|gnop eaJe Jun Jad si0jsISuel] JO Jagquinu
ay1 ‘syluow g| A18A8 :paj|9ourd usaq 10U SBY ME| S,8100[\

deoal ‘am aJe aldYM

Jeypad c

42

AajeH maipuy

¢2113D10a 1noge op o} Buiob am aite yeyp\

12 Med ‘Ainjuad sz 9y} 1o} Aoualinduod ypio4

leypas ™

paulepun S| 3TNSSX Ul SNjBA 8y

T P 3Tnsax
IT3un P Apesax sosned utbeq

:Z peaiyy
i Apeax 1 | 3Tns°ax 66
'} pealyL

sodel eljep

leypad '

wo|qoid awes ayl aney Ajliessadau
[im Aayl ‘0 ul pajuswadwi are swalsAs Yylo4 swos asneosayg

paulspun aie suonesado dlwole Jo

00| Aq pajosjoid AjoIdxa Jou aJe Jey} Spealyl usamlaq paleys
Blep 0] SSOJ0E ||e 1Byl M3IA 8y} SO¥E] PJEPUE]S ++0) MBU 8y |
i9]qISIA 80498 ||IM Alowaw Ojul S8J01S SH ey} J0 “Iaplo swes ay}
Ul JND20 ||IM peaJy] JBYIoUE WOl Sajum Alowaw Jey) asjuesenh ou
S1 818y} ‘peaIy] J8YI0UE JO M3IA JO Julod By} WOl ‘JSASMOH "18pJo
welboid ul In220 0] Jeadde 8S820E AloWBW ‘pedIyY] B JO MBIA JO
jui0d 8y} Wol4 "U0iN28xd J8pI0-JO-JN0 dinjes} S10sse204d Juaing

saoel elep pue sJiaLLeq Alowapy

leypad ‘

Jauueq Alowaw e Si 8)1BJOA S, BAR[

SINEIOA S0
10 1eyl woJj Jualayip Ajjelol si Buluesw si Ing "8JiJBJOA SBY BAR[

aj1pnjoa pue sabenbue| auejoid

leypad ‘

peaiy} sWes ay} ul Jajpuey jeubis
© YlIM 8]B2IUNWWOD 0} pasn aq Aew) oiwojebis a|iejoA \/,

SuoI1e20|
a|dinw e paddew si Alowaw BuiAepun ay) asnedaq
‘6 8 ‘jjosy peaiyr ayy Aq AjsnouoiyouAs paiebbiy si 1oe)

ul uoiedlIpow ay} Ing ‘, payipow Ajjeusalxs, aq Aew ss|qeueA ,

‘dwlbuoj e Js)je »}orQq||0J J0U SB0pP d|geLIBA
8y} 1ey} os dwifjes e Jo 8d0oas a8y} ul 8jgeleA [edo| e Buppew

‘Buizuewwng "y
J0} sasn ajqelod aaiyy Ajuo aJse a1ay) Jeyj 1no sulod wysog sueH

0S YUIU} | ¢} @AY 0} 8BenBue) 11y BYL Il S| "BjIBj0A SBY D

aj1pnjoa pue sabenbue| auejoid

leypal ‘

43

saouanbas jusjeainba Jayjo ale alay]

Aowauw <- Jaisibal Aow
(sa10ys Buipuad |e 82104) quip

:S| 8SB8Jal 810]S

(speo| payoed Ajjedo |je ysnyy) qup
Ja1s1bal <- Alowaw pj

:S1 auinboe peo; ‘INdV U0

INHYV :8seajal alojs pue alsinboe peoj

leypad '

2p09 a|qenod-uou alum Ajeiuspiooe Aew siewwelboud

aAlBU 0S ‘sealuelenh yons aAey },uop s10ssa204d JaylQ

"JOpIO BWeS a8y} Ul S8J0]S 89S Spealy] |[e 1eyl aajuesenb e si aiay)
98X 8y} uo asnedaq |e1oads BuiyiAue op 0} aaey juop sigidwon

Aowauw <- Jaisibal Aow
'S 8sB8ja. 8.10]S

Ja1s16a. <- Alowaw Aow
:S1 84inboe peo; ‘98X UQ

98X :9seajaJ 910]s pue aJinboe peoj

leypad ‘

aseajal alo}s pue aJinboe peoj se umouy| aJe suolelado asay|
PSTT3IETOA B S0P PEa.y] Jaylo JBy]

Jaye peaiy} Jayloue 0}
SIQISIA S| i ®TT3IRTOA B 8J0J8q Suaddey eyl Aiowaw 0} 810is Aiang

sJelleq Aiowsw Q1SN PSTTIBTOA PUR {STTIRTOA

aseajal al0]s pue alsinboe peoj

leypad ‘

tee P 3ITnsox
TIT3un pPoTT3eToa Apeax osned utbeoq

2 peaiyl
i9TT3eTOA ApESx T | 3ITNSSI 66

'} peaiyL

¢OOM SIU) 93w 0} 8¥el 1l PINOM JBUM

aseajal al0]s pue alinboe peoj

leypal ‘

44

MOU Way} Inoge Bupuiyl Lels pjnoys s\ ‘passaippe
80 1SNW S8NSs| 8S8Y] SWaISAS 8100-1)jNW UO 8NN} & Sey Yuo4 J|

Sauelq)| 0] Y8| g J,ued sanssi Buipealyl asneossq ‘spuiw
Jrayl pabueys mou aney Aay] ‘sbulyl esay) inoge Aliom 0} aaey
LUpIp A8yl 1Byl Juiyl 0} pasn SeaRILIWOD PJepuUE]S ++0 Ue O ay|

aininj ay} pue Yo

leypad ‘

soouanbas jusjeAinbs Jaylo ase a1oy |

Aowsw <- Jg)sibal pj
(salo1s Buipuad |e 8240}) SuAsSm|

:S1 8SP8|8J 810]S

(speo| payoed A oo e ysnj}) dUAsm|
‘19181621 <- Alowasw pj

:s1 auinboe peo; ‘odd uQ

5dl19Mod :aseajal aJo)s pue aJinboe peoj

leypal ‘

45

SUOI02UU0D
paJeys maj yum xoauapoq aibuls si uondwnssy

[€] B3PI pOOB

B 9q 0] SWdds ‘[ygq3 suswajdwi Apeale uaiio]lig
[0J1UOD BZIS

19)0Bed UBAS JO MOPUIM B J0U ‘|0JJU0D YIPIMPUEQ B 8ABY O}
aI| | — uondepe spaau ‘WJo} SAIeU Ul JYgd3] dsh L,ueD
anissalbbe os jJou — Ae|ap JUBISUOD

SpPe |0J1U0d MOJ} 1Yga3] :yiomawoy Aw pip Apogawos

(luno2oe 18Q
[eo1dAl e 10} St Jo J8pI0 By} ul) sAejap abny — uno20 sdoup
19y0ed [1un s1ayNq s||1} ‘OAIssalbbe 001 [041u0d MOJ} dDL

(erep J4obue) 1o} soa4
apBIN) usey diydelbordAio Ag elep ssaooe gididulid dzd

dan uo paseq uoneluswajdwi Aoeba
Buiweans eiep smoje Aljige awin—jeay

[2] os|e 98s . ‘pnojd elep 9|buls, |0JUOD UOISIOA
yum walsAs a1y painguisip Jaad o} Joad :[spow JJomiaN

(ssed anjea «— aweu) sainque pue sajl} :uonorSqQyY

[1] @9s ‘om} Jo Jamod e
9z1s 10y0ed ‘siapeay 14oys yim sweibelep Alowaw paseys

8poD 8yl alnquisig

Bleq Joloe4

sybisu| di1seg 2WO0S
suonnjos

sjuawalinbay

UOIBANON

BUUSIA ‘| 102 UMO404nT

uesAed puJag

uoneoo| diydeibosb Jo alep Ag

S09pIA pue saweb Joj suibnid (umop sabed Buikouue aies 0] uouNg—JI

S09pIA pue solydesb pajesedss aley, ‘AlueinbaJ palisiA ‘uonnag—Ji ay|,,) aoualsald Ag

o160 uoneoidde Joy 1duogeaer paresedssg (Muel abed,) souensjal Ag

INoAe| 10} SSO paleledss 1uslU0d Ag

3|1} SUO OJUI SJUBWS|S oidoy Ag

90BJI1UI J8SN pUB [Bn}xa] |[e Jayiebol sanib A LH dnoub/uosiad Ag

1S0| a6 am Jo ‘paziuebio aq 0] SPasu UOIELW.IOJU|

" sawer) @
soopIp @ Buiweb aaneioge|0D
sojoyd pue solydelr) @ (Burouauajuoo oapia ‘Auoydsial ‘1eyd) awi—|eas Aeem—om|
Jusuo9 [enixa| @ SjuUBWINO0p paJinjonils 4abuo
SUOIloe pue ‘sepow ‘uonebineu — adepdlul Josn @ 2I1Snw ‘soapIA ‘soloyd ‘sabessay

2oualiadxa Jasn Aq paljisse|d ‘abed gom e Jo sjuswalg (saidoo Bunjew sueaw a/eys) uoneWIOoUI dJeys 0] aYI| 9|doad

‘Augein@ pue ‘uole|os| ‘Aousisisuo) “Anolwoly

"UOISIOA

snoinaid ayl 0} YOBq |e} 1o AJldJ JaylId 1Shw 8y ‘uoioesuel]
a19|dwodul ue s1ab Jepead syl §| 19pJo Ul d|ge|ieAe

sl 1eyl aaiuelenb 1.ued noA ‘Buiypawos ysiand noA usypa
“oeq sy10} abiaw 0} Moy apIdap 0} sioyine

ayl 01 dn s}| Y40} B 9onpoud [jIm SHPS 1USLINDUOD OM|

:.X

1UBWINJ0P JO UOISIASI 1XBU 8yl SI SIYl, Aes ued NoA JoanamoH
.186.0j 10u M 18U By, ANjIgeinp s1 186 noA |y

"S$)00] Juswa|dwi 1,UBD NOA "Yoeq Blep JNoA ||Bo 0] Aem Ased
ou s, aiay) ,‘al9j9p, Inoge 196104 1 sleyl ‘elep mau ysnd
UBD NOA "SPNO|O BlEep U0 dllUM—AJIPOLLI—PBaJ Op 1,.UBD NOA
Aiousodal erep sy jo sentadoid | q|OV

dY1 paau noA snyj ‘edeys ul 8q 01 BIEp INOA JUBM NOA

JUSWIUOJIAUS d2gd B Ul Jou
1NQ “IUSWIUOJIAUS J9AIBS—IUBID B Ul YJoM salianb paje|joD

anels Anaad ag Aew Alquiasse eleq
Jlje.] ylomiau alow ‘Jayiebol elep |Ind 01 sey uaiD

1S8. 8y} Op SsaLe.q)| pue

2160] uoneaidde ay} 18] pue ‘S8JIAISS [SASI—-MO| SPINOId
(.olonJe 1ey) 0] sjJUBWIWOD

9a4y1 1se| ay1,) sedualsjal diweuAp ajesauab o) siduos asn
adA1 s1oy) Jo ssopiebal ‘s109(qo psppaquid 0}

JojeJ pue ‘Umo S}l Jo 3j1} e olul (punos ‘soapiA ‘sabew ‘Jeq
uonebineu ‘ebessawl ‘UsWWOoD ‘9|dIlIe) JUsW|e Ydes Ind
¢lede 11 Buliea)

HBlS uayl pue ‘1814)1 91buis e ol BuiyiAians ind Aypa
abed ayj Jo suswdd

aor|da Ajjened 01 Xy Ly asn sabed gom diweuAQg

pJeisnw ay) 1nd 1 usaop 1dLIoSeARP+SSD+GTINLH

(ybnous 1se} B SO ‘SB2INSP BjIqOW
uo Aoy sI aouewouad) 106png Jamod moj/se} aq 1SN

uswuoaiAug Buibbngap pue Juswdojansp poob e salinbay

ul suoneddde
ay1 alum o) abenbue| asodind [eisuab e salinbay

jsuoneoldde oLu82-18U 0}
JUSWUOIIAUS uonedldde se Juesw SI JOSMO.Q 3y] :Joquiswdy

JojeuibLio syl |ed Ajuo ued Aayl asneoaq . ‘syoeq|eo,
wiay} |[eo Ja1aq 10 — PNojd 8yl Ul sainpadoid palolg

s110d 10 suonosuuod uado alinbas suonnjos ajA1s—ysnd
pidnis s Buijjod

;alemew afjIawey
S| "auIdp 01 [BIALI—UOU SI dJem[ew 0] Alepunoq ay
pualxa awos 0} djay ued [0J1u09 [Be120S puk S1dids paubig

pnojo ayy, uiebe si uoneunssp

3yl — PNOJ2 Blep B 10} MJom 1,usaop Adljod— uiblo swes,
XOgpues ay} apIsino

aq 1snw (Buiubis ‘uondAious ‘uondAdsp) sAay JnoA Buisn
(Mwuad sasn spasu ajum

)0 S| peal) SS920. YIOMIdU 1o11Sal ‘S$8204d Byl Xxogpues

SpNoJo ayl
Ul 1S0| 3 ued sade.] JINoA Inq ‘AlwAuoue [eal ou S 49y |

(INda@ o Alqissoduui)
8JeYS—aJ SIBAI903. INOA WOYM YlIM [04JU0D 1,UBD NOA

(T
10U [|IM 18U 3y},) uonesadood salinbal uonewJojul Buljeossy

(AydeabordAuo) areys noA Woym Yiim [011U0D UBD NOA

Blep |enjoe ayl 40} [oquiAs se saysey ayl buisn
‘ydesb se paiols aie suoisinaL Blep usamlaq sdiysuone|ay

sa|l} obJe| aInquISIP 01 ueaw e apIAcId s8al] YseH

umouy si
ysey ayl uaym ejep ayj anaLial 0] smoje erep <— (ysey)p
3|1} Blep yoea 40} ysey anbiun e saonpoud ysey <«— (ejep)y

xogpues
Juswabeuew
dJemjewl allum Blep 0] A9y aY} aJe JUslUod |eNlOR 0] 9|puBy, SB SaUSeH
01 siiojdxa ybnousa uieluod (sbenbue| paloLisal AloA B Ylm
USA3) JuswuoaiAud [nuamod Ajjuaioiyns Aue jo saleiql syl
aJsemjew allum noA 18] abenbue| Inuamod Ajuaions Auy

(aunmonaisesul

Buliepuas ay) Buisn Inq “aMI-SONIN) Aseaall IND
auibus oipny

auibud ospIA

Buipoosp HNJ/OIdr

(.xNg, sweusapoo) auibua BumasadAl v

aulbua Buideys pue 1noAe| 1xa} 10} zzngleH
Buuspuas gg pue gg 10} THuadQO pue seaue”

dnypels

Buuspual dn paads 01 suonouny oi1seq pa|jiIdwoosald mo|ly

S0y} pasau noA Ji ‘sapuspuadep
b 8yl 1sanbal 01 WBISAS |041UOD UOISIOA Bl 9SN

SalieigI| UOWILWOD 8INLISIP 0] Aem B apInoId

(ae
pue qg) sauawoab xajdwod jo suonewixoidde

apinoid 0] swyiiobe |lelep—jo—|aAd| asn

uonnjosai |eiodwsal pue

[eneds ppe ydiym Swealls [Buollippe pue ‘0apIA
9SBq Sd4—MO| ‘S2JMO| B YlIM SWEeal}S apodul]
(uoissaidwod 1919ABM ‘O aAIssalb0.d)

1SJ1} paliajsuel] aJe abew! swes ay) JO SUOISIOA
UMOP—pPaIBIS dJaUM Slew.o) aaIssalboid asn

01 sayI| 8y JI 49)1dwod \A UMO SIy pjing ued ApogAiang

Joauibud
9SJ9ABJ 0} JN2IYIP J0W ‘SaLIeuIq Y| Saluedwod SAI18I09S

(jareuIlLId 10U ‘@2Npal) 14yl diemjew ay) adnpal
pue ‘alem}os 10adsul 0} SMO|e UoNNQLISIP 9P02 82IN0S

Appoinb 8pod 82.n0s aj1dwod ued (Y14o4) apA

1vga37 am ‘seq

j000j04d Liodsue.) Aediynw ayl ‘Yims

0'c 1euieuf

(saxelsiw jo ||ny

pue ABn Ajjeas aise 1SS se yons sjoo010.4d oiydeiboidAio
‘uayl Inq {A1s02 00] sem) Jnejap Aq padAiousun
(o1diounid

9s0Y) Aj1S02 SI 1Byl | UBAd SY08YD Aoualsisuod 1oldxa
0p ‘9AI9231 NOA 1eUM Ul [BISqI| 37 10U op — gjdioulid [81S04
uanobloy

uoos sem 1l Inq “48ad 0} Jaad sem Jaulalu| syl puiysq
eapl |eulblio sy} — Jaad 01 Joad Jo pealsul JoAIBS—UdIID
j1US1UOD BY1 10} JOJIPS J8SMOIG—UI

(DAMISAM 1) asn 0] Asead ue aq 1shw Ajeal aiay |

51

