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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 28th Euro-
Forth finds us in Oxford for the second time (after 1997). The three previ-
ous EuroForths were held in Exeter, England (2009), in Hamburg, Germany
(2010) and in Vienna, Austria (2011). Information on earlier conferences can
be found at the EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there were two submissions to the refereed track, and one was accepted (50%
acceptance rate). For more meaningful statistics, I include the numbers since
2006: 13 submissions, 8 accepts, 62% acceptance rate. Each paper was sent to
at least three program committee members for review, and they all produced
reviews. One paper was co-authored by a program committee member, who
was not involved in the review; the reviews of all papers (including the one
co-authored by the PC member) are anonymous to the authors. I thank the
authors for their papers and the reviewers and program committee for their
service.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings. These online proceedings (http://
www.euroforth.org/ef12/papers/) also contain papers and presentations
that were too late to be included in the printed proceedings. Also, some of
the papers included in the printed proceedings were updated for these online
proceedings.

Workshops and social events complement the program.
This year’s EuroForth was organized by Janet Nelson.

Anton Ertl

Program committee
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The N.I.G.E. Machine: an FPGA based micro-computer

system for prototyping experimental scienti�c hardware

Andrew Read

May 2012

anding_eunding@yahoo.com

Abstract

This paper describes the N.I.G.E. Machine, a user-expandable micro-computer sys-

tem that runs on an FPGA development board and is designed speci�cally for the rapid

prototyping of experimental scienti�c hardware or other devices. The key components

of the system include a stack-based softcore CPU optimized for embedded control,

a FORTH software environment, and a �exible digital logic layer that interfaces the

micro-computer components with the external environment. The system has been

demonstrated on a Digilent Nexys 2 development board and in an example scienti�c

experiment involving a light source and sensor.

1 Introduction

1.1 Overall concept

The N.I.G.E. Machine's primary intended application is as an electronic control and mea-
surement unit for experimental scienti�c apparatus. The concept is to combine the merits
of a traditional computer-based control system with the �exibility of Field Programmable
Gate Arrays (FPGAs), and a rapid prototyping environment. This is done using a FORTH
based, harmonized hardware-software system and a commodity FPGA development board.

FPGAs are integrated circuits with recon�gurable internal logic components and inter-
connects that can be repeatedly reprogrammed with fresh logic designs at the time of use.
The functional capability of FPGAs is broadly equivalent to traditional integrated circuits,
although operating parameters di�er. Logic designs are written in a hardware description
language such as VHDL or Verilog and then downloaded to the FPGA as a binary �le after
being synthesized by the development tools of the relevant FPGA manufacturer. Typically
new logic designs are tested on special circuit boards (development boards) that host an
FPGA alongside commonly used peripheral components such as external memory, switches,
indicators, and connectors.

The N.I.G.E. Machine is a complete, user-expandable micro-computer system with ex-
tensive input/output (I/O) capabilities, hosted on a low-cost FPGA development board.
It comprises (a) a general purpose, stack-based, 32-bit softcore CPU that has a number of
optimizations for embedded control such as deterministic execution and rapid interrupt re-
sponse time, (b) FORTH system software, and (c) a set of digital logic interface components
including both peripherals for development use (keyboard, video) and also user-expandable
peripherals for application speci�c interface logic (interrupt controller, hardware registers,
and various I/O ports).

The softcore CPU and the other digital logic components are coded in VHDL[1] and the
FORTH environment is coded in the assembly language of the softcore CPU. The N.I.G.E
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Machine has been implemented and tested on a Digilent Nexys 2 development board with
a Xilinx Spartan-3E XC3S1200E FPGA. With a keyboard and video monitor connected to
the board, the system is a fully operational, stand-alone native FORTH environment from
power on. A short video has been made to demonstrate[2].

1.2 Engineering approach

Typically there will be three layers of engineering in an application for prototyping an
experimental scienti�c apparatus:

The physical layer: The scienti�c hardware, with actuators and sensors, driven by some
electronic circuitry. The external electronic circuitry is connected to the N.I.G.E. Machine
through the numerous expansion connectors available on the host FPGA development board,
routing to free I/O pins on the FPGA.

The digital logic interface layer: Factory or custom (written in VHDL) digital logic
interface peripherals directly interface with the external electronic circuitry and provide
I/O functionality for the micro-computer system. The use of application-speci�c, custom
digital logic interface peripherals permits greater scope for high-speed pre-processing of
external signals and for processing multiple external signals in parallel than is possible with
typical �xed-logic I/O ports. In addition, complete �exibility is permitted in the interface
speci�cation and design. The digital logic interface components are connected into the
micro-computer architecture largely through hardware registers and external interrupts.

The micro-computer layer: The micro-computer system, built on the softcore CPU
and the FORTH system software, is the platform both for the interactive prototyping of
the external hardware and the custom digital logic interface, and also for running the �nal
operating software.

1.3 Comparison to alternatives

Other platforms have existed for some time that also combine elements of this engineering
approach, for example:

• The use of a digital logic layer interfacing with the scienti�c apparatus parallels that
of the CMS and ATLAS detectors at CERN. In the case of these detectors, the volume
of measurement data and the speed with which it is generated necessitates a digital
logic layer ahead of the computer layer to identify potentially interesting events and
�lter out the remainder before further processing. The CERN detectors are very high
performance designs and extremely expensive.

• Numerous commodity, easy-to-use microcontrollers, such as the Atmel ATMEGA or
Parallax Propeller provide a CPU with direct access to digital I/O ports alongside a
selection of �xed-function hardware resources such as counters and timers. FORTH is
sometimes implemented on such microcontroller platforms.

• Standard commercial or open source FPGA softcores are available that can be con�g-
ured directly by the FPGA development tools, for example the Xilinx MicroBlaze[15].

• A number of small softcores have been designed speci�cally to execute FORTH[3, 4,
5, 6, 7, 8]. Several aspects of the J1[3] have directly inspired this project.

The N.I.G.E. Machine does not intend to compete head-on with any one of these alternatives,
but rather o�er something novel in the way that it brings di�erent aspects together to create
a �exible platform particularly focused on enabling rapid, small-scale, scienti�c research and
development. In particular:
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• The N.I.G.E. Machine works with FPGA development boards that are easy-to-use and
a�ordable, so they are within the range of small labs and individuals.

• The N.I.GE. Machine is a fully integrated micro-computer system with video and
keyboard facilities (rather than a purely embedded system).

• No complex or slow-to-use tool chain is required for software development. FORTH is
instantly available at power-on.

• Rather than than relying on generic, �xed-function hardware resources, the N.I.G.E.
Machine's digital logic interface layer can be custom built and optimized for each new
application.

• The N.I.G.E. Machine's stack-based softcore is a full-featured, general purpose CPU
that includes functionality such as interrupts, �exible memory access, and debugging
facilities.

1.4 Scope of this paper

The primary aim of this paper is to describe the new softcore CPU and this is the main focus
of section 2, �Methods�. The paper also aims to illustrate the novel hardware development
platform o�ered to users of the N.I.G.E. Machine and the use of FORTH for the development
and testing of experimental apparatus. These are the main focus of the example application
described in section 4, �Application discussion�.

2 Methods

2.1 Key design objectives

In order to meet the goals outlines above, key design objectives for the softcore CPU were
set out under the headings of (1) platform, (2) real-time control, and (3) CPU performance.
These objectives and the strategies devised to meet them are as follows.

2.1.1 Platform objectives

Rapid prototyping To shorten application and software development time for users it
was decided to (a) not require the use of an external tool-chain for programming and (b)
have an interpreter available at power on. An interpreter allows the user to experiment
directly with the electronic apparatus and also test small routines for bottom-up software
development. BASIC was considered, but FORTH was chosen because it provides both
an interpreter and also a compiler which can produce executables that are almost as fast
as directly assembled machine code. For a new computer system, FORTH also has the
advantage that it can be implemented quite easily in assembly language.

Custom digital logic interface layer The scope for creating custom digital logic inter-
faces in VHDL for each new application di�erentiates the N.I.G.E. Machine from a conven-
tional microcontroller platform with resident FORTH, and opens up new design possibili-
ties. The system can o�er this �rstly because it is built with soft-logic in an FPGA and
secondly because the key micro-controller interface components (principally the memory-
mapped hardware register module and the prioritized hardware interrupt controller) have
been made user-expandable.

Stand-alone usage Alongside the CPU softcore and FORTH, a full set of peripheral
modules (e.g. keyboard, video, other I/O) have been developed to create a complete micro-
computer system for stand-alone use.

3



8

2.1.2 Real-time control objectives

Fast interrupt response time Fast interrupt response time facilitates the high fre-
quency, low-latency processing of external signals[9]. One of the key handicaps to interrupt
processing is the need to save the state of a large register set. Sympathetic with the choice
of FORTH for the system software, the softcore CPU is stack based and so no save/restore
of registers is required for interrupt (or subroutine) processing[11]. The N.I.G.E. Machine's
typical interrupt response time is only 2 cycles to branch to the interrupt vector table fol-
lowed by 3 cycles to branch through the vector to the interrupt routine itself.

Deterministic execution Deterministic execution[9] is the certainty that a given set
of instructions will execute in a given number of CPU clock cycles regardless of state.
Conversely, without deterministic execution, jitter is the deviation of an expected periodic
signal from true periodicity. Avoiding jitter in electronic interfaces is essential for precise
control and measurement. The instruction set and CPU control unit have been designed so
that all instructions execute in a �xed number of cycles, including conditional branches and
static RAM (SRAM) memory access. The CPU's execution pipeline has been designed so
that there are no con�ict states that could result in missed cycles.

Fast branch performance Fast, deterministic, branch performance is important to op-
timize response times in an embedded application[9]. On the N.I.G.E. Machine conditional
and unconditional branches (BEQ and BRA) are designed such that they always execute in
only 3 clock cycles (2 cycles for decode, 1 cycle for memory).

Maximum code density The fastest memory resources available to a softcore CPU are
FPGA SRAM blocks. These also have the advantage over external memory of deterministic
access (i.e. guaranteed single clock cycle read/write). However FPGA SRAM resources are
typically limited to a several tens or hundreds of kilobytes. To maximize the use of SRAM as
program memory, code density needs to be as high as possible[9]. On the N.I.G.E Machine
almost all instructions are encoded in a single byte. This is achieved by using microcode as
opposed to a hardwired decoder in the CPU.

2.1.3 CPU performance objectives

High instruction throughput High instruction throughput translates directly into
higher processing performance. Without super-scalar features or parallel cores, the best
achievable goal is throughput of one cycle per instruction. The N.I.G.E. Machine's CPU
design features a three-stage execution pipeline that delivers single cycle throughput for
most instructions.

Flexible memory access The N.I.G.E. Machine is a 32-bit (longword) CPU and all
system memory is byte addressable. To optimize the speed and �exibility of memory access:
(1) separate CPU instructions have been created to read and write memory in byte, word,
and longword format, (2) the CPU is designed with three separate memory buses (one for
SRAM access and two for byte and word access to the external pseudo-static dynamic RAM
(PSDRAM) that is part of the Nexys 2 development board), and (3) even address alignment
is not required when accessing word or longword data in SRAM system memory.

Fast subroutine performance As an optimization for the execution of FORTH, the
instruction set includes a compound RTS (return from subroutine) instruction that can be
overlaid on top of most single byte instructions, saving one clock cycle on each subroutine
return. This follows the design of the J1 processor[3].
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2.2 Limitations

Hardware and design tradeo�s also resulted in some limitations of the N.I.G.E. Machine as
set out below. None of the limitations are fundamental to the design and hopefully they
will be addressed in future developments.

Program memory space The softcore CPU is currently only able to execute instruction
code located within FPGA SRAM memory. The external PSDRAM on the Nexys 2 devel-
opment board memory cannot be used as a program memory store unless its contents are
�rst copied to SRAM for execution.

Narrow instruction fetch Instructions are fetched from SRAM one byte at a time.
This means that instructions requiring several bytes (mainly the load literal instructions)
necessarily take several cycles to execute.

Lack of �oating point The current implementation of FORTH does not include �oating
point software routines nor does the digital logic design include any �oating point function-
ality in FPGA hardware.

Blocking interrupts The interrupt scheduler provides interrupt prioritization but once
an interrupt is in progress it will block all other interrupts, even those of higher priority.

Lack of double precision (64-bit) arithmetic Some FORTH words in the ANSI core
set require double precision division. However the current implementation of FORTH does
not include double precision arithmetic software routines. Additionally the hardware dividers
used in the CPU are limited to 32-bit operands.

2.3 Implementation of the CPU and other digital logic

2.3.1 CPU instruction set

The softcore CPU has 63 instructions as follows:

Stack manipulation 15 instructions: NOP (no operation), the FORTH words DROP,
DUP, ?DUP, SWAP, OVER, NIP, ROT, >R, R@, R>, plus four words for loading or saving
the parameter and return stack pointers

Math operations 12 instructions: +, -, NEGATE, 1+, 1-, arithmetic shift left and right,
signed and unsigned multiply, add and subtract with carry, and signed and unsigned divide

Comparison operations 11 instructions: the bitwise equality tests = and <>, signed
comparisons <, >, unsigned comparisons U<, U>, comparisons with zero: 0=, 0<>, 0<,
0>, and FALSE, which returns zero

Bitwise operations 7 instructions: the Boolean operations AND, OR, INVERT, XOR,
logical shift left and right, and byte and word sign extension to 32 bits

Memory operations 6 instructions: FETCH and STORE of byte, word, or longword
values

Load literal operations 3 instructions: LOAD longword, word or byte values from within
the program code

5



10

Flow control 6 instructions: JMP (jump to the address on the parameter stack), BSR
and JSR ( branch/jump to subroutine), RTS (return from subroutine), and BEQ, BRA
(conditional and unconditional �ow control)

Exception handling 3 instructions: TRAP (software trap vector) RTS_TRAP (a single-
step), and RTI (return from interrupt)

2.3.2 Memory data format

Data is stored in memory in big-endian format. That is, for multi-byte data the highest
value byte is stored at the lowest numbered memory address. By way of context, Motorola
68k processors also use big-endian format while Intel processors use little-endian format.
Either format could have been implemented in the softcore CPU but the big-endian format
was found to be more suitable for the design of the shift registers that fetch data from
memory, as well as being the author's preference because of its Motorola 68k heritage.

2.3.3 Instruction set encoding

The default instruction size is a single byte, encoded as follows (�gure 1): bit 7 identi�es
whether the instruction is a branch or an ordinary instruction. If the instruction is a branch
then bit 6 speci�es if the branch is conditional or unconditional. If the instruction is ordinary
(not a branch) then bit 6 speci�es whether a return from subroutine is to be taken along
with the execution of the instruction (this is the compound RTS instruction). For ordinary
instructions, bits 5 � 0 (�gure 2) are read as an integer that identi�es the instruction in
question (i.e. the �opcode� ). For branch instructions bits 5 � 0 of the instruction are
read as the high part (bits 13 � 8) of the branch address, with a following byte holding the
low part (bits 7 � 0) of the branch address. Where literal data is required as part of an
instruction it follows in the succeeding bytes (�gure 3).

Bit 7 Bit 6 Interpretation

1 1 Unconditional branch (BRA)
1 0 Conditional branch (BEQ)
0 1 Ordinary instruction plus return from subroutine (RTS)
0 0 Ordinary instruction

Figure 1: Bits 7 and 6 of an instruction speci�es its type.

Bit 7 Bit 6 Bits 5 - 0

1 x High part of branch address
0 x Opcode

Figure 2: Bits 5-0 of an instruction either specify the high part of the branch address or the
opcode.

Byte 1 (bits 5-0) Byte 2 Byte 3 Byte 4 Byte 5

Branch 14 bit branch address - - -
Load.L Opcode 32-bit literal
Load.W Opcode 16-bit literal - -
Load.B Opcode 8-bit literal - - -

Figure 3: Multi-byte instructions specify literal data (big-endian format).
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2.3.4 Overall CPU architecture

The CPU comprises a datapath and a control unit[10].
The datapath holds the registers and computation components associated with the data

held in the parameter and return stacks. The datapath is a passive entity in the sense that
it does not contain any control logic or state information of its own. Rather it includes a
network of multiplexers and other switches that route data between registers and through
computation components in various con�gurations. The behavior of the datapath at any
moment is entirely governed by a set of external control signals feeding to it from the control
unit.

The control unit is built around a sophisticated �nite state machine (FSM) that is re-
sponsible for reading program instructions from system memory, decoding those instructions,
and then setting the control signals to the datapath as appropriate for the execution of each.
The control unit is also responsible for adjusting the program counter (PC) so that program
instructions are read from memory in the appropriate order taking into account program
jumps and branches, dealing with interrupts and other exceptions, and supporting data
transfers between system memory and the data path.

2.3.5 Execution pipeline

The architecture of the CPU is built around a three stage execution pipeline. The pipeline
stages are as follows:

1. �FETCH OPCODE�. The next instruction is read from SRAM at the current address
of the program counter. The control unit identi�es the instruction type and extracts
the opcode.

2. �DECODE AND EXECUTE� The current opcode is decoded via microcode and the
appropriate control signals are sent to the datapath. The datapath con�gures ac-
cording to the control signals and the result of the computation becomes available in
combinatorial logic.

3. �SAVE� The parameter and return stack registers and memory (i.e. the synchronous
logic) are updated with the result of the computation performed by DECODE AND
EXECUTE in the previous stage.

The operation of the pipeline is illustrated with a worked example in �gure 4. In this
example, as at CPU clock cycle #0 the program counter is pointing to memory address
zero. The execution pipeline proceeds thus:

Component / clock cycle Cycle #0 Cycle #1 Cycle #2 Cycle #3

Program counter 0
Instruction byte 38
Opcode 38
Microcode 1210
TOS_n (combinatorial logic) 0
TOS (synchronous logic register) 0

Figure 4: Illustration of the execution pipeline for the CPU instruction FALSE, which places
zero on the parameter stack

1. �FETCH OPCODE�. On the rising edge of clock cycle #1 SRAM system memory
reads the data byte at the memory address pointed to by the program counter and
makes it available to the control unit where it is known as the instruction byte. In
this example the instruction byte has a value of 38 (corresponding to the instruction
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�FALSE� which places zero on the top of the parameter stack). During the same
clock cycle combinatorial logic within the control unit identi�es (based on bit 7 of the
instruction byte) that this is an ordinary instruction and extracts the opcode from the
instruction byte. In this case the opcode also has the value 38.

2. �DECODE AND COMPUTE�. On the rising edge of clock cycle #2 SRAM microcode
memory within the control unit takes the opcode as a lookup address and returns the
corresponding microcode value. During the same clock cycle the combinatorial logic in
the datapath is con�gured according to the microcode value through its control signals
and the value of the computation becomes available at the output of the multiplexer
TOS_n (�gure 5). In this case the microcode value is 1210 (corresponding to a par-
ticular con�guration of control lines that will cause the datapath to push a zero onto
the top of the parameter stack).

3. �SAVE�. On the rising edge of clock cycle #3, the value presented by the multiplexer
TOS_n (i.e. the result of the computation in the previous pipeline stage) is written
into the synchronous logic register TOS (�gure 5). At the same time the current value
of TOS is written into NOS, and the current value of NOS is pushed into the SRAM
block that holds the remainder of the parameter stack.

The CPU has a throughput of one instruction per clock cycle for most instructions since
each pipeline stage executes in a single cycle, thus on every clock cycle another instruction
is completing execution. The CPU has a latency of three cycles since it takes three pipeline
stages to execute each instruction in full. As with any pipeline design there is a tradeo� be-
tween the number of pipeline stages and the maximum feasible CPU clock frequency. Longer
pipelines have less logic to execute at each stage, thus requiring less time and permitting a
higher clock frequency, but at the expense of higher latency and the introduction of issues
such as con�icts between instructions at the beginning and end of the pipeline. The N.I.G.E.
Machine's pipeline was designed to ensure deterministic execute at all times (i.e. no con�ict
states, failed branch predictions, etc.) at the same time as a maximizing clock frequency
subject to that constraint. In particular the design mixes SRAM access (which tend to be
very fast) with combinatorial logic functions (which tend to be slower) in stages 1 and 2 to
balance the overall load throughout the pipeline.

2.3.6 The CPU datapath: parameter stack

Figure 5 illustrates the parameter stack datapath.
The top-of-stack (TOS) and next-on-stack (NOS) storage locations are 32 bit hardware

registers while the remainder of the parameter stack is implemented with a dedicated 2KB
SRAM block. This SRAM block is dual ported and the second port is mapped to the CPU
address space. (This is useful for implementing FORTH instructions such as PICK.) The
datapath is directed from the control unit via a 14 bit wide signal generated from control
unit microcode that drive a set of multiplexers in the datapath and determine the data �ow.
The main multiplexers controlling the parameter stack are as follows:

• The multiplexer TOSn selects the value for the update of the TOS register from
one of eight computation units: addition/subtraction, logic operations, multipurpose,
comparison, multiply, unsigned multiply, divide and unsigned divide.

• The multiplexer NOSn selects the value for update of the NOS register from: TOS,
NOS (i.e. itself, no-update), the item below NOS in the parameter stack RAM, or an
arithmetic value from one of the computation units.

• The multiplexer PSPn is responsible for updating the parameter stack (PS) pointer,
which is a 9 bit address signal spanning 512 * 32 bit cells in 2KB SRAM. The PS
pointer can be incremented (the stack grows by one item), decremented (the stack
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Figure 5: The parameter stack datapath illustrates the use of an SRAM block in combination
with hardware registers.

shrinks by one item), held constant or updated with the current TOS value. When
the PS pointer is incremented, the current NOS item is written from the 32 bit register
to SRAM. The opposite data�ow occurs when the PS pointer is decremented.

The eight multiplexed computation units attached to TOSn essentially form the arithmetic
logic unit (ALU) of the CPU. Each computation unit is directed by signals from the control
unit microcode according to the functionality required by each operation. Some of the
computation functionality is provided by Xilinx CORE modules that may leverage special
purpose circuitry available within the FPGA such as hardware multipliers and carry logic
structures. The computation units are summarized as follows:

• ADDSUB, an adder/subtractor implemented using a XILINX CORE template that
leverages special purpose carry structures on the FPGA. There is a carry �ag within the
ADDSUB unit that is not directly accessible to the CPU but which gives the N.I.G.E.
machine the capability to perform double precision addition and subtraction. The
carry �ag is only changed by one of the 7 addition or subtraction operations above and
remains unchanged during the execution of all other instructions. (Interrupts should
be temporarily suspended via the interrupt mask hardware register before performing
double precision addition and subtraction to ensure that the hidden carry �ag is not
changed inadvertently).

• LOGIC, bitwise logic computations implemented in VHDL.

• MULTI, a general purpose multiplexer implemented in VHDL.

• COMP, a comparison unit implemented using a XILINX CORE template with sup-
porting logic in VHDL.

• M and UM, signed and unsigned multiply implemented using on-chip FPGA pipelined
multipliers with 32 bit operands and a 64 bit result. The operations complete in 5
clock cycles.

• D and UD, signed and unsigned divide implemented in logic fabric using a XILINX
CORE template with 32 bit operands, a 32 bit quotient and a 32 bit remainder. The
operations complete in approximately 40 clock cycles.
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Figure 6: The return stack datapath illustrates the use of an SRAM block in combination
with hardware registers.

2.3.7 The CPU datapath: return stack

Figure 6 illustrates the return stack datapath.
The Top of Return Stack (TORS) value is implemented as a 32 bit hardware register

and the remainder of the return stack in a dedicated, dual ported 2KB SRAM block the
second port of which is mapped to the CPU address space.

• The multiplexer RSn updates TORS with either the value from the top of the pa-
rameter stack (TOS), or the program counter of the next instruction following the
instruction that is currently being executed. (The latter represents the operation of a
JSR or BSR instruction.)

• The multiplexer RSPn updates the return stack pointer with either no change (0),
decrement (-1, return stack size decreases), increment (+1, return stack size increases),
or load from the parameter stack (TOS). The multiplexer is driven by a signal from
control unit microcode.

• There is a secondary multiplexer, RSPnn driven by an auxiliary signal from the control
unit that is able to decrement the return stack pointer regardless of the state of control
unit microcode and the RSPn multiplexer. This is required because logic for the RTS
instructions is hardwired rather than controlled by microcode.

2.3.8 The CPU Control Unit

The main components of the control unit are:

• A �nite state machine (FSM) which determines next state logic and control signal
outputs.

• Microcode held in a 2KB SRAM block that decodes instruction opcodes into control
signals that will be routed directly to the datapath.

• A program counter and associated logic which steps program execution through mem-
ory in the appropriate order.

• Memory access logic which (a) routes memory write connections between the relevant
bytes of the parameter stack registers and the appropriate system memory channels,
and (b) accumulates byte or word length data from successive memory read cycles into
a longword register which is connected to the datapath.
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2.3.9 The �nite state machine

The FSM is responsible for setting the values of control signals according to the current state
and the current program instruction. Since the majority of CPU instructions execute in a
single cycle, in most cases there is no change of state from instruction to instruction. The
state in which all of the single-cycle instructions are executed is documented in the VHDL
source code with the name �common�. The state machine changes state from common to
one of a number of other states for the following events:

• Instructions that take more than a single cycle to execute (?dup, multiply, divide, load
literal, memory fetch, and memory store).

• Jumps, branches, and returns.

• Interrupts and traps.

2.3.10 Microcode

The CPU datapath requires 14 control lines to direct the various multiplexers and compu-
tation units appropriately for each instruction (plus one auxiliary control line for the RTS
instruction). A simple �hardwired� decoder in the CPU control unit might require that these
control lines be represented directly in the bits of the CPU instruction set. However by using
microcode, the 14 control lines can be obtained from only 6 bits in the CPU instruction by
con�guring a 2K SRAM block with 6 address lines and 14 data lines. This enables higher
code density through single-byte instruction encoding . There is a latency of one clock cycle
for reading the microcode from the SRAM. This corresponds to part of the second stage of
the pipeline (�DECODE AND EXECUTE�).

2.3.11 Program counter

The control unit operates such that the code of the next instruction is being read from
SRAM at the same time as the current instruction is being executed. This is part of the
�rst stage of the pipeline (�FETCH OPCODE�). Update of the program counter is controlled
by the FSM. At each cycle the possibilities for update of the program counter and return
stack are:

• For single cycle instructions and load literal instructions, add one to the PC. Load
literal instructions proceed byte by byte through the literal data using the PC.

• For other multi cycle instructions, add zero to the PC until the last cycle of the
instruction and then add one. This is required to prime the �rst stage of the pipeline
(�FETCH OPCODE�) so that the next-but-one instruction is read from memory at
the appropriate time

• For an external interrupt, redirect the program counter according to the vector number
provided by the interrupt controller. In this case the current value of the program
counter needs to be placed on the return stack since the current instruction will not
be executed.

• For a TRAP or RTI_TRAP instruction, redirect the program counter to the trap
vector. (The RTI_TRAP instruction is a two-phase instruction used for single step-
ping; �rst of all an RTI from the current trap routine is made, then one instruction
at the current PC is executed, and then control is passed immediately back to the
TRAP vector). For a TRAP instruction the PC of instruction following the current
instruction is stored on the return stack.

11



16

• For a jump (JSR, JMP), redirect the program counter to the value currently on the
top of the parameter stack (TOS). In the case of a JSR, also save the address of the
next instruction on the return stack.

• For a branch instruction (BSR, BRA, BEQ), if the branch is taken redirect the program
counter to the value of the PC plus the value on the top of stack. BRA and BEQ are two
byte instructions and the PC will be on the second byte when the branch calculation is
made. This needs to be taken into account by the assembler when calculating branch
o�sets.

2.3.12 Memory Channels

The CPU has three separate memory channels. Each of these channels has a read data bus,
a write data bus plus memory control signals as required. A single address bus is common
to all channels. The three data channels are as follows:

• An 8-bit data channel to SRAM.

• An 8-bit data channel to PSDRAM via the direct memory access (DMA) controller.

• An 16-bit data channel to PSDRAM via the DMA controller. This memory channel
has twice the bandwidth of the 8-bit channel and is used for the read /write of word
and longword data.

2.3.13 Other hardware components

The other principal hardware components implemented in VHDL are as follow:

Interrupt controller Responsible for prioritizing and scheduling interrupt signals from
I/O devices to the CPU. The interrupt controller can be con�gured to accept additional
interrupts from user-designed components in the digital logic layer that have their own
interrupt vector routines. An interrupt mask register is available for enabling and suspending
interrupts.

Video controller Responsible for providing a VGA signal for connection to a monitor.
The video controller provides 256 colours and text/character graphics resolutions of 100*75,
100*60, 80*60, or 80*48 characters per screen, plus pixel graphics resolutions of 800*600 or
640*480 pixel per screen, double bu�ered.

Direct Memory Access (DMA) controller Responsible for multiplexing access from
the CPU, the video controller, and other components to the 16MB PSDRAM on board the
Nexys 2 development board.

RS232 controllers There are two by default, which provide an RS232 port for gen-
eral purpose I/O and a dedicated RS232 port for connection to a third party SD-card
reader/writer that serves as an external storage medium for the N.I.G.E. Machine.

PS/2 keyboard controller For direct connection to a PS/2 keyboard.

Memory-mapped hardware registers The interface between system control registers
to the CPU address space. The hardware registers are expandable to accommodate user-
designed components in the digital logic layer.

12
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2.4 Implementation of system software

The N.I.G.E. Machine's FORTH environment is coded in assembly language and occupies
just less than 8K of system memory. Published versions of FORTH were examined for
guidance with the implementation[12][13]. For the most primitive FORTH words, there
is a one-to-one correspondence with the CPU instruction set. Other FORTH words are
implemented as machine language subroutines. There is no inner interpreter. The operating
model on the N.I.G.E. Machine's FORTH environment could be classi�ed as subroutine
threaded or native.

Because the CPU instruction set is in general a subset of primitive FORTH words,
the FORTH environment serves as the �local assembler� for the N.I.G.E. Machine. The
N.I.G.E. Machine's FORTH implementation was developed in assembly language on a PC
with a specially developed two-pass cross assembler and the cross assembler itself is written
in standard ANSI FORTH.

The ANSI FORTH CORE[14] wordset has been implemented with very few exceptions,
along with a selection of the most applicable words from the CORE EXTENSION, FACIL-
ITY, FILE ACCESS, PROGRAMMING TOOLS and STRING wordsets . Where minor
departures from the ANSI standard have occurred they are due to reasons of implementa-
tion e�ciency on an embedded system. In addition, a set of system speci�c words have been
developed to enable convenient control of the N.I.G.E. Machine's facilities.

3 Results

3.1 Synthesis results obtained from the Xilinx ISE development

software.

Version 13.2 of the Xilinx ISE tools was used to develop and synthesize the logic design for
the Xilinx XC3S1200E Spartan-3E FPGA that is used in the N.I.G.E Machine. To put this
FPGA in context, broadly speaking Xilinx has for several years o�ered two main families
of device, Virtex and Spartan. Virtex are the high performance devices and Spartan are
the economy or high-volume devices. Device families are also di�erentiated by generation
numbers that indicate improving technology, typically driven by advances in the manufac-
turing process. Currently the latest devices in the Virtex family are at generation 7 and
the latest devices in the Spartan family are at generation 6. Within the Spartan family, the
prior generation to 6 was 3 (generation numbers 4 and 5 were skipped). Table 1 o�ers a
comparison of Xilinx FPGAs according to the performance of the proprietary Xilinx softcore
CPU, the MicroBlaze.

The Spartan-3E FPGA used in the N.I.G.E. Machine is therefore a one-generation-old
device in the economy family of Xilinx FPGAs, and so relatively modest in comparison to
the latest available technology. Nevertheless, it is in itself a highly capable device.

Device family Typical MicroBlaze clock speed (3 stage pipeline format)

Virtex-6/7 240 MHz
Spartan-6 150 MHz
Spartan-3 50 MHz

Table 1: Xilinx device families compared according to MicroBlaze performance[15].
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Resource Used Available Utilization

4-input LUT's 3,884 17,344 22%
Slice �ip �ops 2,920 17,344 16%
2K block RAM 28 28 100%
Multipliers 8 28 28%

Table 2: N.I.G.E. Machine FPGA utilization on a Xilinx XC3S1200E, Spartan-3E FPGA.

Resource LUT's

CPU 2,529
of which datapath 1,920
of which control unit 609
DMA controller 364
Hardware registers 280
Video controller 114
Diligent IO port 95
RS232 controller 71
Reset controller 52
PS/2 controller 39
System RAM 33
Interrupt controller 31

Table 3: N.I.G.E. Machine FPGA utilization at module level.

Parameter

Maximum frequency 50.140 MHz
Minimum period 19.944 ns
Minimum input required time before clock 11.507 ns
Minimum output required time after clock 13.097 ns

Table 4: N.I.G.E. Machine timing summary on a Xilinx XC3S1200E, Spartan-3E FPGA.

14



19

3.2 Instruction frequency

Instruction Frequency

LOAD.W 17.88%
JSR 9.17%
RTS and ,RTS* 9.06%
LOAD.B 6.47%
BEQ 4.60%
DUP 4.17%
OVER 3.67%
FETCH.L 3.56%
DROP 3.42%
STORE.L 3.02%
SWAP 2.91%
R> 2.37%
BRA 2.37%
FALSE 2.23%
FETCH.B 2.19%
1+ 2.05%

* Of which RTS 6.36% and ,RTS 2.70%

Table 5: The 80% most used CPU instructions in the FORTH system software (as counted by
the cross-assembler and ignoring execution frequency di�erences due to loops and conditional
code, etc.)

3.3 Implications for design objectives

The FPGA logic utilization of 22% for a full micro-computer system on a relatively modest
device is a very positive result. There is a signi�cant amount of room remaining on the
FPGA for the digital logic layer. If anything, further improvements in the design could
be focused on addressing some of the current design limitations even at the expense of
consuming a reasonable amount of additional logic area.

The maximum frequency of 50MHz was roughly as expected on this particular FPGA
given the benchmark to the MicroBlaze (Table 1). Detailed analysis of the post place-and-
route timing report did not reveal obvious bottlenecks in any one area of the design. The
delays are roughly balanced between logic and routing. There was some evidence that the
carry structure in the datapath adder unit may be a slightly slower path, and likewise the
hardware registers.

The instruction frequency results were illuminating when considered in relation to the de-
sign objectives. The table well illustrates the load-store architecture of the CPU (LOAD.W
is the most used instruction), and the subroutine threaded nature of FORTH (JSR and RTS
are the second and third most used instructions). Given that high instruction throughput
was speci�ed as a design objective, it is interesting that the most used instruction (LOAD.W)
is one of the minority of instructions that do not execute in a single cycle. (LOAD.W ex-
ecutes in three cycles as a direct result of the narrow instruction fetch that was discussed
under design limitations.) Another optimization speci�ed at the design stage, the compound
RTS instruction, is only used in 30% of all return-from-subroutine instances, perhaps be-
cause of the limitation that it is only compatible with single cycle instructions that do not
otherwise involve the return stack.

Clear priorities for future versions of the CPU softcore will be to widen the instruction
fetch and to broaden the applicability of the compound RTS instruction, as well as identi-
�cation of the hardware modules that can be further developed to increase the maximum
potential clock frequency.
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4 Application discussion

An experimental setup in applied physics served as an illustration of the use of the N.I.G.E.
Machine. A short video is available to demonstrate [16]. The objective of the experiment was
to measure the response of a certain light sensor to changes in the brightness of an LED. The
light sensor in question was a light-to-frequency converter manufactured by the �rm TAOS
which comprises a photodiode and a current-to-frequency converter in a single package. The
package has three connecting pins: 5V supply, ground, and output. The output signal is
a square wave that varies in frequency from less than 1Hz to around 500kHz in response
to the illumination of the photodiode. A tri-colour LED provided the illumination for the
experiment. The LED has a common anode that connects to the positive supply voltage
and three separate cathodes on the red, green, and blue elements that connect to ground
via resistors of appropriate value. Three general purpose PNP transistors were connected
between the cathodes and the resistors to provide switching for each colour element.

The circuit was constructed on breadboard. The output pin of the TAOS sensor and
bases of the three PNP transistors were connected via hookup wires to an expansion port
on the Nexys 2 board that routes directly to free pins on the FPGA.

A digital logic layer was designed to control and take measurements from the circuit in
real time. As with the N.I.G.E. Machine overall, the Xilinx webpack tools were use for this
development work. (The webpack tools are a free download from the Xilinx website[15].)

A frequency counter was required for measuring the output of the TAOS unit. A straight-
forward frequency counter module was developed in VHDL that comprised (a) a debounce
process to eliminate any switching noise on the signal line, (b) a �nite state machine to
follow the square wave of the TAOS signal and (c) a counter and register to record the
number of cycles of the square wave in one second. For controlling the three LED elements
three variable duty cycle square wave outputs were required (with a variable duty cycle
square wave, the average current to an LED element can be adjusted whilst keeping the
supply voltage constant. If the square wave has a su�ciently high frequency (say 100Hz
or more) there will not be any �icker observed by the light sensor.) A variable duty cycle
square wave generator is very straightforward to design in VHDL and a suitable module
was written in less than about 10 lines of logic description. Both the frequency counter and
the variable duty cycle module were interfaced to the micro-computer layer of the N.I.G.E.
Machine via hardware registers memory mapped to the address space of the CPU. This was
accomplished by extending the existing hardware register module of the N.I.G.E. Machine.
Three single-byte memory addresses were mapped to the duty cycles for the red, green and
blue LED elements. Writing values of 0-100 to these registers adjusts the brightness of each
of the red, green, and blue LED elements from full o� to full on in real time. The output
from the frequency counter was mapped to a longword memory address that could be read
directly as the current frequency reading in Hz. The frequency reading in the register is
automatically updated each one second in this design.

The digital logic layer was initially developed independently of the N.I.G.E. Machine in
a stand-alone application. After a brief logic design was drawn up, the VHDL simulator
was used to verify that the modules were operating as expected. A few small enhancements
and simpli�cations were made at the simulation stage. After simulation was complete the
Nexys2 board was programmed with the design of the two modules and connected to the
breadboard and the electronic circuit. The modules were veri�ed working as expected. At
this stage a branch was made in the Subversion version control repository where all of the
source code for the N.I.G.E. Machine is held. Using a branch structure in the version control
system allowed a special version of the N.I.G.E. Machine source code to be created without
a�ecting the main development path. The frequency counter and variable duty cycle modules
were incorporated into the source code of the N.I.G.E. Machine and the Nexys2 board was
programmed with the revised version. The functionality was again veri�ed.

Finally, the FORTH environment was used to begin investigating the properties of the
circuit. Initially small FORTH de�nitions were constructed to set the duty cycles of the
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three LED colour elements and read the frequency count from the TAOS sensor. These
words were used to informally investigate such things as the dynamic range of the sen-
sor/LED combination, the level of illumination background in a lit and unlit room, and the
illumination levels of the three di�erent LED colours. This general �tinkering� allowed the
experimenter to gain a general feeling for the apparatus before running an actual experi-
ment. Next, simple FORTH words were constructed to test the frequency output at various
levels of duty cycle input and repeat these measurements over a series of input values. The
results were read from the N.I.G.E. Machine and analyzed on a PC using Microsoft Excel.
(The N.I.G.E. Machine includes an interface to a third party SD-card reader/writer than
could also be used for logging the experimental results and transferring them to a PC for
analysis.)

There are various ways in which the sophistication of the experimental set-up could be
extended. For example the frequency counter module in the digital logic layer currently
counts the signal from the light sensor over a period of one second. This is a simple and
direct way to obtain a frequency count but a better dynamic range and/or response speed
for measurements could be achieved by making the count period user selectable, for example
1/16 second, 1/4 second, 1 second, 4 seconds. This could be easily achieved with another
writable hardware register that directs the frequency counter module accordingly. Or, the
measurement system could be changed so that rather than counting the number of square
waves over a �xed time period, the time taken to receive a certain number of waves would be
measured instead, and thus the dynamic-range would be self-adjusting. An interrupt could
also be used to signal when each new reading is ready.

The example described here illustrates the general approach of using a custom built
digital logic interface for a new application and developing with a rapid prototyping envi-
ronment. The initial digital logic interface functionality may be kept quite straightforward
so as to minimize the time needed prepare the �rst design. As the user �nds that there are
experimental boundaries that need to be pushed back, it is straightforward to go back and
iterate the design of the digital logic layer in a focused way to meet those goals. FORTH is
used as a �language for direct communication between human beings and machines�. The
interactivity allows the experimenter to tinker with the apparatus at the initial stage, per-
haps checking the overall characteristics or problem-solving any issues. When ready, the
experiment proper can be built bottom up using the small routines that are already tested
and understood.

5 Next steps and acknowledgments

The experiment described here was chosen just as an example to illustrate the capabilities
of the N.I.G.E. Machine and the typical steps in developing an application. It is hoped
that the N.I.G.E. Machine will �nd use in real scienti�c projects going forward. Future
developments are anticipated that will enhance its capabilities including porting the design
to more advanced FPGA development boards that o�er additional speed and functionality
(for example the Digilent Atlas board using a Spartan-6 FPGA).

I would like to acknowledge and thank Gunnar von Boehn and Jens Künzer of the
Natami project for their thoughts on VHDL development and the N.I.G.E. Machine system
manual, Jonathan Keelan of the Open University for his advice on the presentation of this
paper, and the anonymous reviewers who's suggestions considerably improved its clarity of
communication. The remaining de�ciencies of the paper are solely the responsibility of the
author.
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Abstract

Here we are interested in the semantics of Forth from the point of view

of using Forth as a target language for a formally verified compiler for

Ruth-R, a reversible sequential programming language we are currently

developing. We limit out attention to those Forth operations and con-

structs which will be targetted by the Ruth-R compiler. To facilitate the

comparison of meanings of source and target languages, we represent the

semantics of Forth code by translation into a form which can be described

using the ”prospective value” semantics we use for Ruth-R.

1 Introduction

We are interested in the semantics of Forth from the point of view of using Forth
as a target language for a formally verified compiler.

Our source language for this project is Ruth-R, an expressive reversible guarded
command language for which we are currently constructing the syntax, seman-
tics, and compiler. The semantics of Ruth-R are expressed in terms of the value
some expression E can take after the execution of some program S , which we
represent as S ⋄ E . We call this the prospective value of E after executing S ,
and refer to the semantics as “prospective value semantics”, or PV semantics
for short.

The target language is RVM-Forth [11], a reversible version of Forth we have
developed to explore the algorithmic possibilities of reversible languages.

Our approach will be to give a translation of each Forth operation into a form
to which PV semantics may be applied. That is, we translate it into the form
of a sequential programming language, with the stack appearing as a variable.

Our investigations also cover different representations of the same value. For
example, RVM-Forth provides a generic set package, but for efficiency reasons
we may wish to represent small sets using bit vectors.

A key design question for us will be how to model the Forth parameter stack,
and we will compare two possible approaches: first as a sequence of cell val-
ues, (an approach previously investigated by P Knaggs[4]) whose entries are
subsequently viewed in terms of interpretation functions; and secondly as a
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“conceptual stack”, a structure which is directly able to hold values of any
type.

Our approach is also influenced by the fine grained nature of Forth semantics;
the infix language assignment x := x + 1 will compile to Forth as x 1 + to x;
and for compositionality we require separate semantic translations for each of
x, 1, + and to x and the sequential composition of these to obtain the se-
mantics of x 1 + to x . This makes it essential that the semantic description
of the sequential composition of operations be expressed in a simple way.

Our approach is more detailed than the Pöial algebra of stack effects [7] but
is less ambitious that some other previous formulations. We do not seek a
technique for the complete description for the Forth virtual machine[6] or the
operation of the Forth compiler [5], but we rather extend Forth with the data
types and control structures required by Ruth-R, and then give semantic de-
scriptions of these components; thus the work described here can be charac-
terised as a shallow formulation. Its advantages are that is is axiomatic, fully
compositional, and minimises the semantic distance between source and target
languages.

Our general approach is conditioned by that we have adopted for expressing
the semantics of reversible language. We borrow many techniques from the B-
Method [1] as described in [12], and to simplify our theory presentation we use
Hehner’s conception of a “bunch” as the contents of a set.

The rest of the paper is structured as follows: section 2 deals with mathematical
background and the axioms of our semantics; section 3 sketches an algebraic
treatment of stack semantics; Section 4 considers two different models for the
stack, and discusses assignment, literal values, and differing representations of
the same data; section 5 defines the semantics of selection and iteration; section
6 discusses local variables; in section 7 we conclude.

2 Mathematical Preliminaries

2.1 Bunch Theory

Following Hehner[2], we give a mathematical meaning to the contents of a set,
which we call a bunch: e.g. the contents of the set {1, 2} is the bunch 1, 2. We
write ∼A for the contents of set A, thus ∼{1, 2} = 1, 2.

The comma used in a bunch extension expression such as 1, 2, 5 is now a mathe-
matical operator, called bunch union. It is associative and commutative, and its
precedence is just below than that of the expression connectives. It is associated
with set union through the rule

A ∪ B = {∼A,∼B}

Binary operations applied to bunches are lifted to apply pairwise, thus adding
the bunches 0, 1 and 2, 4 yields 0+2, 0+4, 1+2, 1+4. Note that we cannot write
this sum as 0, 1 + 2, 4 because bunch union (comma) has a lower precedence
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than +; nor can we use standard brackets to enforce precedence, as we retain
the use of brackets to express tuples. We can however bracket with ∼{..}, as in
∼{0, 1}+∼{2, 4} = 2, 4, 3, 5

A bunch A is a sub-bunch of B if each element of A is an element of B . We
write this as A : B . Sub-bunches are related to subsets by the rule:

A : B ⇔ {A} ⊆ {B}

The guarded bunch p −→ E is equal to the empty bunch, null , if predicate p
is false, and otherwise equal to E . The preconditioned bunch p E is equal
to the improper bunch ⊥ if p is false, and otherwise equal to E . The improper
bunch expresses complete ignorance about a value, extending to a suspicion that
a computation supposed to produce a value might have crashed.

We use a typed set theory based on the axiomatic approach used in the B-
Method. We assume the availability of any required given sets, including the
integers, and we are able to produce from these new maximal sets by the use of
set product and powerset operations. These maximal sets act as types. We can
generate new sets by set comprehensions of the form

{x | x ∈ X ∧ P • E }

where expression E is of a fixed type, so that our set comprehensions can only
produce homogeneous sets.

We similarly restrict our attention to bunches which are homogeneous; these
have the same type as their elements, thus 1, 2 is of type integer, which we can
write as 1, 2 ∈ Z.

Analogously to set comprehension, we can write the bunch comprehension:
∮

x • E

Here, although the type of x is not given explicitly it has to be implicit from an
examination of the expression E . The result consists of all values that E can
take as x ranges over its type. For example the bunch 10, 20 can be written as
the bunch comprehension

∮
x • x : 1, 2 −→ 10 ∗ x .

2.2 Prospective Value Semantics

We are formalising a reversible language with a choice construct used to express
both non-determinism and provisional choices subject to backtracking. We write
S ⋄ E for the values expression E could take were program S to be executed.
We have the following rules which define S ⋄ E over the essential semantic
components of the language:
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Name Rule Condition

skip skip ⋄ E = E
assignment x := F ⋄ E = (λ x • E )F
pre-condition P | S ⋄ E = P (S ⋄ E )

choice S 8 T ⋄ E = (S ⋄ E ) , (T ⋄ E )

guard P
8

−−→ S ⋄ E = P −→ (S ⋄ E )
seq comp S ; T ⋄ E = S ⋄ T ⋄ E
local variable var x .S ⋄ E =

∮
x • S ⋄ E x not free in E

The precedence of ⋄ is below that of programming connectives, whose prece-

dence, in descending order, is := ,
8

−−→ , 8 , ; , | The large equals = has the
same meaning as “=” but a very low precedence: we require it when discussing
equality in the context of programs as the precedence of the standard equal sign
is above that of the program connectives.

Our use of bunches enables us to express the effects of choice and sequential
composition in a homogeneous manner, and to describe non-determinism. This
case is more fully argued in [8].

The attentive reader will note that these semantic components do not include
selection and iteration constructs. These are handled by means of choice and
guard. e.g

if g then S else T end

is expressed as:

g
8

−−→ S 8 ¬ g
8

−−→ T

This decomposition was first proposed by Hehner [2, 3] who used predicative
semantics. Abrial adapted it to predicate transformer semantics for use in in the
B-Method [1]. A description of our approach using prospective value semantics
is given in [10]. We can extend this to probabilistic programs [8], and express
preference within provisional choice [9].

3 Prospective values and stack algebra

We will consider two different ways a stack may be modelled in terms of an
underlying representation within our mathematical world of typed set theory,
before choosing our preferred representation. However, we will first deal alge-
braically with some basic stack manipulations. This will avoid some repetition,
as the algebraic treatment will be the same for either model.

We represent an empty stack by ε. If s is a stack state, let s x be the new
stack state obtained by pushing x .

If s is a non-empty stack, drop(s) will be the new stack obtained by dropping
the top item. We thus have

drop(s x ) = s

4



49

Let top(s) be the top element of a non-empty stack s, and next(s) the second
from top element of a stack s which has at least two elements. Thus:

top(s x ) = x and next(s x y) = x

The function swap takes a stack and returns the new stack obtained by swapping
the top two elements. Thus

swap(s x y) = s y x

We define the semantics of the Forth SWAP operation, which unlike the function
swap, acts on a particular stack (which we just call stack):

JSWAPKF = depth(stack) ≥ 2 | stack := swap(stack)

Here, the notation JSWAPKF encloses the Forth code being discussed in the se-
mantic brackets J ... KF . In general, if S is Forth code, JSKF will represent its
translation into a form whose meaning can be expressed in PV semantics.

With the above semantic definition of SWAP we bring a Forth stack manipulation
within the scope of PV semantics by treating it as an assignment. The semantics
of SWAP given above also tells us that its frame (the list of variables it may alter)
contains just stack . Also, by PV rules for pre-condition and assignment:

JSWAPKF ⋄ stack = depth(stack) ≥ 2 swap(stack)

We can apply similar treatments to other stack manipulation operations.

JDROPKF = depth(stack) ≥ 1 | stack := drop(stack)
and hence
JDROPKF ⋄ stack = depth(stack) ≥ 1 | drop(stack)

For NIP we introduce an auxiliary function nip such that for any stack s and
items x , y we have nip(s x y) = s y , allowing us to define the semantics
of the Forth operation NIP as:

JNIPKF = stack := depth(stack) ≥ 2 stack := nip(stack)

and hence

JNIPKF ⋄ stack = depth(stack) ≥ 2 nip(stack)

In addition to giving the meaning of individual Forth operations, we also need
to express the meaning of Forth’s program connectives. The first we require is
sequential composition:

JS TKF = JSKF ; JTKF

We are now in a position to prove a semantic equality. We will show that NIP
is equivalent to SWAP DROP. We define two Forth programs to be equal if their
semantic representations are equal. i.e. for Forth programs A and B :

A = B =̂ JAKF = JBKF

and we define their semantic representation to be equal if they have the same
frame and the same PV effect over the variables of that frame (or, equivalently,
the same PV effect over an arbitrary expression).
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We will show that: JSWAP DROPKF = JNIPKF

Since the frame of JSWAP DROPKF and the frame of JNIPKF are both stack , we
can show the required equality by showing

JSWAP DROPKF ⋄ stack = JNIPKF ⋄ stack

JSWAP DROPKF ⋄ stack
= Forth seq comp
JSWAPKF ; JDROPKF ⋄ stack
= PV seq comp
JSWAPKF ⋄ JDROPKF ⋄ stack
= semantics of DROP
JSWAPKF ⋄ depth(stack) ≥ 1 | stack := drop(stack)
⋄ stack = PV pre-cond

JSWAPKF ⋄ depth(stack) ≥ 1 stack := drop(stack)
⋄ stack = PV assignment

JSWAPKF ⋄ depth(stack) ≥ 1 drop(stack)
= semantics of SWAP
depth(stack) ≥ 2 | stack := swap(stack)
⋄ depth(stack) ≥ 1 drop(stack)
= PV pre-condition
depth(stack) ≥ 2 (stack := swap(stack)
⋄ depth(stack) ≥ 1 drop(stack))
= by assignment
depth(stack) ≥ 2 depth(swap(stack)) ≥ 1

drop(swap(stack))
= simplifying pre-cond
depth(stack) ≥ 2 drop(swap(stack))

Now for depth(stack) ≥ 2 there will be some stack s and items x , y such that
stack = s x y and hence:

JSWAP DROPKF ⋄ stack =
depth(stack) ≥ 2 drop(swap(s x y) =

applying function swap
depth(stack) ≥ 2 drop(s y x ) =

applying function drop
depth(stack) ≥ 2 s y =

from property of nip
depth(stack) ≥ 2 nip(s x y) =

equality: stack = s x y
depth(stack) ≥ 2 nip(stack) =

assignment introduction
depth(stack) ≥ 2 | stack := nip(stack)
⋄ stack =

semantics of NIP
JNIPKF ⋄ stack
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4 Modelling the stack

Modelling a stack which may contain items of any type is a challenge in our
semantics, where we rely on a typed set theory which only admits homogeneous
sets. We consider two possible approaches. In the first the stack is modelled
as a sequence of raw cell values, and we use interpretation functions to tell us
what is represented by these cells. In the second we model a stack state as an n-
tuple, taking advantage of the fact that different elements of a tuple need not be
homogeneous, and we describe a conceptual stack of possibly non-homogeneous
mathematical objects.

4.1 Modelling the stack as a sequence of cells

In this section we introduce a stack modelling technique which we will subse-
quently reject in favour of a more abstract approach. The section is included
mainly to show some difficulties that arise from this approach, and can be omit-
ted without affecting the readers understanding of the rest of the paper.

We might model the stack as a finite sequence of cells, where a cell is a function
defined on 32 bit machines as:

CELL = 0..31 7→ BIT

A stack is a finite sequence of cells. We introduce a constant, the set of all
stacks, which we call STACK .

STACK = fseq(CELL)

and we introduce a variable stack to represent the parameter stack, with the
invariant property:

stack ∈ STACK

With this model, pushing an element onto a stack is simply a matter of append-
ing an element to a sequence:

s ∈ STACK ∧ c ∈ CELL ⇒ s c = s a 〈c〉

Functions which perform calculations on a stack will interpret its cell values
in a particular way. For example the operation + might interpret them as
signed numbers. Let num ∈ CELL → −231 .. (231 − 1) be the “interpretation
function” giving the signed integer value associated with the cell under a two’s
complement representation. The inverse of num is also a function, such that for
any signed integer n in the representable range, num−1(n) will be the cell that
represents n.

To describe the semantics of the Forth word +, we first define a function plus
which acts on any stack of depth ≥ 2 and adds the top two elements: we see in
its definition the explicit interpretation of cell values as numbers:
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plus ∈ STACK 7→ STACK
dom(plus) = {s | s ∈ STACK ∧ card(s) > 1 }
s ∈ STACK ∧ c1, c2 : CELL ⇒

plus(s a 〈c1, c2〉) = s a 〈num−1(num(c1) + num(c2)) 〉

The attentive reader will not that, in defining plus, we have not been careful
about what happens if the application of + yields a value outside the expressible
range. This is because we avoid any responsibility for the the value provided by
such an application by including an appropriate clause in the pre-condition in
the semantics of the Forth operation +:

J+KF = num(next(stack))+num(top(stack)) ∈ ran(num) ∧ depth(stack) ≥ 2
| stack := plus(stack)

The above example shows an approach we can take when the interpretation
functions we are using are constant. However, for some operations the results
will be data structures held in the heap and referenced by pointers on the stack.
Consider, for example, the following expression in RVM-Forth which represents
{100, 200} ∪ {300}:

INT { 100 , 200 , } INT { 300 , } ∪

As each set is evaluated, we obtain, on the stack, a pointer to a structure on the
heap. Let set be the interpretation function that maps the cell values of these
pointers to their corresponding sets. We note that set is a variable which changes
with every new set that is produced. Also, the pointer values are not explicitly
defined: we can only say that some suitable pointer is provided, which we must
do by introducing it with an existential quantifier. One possible description of
J∪KF is:

depth(stack) ≥ 2 ∧ top(stack) ∈ dom(set) ∧ next(stack) ∈ dom(set) ⇒
∃ c • J∪KF =
stack := drop(drop(stack)) c ‖
set := set ∪ { (c, set(next(stack) ∪ set(top(stack)) }

The reader will note that instead of an explicit definition of the semantics of
set union, we have obtained an implicit description in which the term J∪KF has
become a fully fledged mathematical object. This is not a situation we relish:
it imposes some additional responsibilities to show the mathematical validity of
such terms, and does not provide for equational reasoning.

These concerns, along with the entailment of irrelevant details concerning heap
pointers, motivate us to investigate an approach in which we model a non-
homogeneous stack of conceptual mathematical objects.

4.2 Modelling the conceptual stack

We use a typed set theory whose axioms are given in [1]. We can define some
“given sets” and from these we form new sets by means of the powerset and set
product operations. Set comprehension allows us to describe subsets of these
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given and constructed sets.

We wish to model a “conceptual stack”, which may include different types of
mathematical object. The restrictions of our type theory rule out the use of a
sequence as the modelling vehicle, so we turn to tuples.

In a formalism which provides n-tuples, we could model a stack containing a b c
with the 3-tuple (a, b, c). However, our formalism provides only ordered pairs,
and when we write (a, b, c) we obtain an ordered pair ( (a, b), c ).

Thus we cannot just use (a, b, c) to model the stack containing a, b and c: since
ordered pairs are themselves a possible stack item, there would be no way to
distinguish a 3 item stack containing a, b and c from a two item stack containing
(a, b) and c (we note that tuple construction is left associative). Furthermore,
we would have no way to represent a stack of 0 or 1 items.

We can, however, construct some special ordered pairs which will model n-
tuples, or stacks. We require an arbitrary constant value to represent an empty
stack, and we call this ε.

For a stack s we define the act of pushing an element s using tuple construction
as:

s x =̂ (s, x )

We make use of the ordered pair notations:

first(x , y) =̂ x , second(x , y) =̂ y

And thus we can define the function that yields the top element of a stack:

top(s) =̂ second(s)

If the function top is applied to an empty stack we obtain, in our particular
theory of partial function application, the empty bunch. However, we will al-
ways impose pre-conditions on operations in order to wash our hands of any
responsibility for such an application.

We also have:

drop(s) =̂ first(s)
next(s) =̂ top(drop(s))
depth(s) =̂ s = ε −→ 0, s 6= ε −→ depth(drop(s)) + 1

At this point the diligent reader may wish to construct the stack s where s =
ε a b c and evaluate top(s), drop(s), next(s) and depth(s).

Since we cannot characterise s as a stack by saying it is a member of some type
(which for us is a maximal set) we introduce a unary predicate IsStack , with
the following defining properties:

IsStack(ε)
IsStack(s) ⇒ IsStack(s x )
and nothing else is a stack.

We now return to the semantics of set union which gave us some trouble when
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modelling the stack as a sequence of cells. We begin, as usual, by the description
of an auxiliary function.

IsStack(s) ∧ ∃ T • x ⊆ T ∧ y ⊆ T ⇒ union(s x y) = s x ∪ y

Then we can give an explicit definition of the semantics of Forth set union:

J∪KF = ∃ T • top(stack) ⊆ T ∧ next(stack) ⊆ T |
stack := union(stack)

From now on we take the conceptual stack as our model.

4.3 On differing representations of the same data

Within a computer system we may have different representations of the same
data. A string could be a counted string or an ascii zero string. A sequence of
n elements has a representation in the RVM sets package in terms of its graph,
i.e. as a set of ordered pairs, but could also be represented by an n element
array. A function could be represented as an operation or, in passive form, by
its graph, or, if it is a sequence, as an array.

To show how such variations in representation may be handled using the con-
ceptual stack we consider the example of bitsets, which can represent subsets of
0..31 according the the bit settings in a 32 bit cell.

We define a function bits2set whose domain is the subsets of 0..31 and which
maps its argument to the corresponding bitset representation for that set. The
semantics of the corresponding Forth operation, Bits2Set is:

JBits2SetKF = depth(stack) > 0 ∧ top(stack) ⊆ 0..31 |
stack := drop(stack) bits2set(top(stack))

4.4 Literal values, variables, and assignments

Some RVM-Forth literal expressions are written in non-standard notation. For
example the set {10, 20} would be written in RVM-Forth as INT { 10 , 20 , }.
In the following we use JLKL to represent the translation of the RVM-Forth lit-
eral expression L into standard notation, but we do not give this translation in
detail.

We express the semantics of a literal expression L as:

JLKF = stack := stack JLKL

Let x be a variable (i.e. a Forth VALUE). We assume the existence of a corre-
sponding variable in the mathematical world, which we write, in mathematical
typeface, as x . The semantic representations for x are:

JxKF = stack := stack x

Jto xKF = depth(stack) > 0 | stack := drop(stack) ‖ x := top(stack)

10
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5 Selection and Iteration

Instead of a condition test which is syntactically connected to the selection
statement, the Forth IF structure uses the value at the top stack item, assumed
to hold the result of a previous test.

J if S else T then KF =
var τ . τ = top(stack)

8
−−→ stack := drop(stack) ;

if τ 6= 0 then JSKF else JTKF end

For iteration, we restrict our attention to the structure:

JBEGIN G WHILE S REPEATKF

since this most closely resembles the classic while loop representation used in
the formal semantics of sequential programming; to obtain the classical loop
interpretation we must impose the following restrictions:

frame(JGKF ) = stack

JGKF ⋄ stack = stack E for some E

JSKF ⋄ stack = stack

these assumptions allow us to transcribe the loop into a standard sequential
programming representation JBEGIN G WHILE S REPEATKF =
while top(JGKF ⋄ stack) 6= 0 do JSKF end

6 Local variables

Local variables in RVM-Forth operations are used to capture operation argu-
ments and other local variables whose initial values are provided after execution
of an operation has begun. An example of local variable syntax in RVM-Forth
is:

: T (: x y :) 100 VALUE u 200 VALUE v ... ;

Here x and y will be initialised with the value of the next and top stack items
when T is invoked, and u and v will be initialised with the values 100 and 200.

Our semantics of local variables will be described in terms of initial values which
are taken from the Forth parameter stack. However, we wish to accommodate an
implementation technique which leaves the values where they are, and accesses
them by indexing into the Forth parameter stack. This provides more efficient
code on register based architectures, but we need to follow two rules to ensure
correct usage.

The first is that an operation whose arguments are instantiated as local variables
must not access any stack values held below these arguments. Here is an example
of declaration of local parameters that breaks that rule:
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: SURFA ( a:n b:n c:n -- 2*(a*b + a*c + b*c)) (: b c :) ...

here, the value supplied for argument a needs to be accessed from the stack, but
due to our implementation technique of leaving local values on the parameter
stack, it will be hidden below the values supplied for b and c. To allow a to be
accessed as a local variable we could begin our definition with:

: SURFA ( a:n b:n c:n -- 2*(a*b + a*c + b*c)) (: a b c :) ...

The second rule is that the code between the parameter list and any instance of
VALUE must have a stack signature of the form ( -- x ). In terms of our Forth
semantics this means that, where S represents the code between the end of the
parameter stack and the relevant occurrence of VALUE, then for some expression
E :

JSKF ⋄ stack = stack E

Two illustrations will serve as justification: first we modify a previous example
so it breaks the rule:

: T (: x y :) 100 200 VALUE u VALUE v .. ;

We now have code between the end of the parameter list and an occurrence
of VALUE which adds two items to the stack. According to the semantics we
will give, this will initialise u to 200 and v to 100, but in our implementation,
which leaves local variables on the stack, it will still initialise u to 100 and v to
200. This happens as follows: the Forth compilation of (: x y :) sets up the
top two stack cells to be a stack frame for variables x and y. The declarations
VALUE u and VALUE v each extend the stack frame by one cell, associating with
these cells the names u and v. Thus when 100 and 200 appear on the stack
at run time, they provide the initial values for u and v respectively. Our rule
ensures the synchronisation of compile time and run time activity.

A second way in which the rule can be broken is illustrated by the following
code:

: T (: x :) DUP VALUE y .. ;

Here the programmer is making use of his knowledge of an implementation
which leaves local variables on the parameter stack. Where this is the case, this
example will initialise y with the same value as x. However, this is not formally
correct as our semantics will insist that the initial value for x has been removed
from the stack.

6.1 On Scope

The semantics of local variables requires an idea of the following code, indicated
by S in the rules below, within which the local variable is in scope. This scope
is, by default, till the end of the Forth definition in which the local is declared,
and otherwise is controlled by the use of scoping brackets.
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6.2 Formal semantics of locals

The last local declared in the list of operation parameters is initialised from the
top of stack

J(: ... x :) SKF =
var x . x = top(stack)

8
−−→ stack := drop(stack) ; J(: ... :) SKF

This above rule is applied until we obtain an empty parameter list, which has
the following empty frame semantics:

J(: :) SKF = JSKF

Local variables declared following the operation’s parameter list are formally
initialised from the stack:

JVALUE xKF = var x . x = top(stack)
8

−−→ stack := drop(stack)

7 Conclusions

We have chosen an approach to Forth semantics which is prompted by the needs
of our particular research, which is to lay foundations for formal verification of a
compiler that uses Forth as its target language. Our source language, Ruth-R,
is an expressive reversible language with a prospective values semantics. To
allow the most direct comparison of meaning between a Ruth-R program and
the corresponding RVM-Forth program produced by the Ruth-R compiler, we
provide a semantics that is based on expressing the meaning of Forth operations
and programming constructs in terms of PV semantics.
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Building an LR parser for Pascal using Forth

Ian van Breda

Hailsham, East Sussex, UK

Abstract

The construction of a parser for Pascal is described.    The parser is built by using Forth to include 

files that define the tokens and grammar of the language and may be thought of as a ‘virtual 

machine’ comprising a grammar code with lookup tables.  The resulting parser can be run from 

within Forth or any other environment using simple drivers and is fully LR(1) capable.  It is also 

well-suited for use with languages other than Pascal.  An account is given of the author’s early 

experiences with Forth at the University of St. Andrews and the Royal Greenwich Observatory.

1   Historical perspective

University of St. Andrews

I first came into contact with Forth when a colleague at the University Observatory in St. Andrews, Phillip

Hill, came back from a visit to Kitt Peak National Observatory in Tucson, Arizona, excited about a newly

invented computer language called Forth.  A short time later, I used Forth on a spectrum scanner at the

Cerro Tololo Observatory in Chile and on an infrared photometer at Kitt Peak, being very impressed with

its ease of use and robustness.

At the time, much publicity had been given to the ‘software problem’, which alluded to the fact that, 

while there had been spectacular advances in hardware, there had been no equivalent in software.

Although Charles Moore had invented Forth originally for carpet manufacture, it was at Kitt Peak 

where it made its reputation on the 11-metre radio telescope that was responsible for the discovery of the 

great majority of molecules in interstellar space found in the early days of that subject.  Using just a 16-bit 

minicomputer, it was possible to control the telescope, acquire observational data and perform data 

reductions for scientific analysis.  This led to Forth’s being dubbed ‘the language of astronomy’.

We were fortunate to be able to purchase a system from Forth Inc. for a Data General Nova computer, 

the first Forth system outside the USA.  This had the added attraction in St. Andrews that we were close to 

the Firth of Forth in Scotland: Charles Moore had originally intended to call it ‘Fourth’ for ‘fourth 

generation language’, but the original implementation could only take five-letter names.

This solved the ‘software problem’ for us instantly.  We could have three students at a time working 

on data analysis using just one 16-bit minicomputer, helped greatly by the compactness of the Forth code.  

The very short learning curve for Forth meant that they were up and running very quickly in this new 

environment.

Around this time, there had been a move to use Camac, the interface standard used in nuclear physics, 

as a standard in astronomy: it was easy to access in software and had a number of existing cards for nuclear 

physics, of which one of the most interesting was a high-speed pulse counter for photomultipliers.  This 

was connected to the Nova computer and allowed photon-counting photometry to be carried out in a 

remote dome, around 50 metres way, using a fibre-optic link.

The combination of Nova computer and Camac was also used in a scanning spectrometer.  The Nova 

was later replaced by a PDP-11 computer that doubled as a built-in Camac crate controller.

Royal Greenwich Observatory

Subsequently I moved to the Royal Greenwich Observatory in Sussex (RGO), now sadly shut  down after

a spectacularly unsuccessful and ultimately fatal move to Cambridge.

Microprocessors were relatively new innovations at that point and we obtained a  development 

system for the 8-bit Motorola MC6800 microprocessor to run a microFORTH system to control a high-speed 

photometer for use at an observing site in Spain.

Around the same time, a major ImageForth system was obtained from Forth Inc. to run on a PDP-11 

computer attached to a scanning microdensitometer, which was run as a national facility for astronomers 

to scan photographs, both images of the sky and spectrograms.  It was used to record scans on 7- and 9-

track tapes for university users to take back with them for scientific analysis.  It was also used for features 

like computer-assisted alignment of spectra.



The image processing system was ported to an MC6800 development system for work in the 

laboratory on an intensified photon counting detector, which was built for the  South African Astronomical 

Observatory for use on their 1.9-metre telescope [1].

The image processing system was also ported to LSI-11 computers for use in the laboratory for 

development of liquid-nitrogen cooled solid-state detectors, particularly charge-coupled devices (CCDs), 

with a complete CCD camera being supplied to the Anglo-Australian Telescope.  The controllers used to 

generate the waveforms for reading out CCD chips were based on bit-slice processors, also programmed in 

Forth.  A summary of early developments in microprocessors using Forth at the RGO is given in [2].

Subsequently, detector development in the laboratory was switched to polyFORTH on MC68000 

series processors running on VME bus.  This was converted in-house from address threading to direct 

execution/subroutine threading on full 32-bit MC68020 and MC68030 processors [3].  For generating the 

wave-forms needed to read out CCD chips, MC68008 processors were also used.  These were able to adopt 

the same software system with some minor conditional compilation to distinguish the two systems, mainly 

for arithmetic and the handling of CPU exception frames.

At the 4.2-metre William Herschel Telescope (WHT) on La Palma, VME systems running Forth were 

used for acquiring and processing CCD images, both for scientific astronomical detectors and the 

autoguiders at the various foci of the telescope.  They were also used for the integrating intensified  TV 

cameras needed to find and check that the desired faint object was being observed.

Individual fibre-optic links to specially designed VME cards, again programmed in Forth,  were used 

to transfer detector data from the telescope, particularly to provide isolation against lightning strikes.

Ethernet, acting as a ‘utility network’ was used for the control systems on the telescope, as well as for 

individual instruments and sensors.  Individual nodes on the network employed MC6809 processors 

programmed in Forth and were connected to the network by means of RS-232 links.

Image processing

The concept of the ImageForth image handling and processing system provided by Forth Inc. and installed 

by Charles Moore and Elizabeth Rather, is shown in Figure 1.

In this very elegant scheme, various devices were able to act as image sources or destinations.  Some 

could act only in one capacity (a contour plot on a storage tube could only be a destination, a CCD could 

only be a source).  Others, such as a disk, could act in both roles.  Sources simply had to be able to provide 

an image by reading one row at a time, destinations had to be able to write one row at a time.

An image ‘pass’ could be performed by transferring it directly to the destination.  Optionally, it was 

possible to select two sources and perform arithmetic on them, such as dividing an image from a CCD by 

its ‘flat-field’ to allow for variations in sensitivity between the pixels.

Although not put forward as such, this represented an early application of object-oriented 

programming, with each device having methods for reading and writing rows.
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Transferring to the Apple Mac

The MC680xx Forth was later ported to the Apple Mac, acquiring the name, Forth/68, where it proved to

be possible to use pre-emptive multi-tasking, despite that fact that the native Mac OS  has poor and

complex task-switching and no in-built ability to run with command-line input.  The parser described here

has been developed on a PowerPC Mac Mini running in Classic mode.  Although this is an emulation of

the 680xx instruction set, it is easily fast enough to develop the parser, for which it takes less than one

second to build all the necessary tables.  The 680xx, being CISC, has the advantage of having an assembler

that is very easy to use, unlike RISC processors.  However, assembler is not needed for building a parser

and the code used is ANS-compatible, although a front-end is required to make word lists compatible with

Forth/68.

2   Early problems with Forth

Despite its considerable success, it was difficult to get Forth accepted by universities who used the

facilities provided by the RGO.  Some of the difficulties experienced with it were:

• Restricting names to three characters with counts led to some weird names with the inclusion

non-alphanumeric characters.  This led some to describe Forth as a ‘write-only’ language.

• Early systems crashed easily due to lack of syntax checking and complete system visibility.

• The use of Forth blocks for source code meant that the structure of definitions could be difficult

to read.

• Initially there was no documentation embedded in the source code but later use of ‘shadow

blocks’ that accompanied each source code block helped considerably.

• Stack operations could become very elaborate, again making reading of source code difficult.

• There was no support for type-ahead of the next command line during a long operation.

• Sometimes users were determined not to accept Forth, come what may.

The last point can be illustrated in the context of the William Herschel Telescope.  This telescope was 

brought into operation immediately after primary commissioning, without the usual two-year bedding in 

period for telescopes of that size.  This was made possible by lending one of our laboratory Forth systems 

to the La Palma observatory, as the telescope computers were well behind in their software development.  

It was on this Forth system that the telescope made its reputation by measuring the ‘red shifts’ (radial 

velocities) of infrared galaxies that had recently been identified by the IRAS infrared satellite.

However, in committee and without warning to us, one of the users of this facility described Forth as 

a ‘pig’.  It turned out that he had been given a list of definitions to use at the terminal that included hyphens, 

as is usual in Forth.  However, he had tried to type these in as underscores and had not even bothered to 

ask before drawing his erroneous conclusion!

2.1   Advantages

Nevertheless there were many advantages:

• The user command-line interface is much better than either Unix or MS-DOS, which had given

command-line input an unjustifiably bad name.

• While system crashes caused problems when some users were developing programs while

others were trying to run fully operational programs, the simple solution was not to develop

new programs while others were running operational programs.

• It was easy to develop programs for new instruments at the telescope, as these could be run by

typing in primitive definitions then combining them into higher-level definitions later.

• Forth provides direct access to hardware, which makes testing much easier.

• Forth responds very rapidly to input commands.

• Pre-emptive multi-tasking made it possible both to run background tasks, for example to drive a

cathode-ray display, while undertaking observations.  It also meant that observations could be

aborted in a controlled fashion when needed.

• Fully tested Forth applications are as robust as the very best programs written in other

languages and are generally better.

• No bugs were ever reported on the WHT imaging systems on La Palma.



2.2   More recent developments

Since the early days of Forth there has been a number of improvements that answer most of the criticisms:

• There is plenty of memory space on 32-bit computers to allow full names to be used without

having to resort to unusual characters.

• Use of word-processor text files for source code allows much improved documentation,

including a brief description of the function of each definition, comment-per-line

documentation and the use of indenting and phrasing within each definition.

• System crashes are greatly reduced through syntax checking and disappear almost completely if

memory protection is also used.

• 'See-flow' debugging, which I believe was invented by Chris Stephens of Comsol Ltd, eliminates

the vast majority of bugs, leaving only possible conceptual errors.  In this scheme, source text is

displayed alongside the current state of the stacks or registers, with a cursor marking execution

progress.  Execution advances by single steps by striking a key at the keyboard.  The source

code to debug is selected by enclosing it in a trace segment, while individual breakpoints can

also be inserted.  It is also possible to skip a specified number of breakpoints when there is a

problem that only occurs after many definitions have been executed.  This is much easier to use

than the debuggers that come with the IDE development systems common with other

languages.  Surprisingly, it is not in as common use as might be expected.

• Type-ahead was added for the command line, which can also be edited, an essential for long

names.

• LOCALS| greatly simplifies parameter stack operations, making definitions much easier to

read.

• LOCAL definitions allow definition headers not needed in a running system to be discarded to

avoid clogging up the dictionary with unused names (‘dictionary entropy’).

3   Why use other languages?

If Forth is so superior, why should other languages be used at all?

Firstly, although using a stack on a personal calculator is easier than the bracket notation common on 

other calculators, many users require a language that is more suited to the notation used in algebra, 

particularly when it comes to data structures.  While algebraic notation can be used within the Forth 

context, it is usually circumscribed in its scope.

Another important factor is that there are many numerical algorithms written, particularly in C, that 

are very useful in image processing.  For the RGO, there were many more users willing to program in C 

than in Forth, even though C sits uncomfortably as a high-level language with its terseness and quaintly 

eccentric choice of operators making it no easier to read than Forth, especially when it does not use 

comment-per-line documentation.  Indeed its header files can be more difficult to read, its use of pointers 

is much less clear and often its logical expressions are more difficult to read than their Forth counterparts.

3.1   Why use Forth with these languages?

Forth provides a command-line interface that allows direct access to functions and procedures, making it

both easier to use and to diagnose any bugs.  It also adapts well to use with menus.  Where other

languages place excessive restrictions on data-typing, Forth can provide import routines to bypass such

restrictions.

An important feature of Forth is that it can be used to generate the tables needed for parsing the strict 

grammars of other languages probably more easily than any of these languages themselves.  This may seem 

surprising, given the free-wheeling nature of Forth.  However, it is precisely the ability of Forth definitions 

to have names consisting of any group of characters that makes it possible uniquely to generate the tables 

needed for parsing by simply using INCLUDE to load the files that define the various aspects of the 

grammar and executing them directly.

An added bonus is that it is possible to make a parser fully LR(1) capable without the number of states 

getting out of hand.  Normally, the number of these states is so large that special techniques are needed for 

reducing the number of states (and consequently also reducing the power of the parsing scheme).



3.2   Why Pascal?

The parser described here has been written to make it work easily with different languages, with the Forth

code used to build the parser separate from the files that specify the syntax of the language.

Although C and its variants are used widely, Pascal was chosen because of its simplicity and because 

it wins hands-down over C on readability.  This meant that problems of implementation could be solved 

within a simpler language set-up.  C can, of course, be supported by implementing the necessary files that 

are used to define its tokens and syntax.   

3.3   Problems with cross compatibility

A frequently heard criticism is that other languages cannot call Forth routines, although it is possible to

call functions and procedures in other languages from Forth, with the appropriate stack adjustments.

This problem lies neither with Forth nor the other languages but in the implementation of those other 

languages using a single stack to house function/procedure arguments, local variables and the subroutine 

return address.  Disadvantages of doing this include: building of the stack frame is more complex, and 

hence slower, than when using a separate return stack; the scheme does not match well to assembler 

subroutine calls, which usually transfer their arguments in registers but can also do so on a parameter stack.

The simple solution is to follow the Forth practice of using separate parameter and return stacks, 

making it possible for routines to be called both ways.

4   The function of a purser

The schematic workings of a compiler, of which the parser is a key part, is shown in Figure 2.

Source code in the form of individual characters is passed to a classifier.  This identifies generic letters 

and digits to simplify the process of scanning for tokens.  It is implemented in the form of a simple lookup 

table.

The scanner extracts tokens from the input stream.  This is different from the equivalent process in 

Forth where the tokens are simply obtained by looking for character strings that are separated by white 
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space (spaces and tabs) and ends of lines.  For example, it is possible to write a formula in Pascal without 

spaces between the tokens.  Thus

x:=y+z;

contains six tokens which need to be identified separately.

Some tokens, such as reserved words, can be passed directly to the parser for checking that the 

grammar for the language is being followed correctly.  However, other tokens, particularly identifiers and 

numbers, need to be grouped in some way, as a grammar cannot possibly be defined based on the actual 

contents of such tokens.

Instead, user-defined tokens are classified into named groups, i.e. token types.  Thus, when defining 

a new field in a Pascal record, we need a new identifier (NewIdentifier) that names the field.  However, 

when used later in the source code, the parser must recognise it as the name of a data item that has already 

been defined, FieldIdentifier.  This process is handled by calls to the semantic routines that are used 

to ‘decorate’ the basic grammar and which join the parser to the real world of computing. 

Tokens and token types are passed to the parser, which checks that they satisfy the grammar of the 

language.  The parser also builds an intermediate representation (IR) of the program being compiled, with 

the help of the semantic routines.  The IR can take a number of different forms.  In Figure 2 it is shown as a 

‘tree-stack’.  In such a scheme, semantic records are added to a stack as parsing proceeds and are then 

incorporated into a tree structure as each grammar production is recognised.

The tree can later be converted into code that can run on a computer either as assembler code or can 

even take the form of Forth.

The parser itself extends as far as the dotted line in Figure 2.  This is a natural break point, since 

building of the parser requires considerable dictionary space both for Forth code and for the support tables 

needed.  It is therefore better, in a running compiler, for the parser builder to generate the lookup tables 

needed by the compiler and save these to disk, where they can easily be picked up later.

This results in a considerable saving in the memory needed, even though memory on modern 

computers is very large by comparison: the parse builder uses around 125K bytes for 32-bit Forth but needs 

only 15K bytes for the parse tables when using 16-bit table-cell sizes.

So far the development has proceeded as far as the dotted line in Figure 2, i.e. the parser is complete 

for Pascal, with some elements of tree-stack building added for testing out on sample programs.

Using Forth

The tokens and grammar are defined using files specific to the language for which a parser is being

created.  These files are simply passed through the Forth interpreter, sometimes in multiple passes.

A key issue is that it is possible to define the symbols in these files as Forth words that can be executed 

by the interpreter.  Apart from meta symbols which control the building process, the symbols normally 

carry a reference index: there is no need to decorate the files with explicit numerical values, often used in 

other environments.

It is important to bear in mind that there are three stages to consider here:

(i) Building the tables needed for parsing by interpreting the language-specific files ‘on-the-fly’;

(ii) Using lookup tables and grammar execution code when compiling a program;

(iii) Actually running a program after it has been compiled.

We are concerned mostly with (i) here and how it relates to (ii).

The parser tables are built  by including the Forth source code files interspersed with the files that 

define the syntax of the target language; the parser builder does not exist as a separate program.

5   Scanner

The scanner consists of two parts, the character classifier and token extraction.  The notation used here

follows closely that given by Fischer & LeBlanc in the original edition of Crafting a Compiler [4].

5.1   Classifying characters

In languages like Pascal, we need to classify source-code characters for building tokens.  A partial listing of

the file used to build the lookup table for performing this classification is shown in Listing 1; the numerical

codes are ASCII-specific. This follows loosely the notation given by Fischer & LeBlanc for input to the



ScanGen scanner generator program.

The difference here is that all the words are Forth words that either define new names or help to build 

the lookup table when executed.  The words must also be separated by white space or end-of-lines.

CharacterClasses
CharClass Tab         =  09
CharClass EndLine     =  10 , 13
CharClass Blank       =  32
CharClass LetterE     =  E , e
CharClass OtherLetter =  A .. D , F .. Z , a .. d , f .. z
CharClass Digit       =  0 .. 9
CharClass Star        =  *
CharClass PlusChar    =  +
..........................
CharClass UpArrow     =  ^
CharClass SingleQuote =  '

EndCharacterClasses

Listing 1.  Part of the file used to classify characters in Pascal

Before the Pascal-specific file can be included, we need definitions for the Forth words that define the 

named categories and also those that build the character-class lookup table.  For this purpose, two 

vocabularies (i.e. named word lists [5]) are used, one for the words that do the classifying (CLASSIFY), one 

for the vocabulary that contains the class definitions (CHARACTER-CLASSES).  Each such definition has a 

numerical-index in its parameter field, assigned in chronological order as it appears in the file.

The Forth source code for achieving this is shown in the partial listing given in Listing 2.  Ada line-

comments, prefixed by -- are used for explanatory comments; they are also used for titles where related 

definitions are grouped together.

CharacterClasses is defined in the FORTH vocabulary, but the words that do the actual classifying 

are defined in the CLASSIFY vocabulary,  The Pascal-specific file, as given in Listing 1, is then loaded by 

including the file whose name string is $CharacterClasses.

On subsequent execution of CharacterClasses, when the Pascal file is included, the compilation 

vocabulary is set to CHARACTER-CLASSES.  The search order is set to the CLASSIFY vocabulary, searched 

first, followed by FORTH-HOOKS which is a vocabulary containing some very basic Forth words, including 

\ to allow comments to be included in the text, and a few ‘get-out-of-jail’ words, such as EMPTY, which 

allow basic recovery if things go wrong during loading.

CharClass defines a named classification using CREATE, with a running chronological index 

(CharacterClassCount) in the parameter field of the defined word; the vector code is not executed at 

this stage.

When building the classification lookup table, whose address is set in CharacterClassTable, the 

equal and comma definitions use GET-CODE to find the code for the next character in the input stream if  a 

single character.  If the input item is a double character, the numerical code is returned  (ASCII here).  This 

code is used as an index into the table by  SET-CLASS to insert the current class index into 

CharacterClassTable.

The double-dot not only sets the class code in the table for the next character/number-pair but also 

fills in the gaps between it and the previous table entry.  Thus A .. D fills in all of the table elements for 

A, B, C, D with the current character class.

Several classifications, such as Plus, contain only a single character.

5.2   Building tokens

Before considering how the Pascal tokens are extracted from the input stream, a file is included giving

names to all the Pascal tokens and token types.  A partial listing is given in Listing 3, as the file is too big to

include in its entirety here.  Once again the file is executed in the normal way, as for any Forth source-code

file, by using INCLUDE to load it.



\ Initialising character class look-up table
: CharacterClasses   CharacterCount       \ Element count/size-in-bytes

CHAR_CELL                              \ Size of each element in bytes
0                                      \ No auxiliary parameters
1 NEW-TABLE  DUP TO CharacterClassTable

\ New dictionary-aligned 1-D table
ERASE-TABLE                            \ Fill with default zeros
CHARACTER-CLASSES DEFINITIONS          \ Compile to CHARACTER-CLASSES
VIA  FORTH-HOOKS CLASSIFY  ENDVIA ;    \ Search CLASSIFY/emergency exits

CLASSIFY DEFINITIONS  VIA  FORTH  ENDVIA
\ Place definitions below in CLASSIFY but search FORTH on its own.
\  This means that the CLASSIFY definitions below cannot call each other

\ Making a new class category
\ Expects: previous class number; class name in input stream
\ Returns: new class number

: CharClass ( n $ -- n|)
CharacterClassCount                    \ Count is index code for class
DUP CREATE,                            \ Define character class as a

\  constant offset in scan actions table: 0=illegal
DUP TO CurrentCharacterClass           \ Save as class being processed
1+ TO CharacterClassCount              \ Advance current class total
DOES> ( -- addr)                       \ Tail code expects parameter addr

CharacterClassVector EXECUTE ;      \ Execute table-building code

\ Starting specification of a class
\ Expects: single ASCII character or numerical code in input stream

: = ( $ -- char/u)
GET-CODE                               \ Next character/numerical code
SET-CLASS ;                            \ Enter class number into table

\ Continuing class specification
\ Expects: character/numerical code in input stream

: , ( char $ -- char/u)                   \ Enter class for next item
-- This = is the CLASSIFY version

GET-CODE                               \ Next character/numerical code
SET-CLASS ;                            \ Enter class number into table

\ Making multiple insertions in classification table for a range
\ Expects: ASCII character/numerical code in input, last item in range

: .. ( $ -- char2/u2)   CharacterCode 1+  \ Bump first to avoid double entry
GET-CODE                               \ ASCII/numerical code, last char
1+ SWAP  2DUP > NOT  ABORT" Characters in wrong order"

\ Abort if not in ascending order
DO  I SET-CLASS  LOOP ;                \ Fill in table entries for range

-- This omits first item in range, else SET-CLASS would abort

\ Terminating character class defining
: EndCharacterClasses

FORTH DEFINITIONS ;                    \ Restore basic compile/search

FORTH DEFINITIONS                         \ Restore basic compile/search

$CharacterClasses INCLUDED                \ Build character-class defns.

Listing 2.  Building the character-class lookup table



-- Single-character tokens --
Token '+'         Token '-'         Token '*'         Token '/'

-- Double-character tokens --
Token '<='        Token '>='        Token '<>'        Token ':='

-- Reserved words --
Reserved and         Reserved array         Reserved begin

-- User-defined token types --
UserToken DigitSequence             UserToken UnsignedReal
UserToken Identifier                UserToken NewIdentifier

Listing 3.  Partial listing of the Token List file for Pascal

Token is a predefined word that gives a name to a token for use when interpreting the formal 

grammar for Pascal; these definitions are placed in a TOKEN-LIST vocabulary.  The names are enclosed in 

quotes to differentiate them from the meta characters used in the formal definition of the grammar.

Reserved places definitions for the reserved words in their own vocabulary, RESERVED-WORDS.  The 

reason for this is that, when parsing, the reserved words need to be searched first before any other 

definitions, by placing RESERVED-WORDS at the top of the search order.

UserToken defines token types for tokens defined by the user and are also held in TOKEN-LIST.  

These are identifiers and numbers which need to be categorised by kind for processing in the grammar.

As with character classes, the defined words are given an ordered index and use vectored code for 

execution later when processing the Pascal grammar file.

It will be seen that, for example, the plus character appears in three guises: as + in the source code of 

a program; as Plus for building tokens; and as '+' in the formal grammar.  This might seem overkill but 

it does make the various files easier to read and, in the formal grammar, is essential to differentiate tokens 

form the meta symbols.

In the literature, token building generally uses so-called regular expressions to build what is somewhat 

grandiloquently called a finite automaton.  In such an implementation, each token/token-type is defined by 

a regular expression which is then used to build a lookup table.  The automaton simply goes from state to 

state according to the class of each character in the input stream; there is no nesting.

The disadvantage of using regular expressions is that some token definitions overlap, such as integers 

and floating-point numbers, so these need to be spliced together creating some complication for the code 

used to build the lookup table.

Instead, we use a scheme based on the common EBNF (Extended Backus-Naur Form) developed 

originally for processing Algol grammars.  In this, each token-building definer must start with a character 

or characters that are unique to it.

The extended EBNF meta characters have the following meaning:

      |       -- alternatives
      ( ... ) -- grouping
      [ ... ] -- single option
      { ... } -- multiple option
      .       -- continuation

Extra definitions are added for processing the tokens

      {Toss}  -- discard character
      {Scrub} -- discard complete token
      #Token  -- specifies a token type

A partial listing of the file used to define how tokens are built is shown in Listing 4.

As before, the required lookup table is built with the help of Forth words, defined specifically for the 

purpose, by including the file.  For example, opening brackets of various types start a new line in the lookup 

table; some extra processing is needed, however, to removed duplicate and redundant rows.

All Token: and Gluon: definitions start a new row in the scanner lookup table.  #Token expects the 

name of a token or token type following in the input stream and inserts a marker for that token/type. 

This generates a lookup table for which a partial listing is shown in Listing 5.



-- Macros --
: Letter   ( LetterE | OtherLetter ) ;

-- Anonymous white space --
Token:   { WhiteSpace } {Toss}

-- Simple non-alpha tokens --
Gluon:   PlusChar '+'
Gluon:   Less '<'  .  [ Greater '<>' | Equal '<=' ]

-- Compound tokens --
Token:   Letter #Token Identifier .
{ Letter | Digit } #Token Identifier

Listing 4.  Partial listing of file used to define how tokens are built

Action codes
   REUSE-CHAR = 0                        APPEND-CHAR = 1 
   NO-APPEND = 2                         SCRUB-TOKEN = 3 
   Class        Do  Token        Next    Class        Do  Token        Next
Row 0 
   Default      2   ErrorToken      0    Unprintable  2   ErrorToken      0
   EndFile      2   EndOfFile       0    Tab          2   xx              0
   EndLine      2   xx              0    Blank        2   xx              0
   LetterE      1   Identifier      5    OtherLetter  1   Identifier      5
   Digit        1   DigitSequence   8    Star         1   '*'             0
   PlusChar     1   '+'             0    MinusChar    1   '-'             0
   Slash        1   '/'             0    Equal        1   '='             0
   Less         1   '<'             1    Greater      1   '>'             2
   DotChar      1   '.'             3    CommaChar    1   ','             0
   ColonChar    1   ':'             4    Semi         1   ';'             0
   LParenChar   1   '('            13    RParenChar   1   ')'             0
   RBracket     1   ']'             0    LBracket     1   '['             0
   LBrace       2   xx             14    RBrace       2   ErrorToken      0
   UpArrow      1   '^'             0    SingleQuote  2   xx              6
Row 1 
   Equal        1   '<='            0    Greater      1   '<>'            0
Row 2 
   Equal        1   '>='            0

Row 5 
   LetterE      1   Identifier      5    OtherLetter  1   Identifier      5
   Digit        1   Identifier      5

Listing 5.  Partial listing for the lookup table used to build tokens and token types

The table is two-dimensional with rows corresponding to states of the automaton and columns 

corresponding to the input character-code classification.  Each cell in the table contains three fields: what to 

do with the character, token index code if any; and the next row to go to.  Only non-default table cells are 

shown.

As each character is taken from the input stream and classified, the character itself is normally added 

to a string which will ultimately form the required token string.

The action to take is looked up in the table row that corresponds to the current state of the automaton.  

It may be to re-use the character without adding it to the token string, extract the string from the input 

stream and add it to the token string, extract it from the input but discard it (as in character strings delimited 

by quotes that don’t form part of the string as such) and erase the current token (as happens with comments 

which, in this implementation, are not passed to the parser).



The default table cell is to re-use the character without extracting it from the input stream, with no 

token set and destination row zero.  Moving to row zero also indicates that no further characters may be 

added to a token.

Processing of a token always starts at row zero with an empty token string.  Thus, if an unprintable 

character is encountered, it is not added to the token string, but generates a special ErrorToken and 

returns to row zero indicating that the token is complete.  In this case the token string is empty.

If a < symbol, which has the classification Less, is encountered at the start of a token, it is added to 

the token string, and control moves to row 1.  If followed by a character classified as Equal or Greater, 

the character is added to the token string and control is transferred to row zero, indicating that the token is 

complete.  Any other character causes a return to row zero, without adding to the token string.

We thus end up with possible strings <, <= or <> for the tokens themselves with the scanner 

returning index values for the named tokens '<', '<=' or '<>', as applicable.

When a character LetterE or OtherLetter is encountered, the token is set as being an 

Identifier and control is transferred to row 5.  If a letter or digit comes next, the character is added to 

the token string and the token again noted as an Identifier, with the  token data updated.  Processing 

continues at row 5.  For any other character class, control is returned to row zero, indicating that the token 

is complete.  In this case, both the token-type, Identifier, and the token string itself are returned, as the 

former is needed for checking the grammar while the latter is used to identify the actual identifier name.

The above scheme means that the longest possible token is always taken.  Possible ambiguity is 

avoided by not always marking a string as a possible token.  If we take the example of the string 100..200, 

this represents a range in Pascal.  At the point where 100 is input, the token can be a DigitSequence 

(integer).  However, when the dot following is found, the string could be part of a floating-point (real) 

number, 100.9, say, so the dot is added to the token string, which now has four characters, but the separate 

token code, character count (three) and saved >IN pointer are not updated.

For a real number, the dot must be followed by a Digit character.  However, in this case it is followed 

by another dot, which is not allowed in a floating-point number.  Control is therefore returned to row zero, 

indicating that the token is complete.  The token-string count is backed off to three, >IN is backed off to 

before the first dot and a DigitSequence is returned with a token string containing just the 100.

6   Parsing

The function of a parser is to make sure that the source code for a program satisfies the syntax of the

language.  It also has the task of building an intermediate representation for the program.

6.1   Grammar notation

Grammars are often illustrated in the form of syntax diagrams, which can be very helpful in

understanding the way in which the grammar works.  However, this is not too much help in writing a

parser for which we need a formal textual method of describing the grammar.  This is done with a list of

productions expressed in EBNF notation.  The start of the list for Pascal is shown in  Listing 6.

Productions

<start>                       -> <program> ( EndOfFile | endPascal ) ;

<program>                     -> <program_heading> ';' <block> '.' ;

<program_heading>             -> program <new_identifier> #ProcedureId
                                 [ <program_parameter_list> ] ;

Listing 6.  Start of productions for Pascal

The left-hand side of each production takes the form of a named nonterminal, which specifies some 

construct in the language.  The nonterminal is said to produce the right-hand side, which consists of a 

mixture of other nonterminals, terminals, which are the tokens and token types for the language, and meta 

characters which specify the way in which the production works in the context of the language.

The grammar is described as context-free, since, whenever a nonterminal occurs on the right-hand 

side of a production, it always has the same meaning.



The notation used follows closely that used by Fischer & Leblanc [4], adapted so that the file can be 

included in Forth, with all words delimited by white space and end-of-lines.  Nonterminals are included in 

hairpin brackets for visibility in plain-text files.  In order to enable nonterminals to be defined in the Forth 

dictionary, compound names use underscores as separators.

For the terminals, reserved words appear as they are, while special symbols appear in quotes and user 

tokens are identified by their token types.  Semantic-routine references appear by name with a hash symbol 

in front.  The hash has no special significance, except that it catches the eye in a plain-text listing.

The EBNF meta symbols have similar meanings to those used for defining how tokens are constructed 

(Section 5.2) but there is no dot for continuation.  The symbol -> starts the body of a production and a 

semicolon indicates its end.

Items in parentheses invariably represent a list of options separated by alternation symbols (vertical 

bars).  Items in square brackets represent a single option, which may or may not be present in the source 

code being parsed.  Thus a program parameter list may not be present in a program header (Listing 6).

Multiple options are included in braces.  In the production

<label_declaration_part>      -> [ label DigitSequence
                                 { ',' DigitSequence } ';' ] ;

there may be nothing in the label declaration part (because the entire production is enclosed in square

brackets).  However, when present, it must start with the reserved word, label, followed by a

DigitSequence.  This, in turn, may be followed by as many DigitSeqence terminals representing

other labels as we like, each preceded by a comma.  A semicolon in the source code terminates the list.

6.2   The parsing process

Parsing of a program proceeds by looking up the next token/type in the input stream and using it as a

terminal lookahead, starting at the <start> production, Listing 6.  A Pascal program must start with the

reserved word program.  As implemented here, this is accepted as a valid lookahead by the first

production, which nests a return point past <program> and goes on to the start of the second production.

Again program is a valid lookahead, so control is passed to the start of the third production.

This can be represented by a series of configurations:

<start>                       -> <program> � ( EndOfFile | endPascal ) ;

<program>                     -> <program_heading> � ';' <block> '.' ;

<program_heading>             -> � program <new_identifier> #ProcedureId
                                 [ <program_parameter_list> ] ;

Listing 7.  Initial configurations in the Pascal grammar

where the various points are marked with dots (blobs), with the first two being nested on a parse return

stack.

At this point we encounter the program token at the start of the production.  This is checked against 

the current lookahead and control is passed to the point after program.  A new terminal is extracted from 

the input stream which, in this case, must be a NewIdentifier:

<program_heading>             -> program � <new_identifier>
                                 [ <program_parameter_list> ] ;

The production for <new-identifier> is now processed and parsing proceeds as before.

After processing any arguments in the program parameter list, if present, the end-of-production 

unnests the parse return stack and control is transferred back to the <program> production, as in Listing 

7.  Here, a semicolon is expected in the input stream and a check is made against the lookahead terminal; if 

they don’t match, a syntax error is declared.  If they do, the parser goes on to process <block> which does 

most of the work of parsing the program.  It must be followed by a full-stop (period).

Once the <program> nonterminal completes, the parse return stack is unnested and control is 

returned back to the <start> production, where the next terminal must either be an end-of-file or 

endPascal, which is an extra reserved word added for returning to Forth processing.



At the end of the parse, some form of intermediate representation is returned.  Here it is envisaged 

that it will be an abstract syntax tree, which is probably the simplest form to build and is also good for 

optimisation.  The ultimate goal, though, is to produce assembler code for a target processor.

6.3   LL vs. LR parsing

The Forth programmer will immediately see a close resemblance between grammar productions and colon

definitions in the way that they work when executed.

However, there are a couple of important reasons why we can’t simply convert a grammar production 

to some form of colon-style definition.  Firstly, a given nonterminal may have more than one production.  

For example

<adding_operator> -> '+' | '-' | or ;

is the equivalent of three productions, which can also be written as

<adding_operator> -> '+' ;
                  -> '-' ;
                  -> or ;

Listing 8.  Splitting up alternative productions

Thus <adding_operator> can accept any one of three operands as its lookahead token and a 

selection mechanism is needed for determining which production to follow.  Here it is done by means of a 

parser lookup table.  The table has rows corresponding to nonterminal index, columns corresponding to 

terminal index and entries being the starts of productions in the grammar.

So far we have described a parsing technique known as top-down, predictive or recursive descent 

parsing.  It is also known as LL(1) parsing, as the parse processes the source code input from left to right 

and the derivation also proceeds from left to right in the grammar, with a single terminal lookahead.  In 

principal, it is possible to use more than one terminal as a lookahead: LL(k) denotes recursive descent 

parsing with k lookahead terminals but the lookup tables become impractically large.  In what follows we 

shall take LL to mean specifically LL(1).

However, there are cases where choosing which production to select is ambiguous.  Thus in a function 

declaration

<function_declaration> -> <function_heading> ';' <block> |
                          <function_heading> ';' <directive> |
                          <function_identification> ';' <block> ;

Listing 9.  A nonterminal with a prediction conflict between productions

there is no way of predicting which of the of the productions applies in a particular situation, as all three

accept the reserved word, function, as the lookahead terminal: function is the only terminal in the first

set of each production, i.e. the set of terminals that can be accepted at the start of a production.

The solution adopted in LR(1) parsing (Leftmost parse, Rightmost derivation, single lookahead 

terminal) is to process productions which conflict in this way in parallel; parsing proceeds until a complete 

production is recognised.  This is also known as bottom-up parsing or shift-reduce parsing from the way 

that it processes the parse stack often used in other implementations.  As with LL parsing, in what follows 

we shall take LR to mean pecifically LR(1) parsing.

By way of illustration, we consider just the first two productions, where the conflict is most obvious.  

If these are processed in parallel then we have an LR state represented by

<function_declaration> -> � <function_heading> ';' <block> ;
                       -> � <function_heading> ';' <directive> ;

LR configurations also include the follow set, i.e. the full set of terminals that can follow the left-hand-side

nonterminal in the grammar.  This is because the productions may need to be processed in parallel until

one or more productions reaches its end-of-production, in which case the follow set may be needed to



resolve any conflict.  If that is not possible, we have a so-called shift-reduce or reduce-reduce conflict and the

grammar must be modified to avoid this.

In the case above, we do not need to go so far, since, when we eventually get past the semicolon token 

in the two productions,

<function_declaration> -> <function_heading> ';' � <block> ;
                       -> <function_heading> ';' � <directive> ;

the parser will accept, as lookahead tokens, any of begin,  const,  function,  label,  procedure,

type and var for <block> and Identifier for <directive>.  Since the two sets do not overlap, the

parser can determine uniquely which production to select.

At this point, the LR state has split into two separate productions, which might be described as 

singleton states and which can be parsed using the simpler LL method.

6.4   Encoding the grammar

Named nonterminals

Before approaching how to represent the grammar, we first need to assign numerical values to the various

named nonterminals that appear in the grammar productions.

This is done by making a pass on the grammar productions file using the techniques shown in Listing 

2.  In this case the meta characters and symbols have empty definitions, while the vector codes for the 

terminals are also set to do nothing.  Any word that cannot be recognised is checked to see that its name is 

enclosed in hairpin brackets.  If so, it is added to the dictionary and given a running index, which is later 

sorted alphabetically to help with displaying the grammar from within the Forth parser builder program.

Brackets

It is common practice to rewrite productions containing bracket pairings to avoid their use.  For example,

<statement_sequence> -> <statement> { ';' <statement> } ;

can be rewritten by adding a new production as

<statement_sequence> -> <statement_sequence> ';' <statement> ;
                     -> <statement> ;

However, there are two significant disadvantages to this: firstly, it requires a major rewrite of the 

Pascal grammar to convert it to this form, as there is a large number of brackets of various types in the 

Pascal EBNF grammar; secondly, as seen above, the nonterminal is changed from being able to be processed 

using LL to the more complex LR processing.

The way chosen here is to treat each opening bracket as an anonymous nonterminal in its own right 

that ‘owns’ the production(s) enclosed within the bracket pairing. These nonterminals are given ordered 

index values that follow immediately after those for the named nonterminals (in hairpins).

Grammar coding

We can then construct a version of the grammar that can be executed when parsing a program, rather in

the manner of a series of interpretive Forth colon definitions for the individual productions.

In this representation, the productions are laid out end-to-end as a series of grammar items, in the order 

that they are given in the grammar, but without the left-hand nonterminals.  Every symbol in the right hand 

side of each production is represented by a grammar item, consisting of two or more 16-bit cells (they can 

be compiled as 32-bit, if desired).

The format of these items is shown in Figure 3.  Each item starts with an item ‘class’, which specifies 

its type.  This is followed by one or more parameters.  For a terminal it is the token or token-type index, 

generated when the token list was loaded, as in Listing 3.  For (named) nonterminals it is the index 

generated in the first pass on the grammar.  For a semantic item, it is an index into a list of semantic routines 

that are to be executed as parsing proceeds.

The class specifies the type of action to take in each case.  In a sense, we have a ‘virtual machine’ with 

each class consisting of a machine instruction, followed by a series of parameters that define the detailed 

behaviour of each instruction through the medium of lookup tables.



For an opening bracket, the class is specific to the type of bracket: parenthesis, square bracket or brace.  

The index following is that for the anonymous nonterminal for that bracket, while the follower gives the 

offset past the matching closing bracket within the grammar coding.

End-of-production items are generated for terminating semicolons, closing brackets and alternation 

symbols.  The index for a semicolon is that for the host named-nonterminal on the left-hand side of the 

production.  For a closing bracket, it is the index for the opening bracket, treated as a nonterminal.  For an 

alternation symbol, it is the either the index for the left-hand named nonterminal, if not inside a bracket 

pair, or that for the opening bracket, if inside a bracket pairing.

The third parameter is the index for an optional semantic routine when it occurs at the end of a 

production. 

It is assumed that, when parsing, each nonterminal will add a semantic record to the parse tree-stack.  

However, it is not always possible to guarantee that such a record will be present when an optional 

nonterminal construct that derives the empty string is not present.  By backtracking, it is possible to enter 

an empty semantic record on the parse tree-stack of the right type, so that any semantic routine executed at 

the end of a production can always expect a given number of nonterminals on the stack for that production.

LR processing is slightly different in that two classes are used, followed by an index for the LR state.

Sets

In order to be able to build the required parse lookup tables, an additional pass is first made on the

grammar productions text file to build a grammar table coded as given in Figure 3 but ignoring semantic

references and assuming that none of the nonterminals needs LR processing.  We call this the ‘LL

grammar’ and building these tables is then done through one or more passes on this variant of the
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grammar in memory, rather than the text file.  In all cases the pass is repeated until there are no more

changes found.

This allows some important tables to be defined.  Firstly, we need to know which nonterminals ‘derive 

the empty string’, i.e. are optional and may be absent in the source code for a program.  An example of this 

is:

<empty_statement>             -> ;

which has an empty production.  Or

<constant_definition_part>    -> [ const <constant_definition> ';'
{ <constant_definition> ';' } ] ;

where the construct may or may not be present in a program.   On the first pass on the LL grammar code,

both of these nonterminals will be marked as deriving the empty string.

Because <empty_statement> is in the list of productions for <simple_statement>, which can be 

written:

<simple_statement>     -> <empty_statement> ;

<simple_statement> will only be marked as deriving the empty string on the second pass, since the

status of <empty_statement> is not known first time round.

Two other sets are essential in building the parse tables.  The first set is the set of lookahead terminals 

that can start a nonterminal.  These sets are held as bit patterns in an array indexed by nonterminal 

parameter value.  For example, in Listing 6, it can be seen immediately that the reserved word, program, 

is in the first set for <program_heading> and will be added to the list of first sets on the first pass.  

However, it will only become apparent that program is also in the first set for the <program> nonterminal 

on the second pass.  Again, passes are repeated until there are no further changes to the first sets.

Once the derives-the-empty-string and first-sets tables have been set up, it is possible to find the follow 

sets for all the nonterminals, again by multiple passes on the LL grammar code.

All of this then allows those nonterminals to be found that need to be treated by LR parsing because 

there are conflicts between the first sets (or first and follow sets if the nonterminal can derive the empty 

string).

Bracket nonterminals may also need to be treated using LR methods.  For example, in

<case_statement>       -> case <case_index> of <case> { ';'<case> } [ ';' ]
                          end ;

the brace nonterminal must be treated using LR, as the production itself starts with ';' which is also in

its follow set, so when ';' is encountered as the lookahead, the parser will not know beforehand

whether this is the beginning of another <case> construct or the optional ';' at the end.

6.5   Building the final grammar execution code

All of this now allows the final grammar code table to be built.  This time, semantic routines are included,

along with LR links for those nonterminals and brackets needing LR processing.  The index field for each

of these is set to the index values for an LR state., which are given index values following on from those for

named nonterminals and bracket nonterminals.  The LR link replaces the normal nonterminal/bracket

grammar item.

There is one LR state for each LR link item in the grammar. Each LR state must then be ‘closed’ by 

looking at all productions and other LR states that the state can link to, with new LR states being added, as 

needed.  Each of these is given its own index and an LR link that is added to the end of the grammar 

execution code in the form shown in Figure 3.

In the Pascal grammar, as written in Jensen & Wirth [6], there are only 11 LR links within the main 

body of the grammar rising to 25 LR states altogether when these are closed.

Two parse tables are built, one has rows that correspond to index values for named nonterminals, 

bracket nonterminals and LR state index values which are tagged onto the end of the terminals, one per LR 



state.  The columns are numbered by index for the lookahead terminal.  Each entry contains a position in 

the grammar code.

The second table is only used in the LR parsing process to look up the return point once a production 

has been recognised in the parsing process.  It has rows corresponding the LR state index and columns 

matching the nonterminal index for the production in question.

  As these tables are very sparsely populated, they are implemented in compact form using double-

offset indexing as described in [4].

6.6   Grammar item actions

Associated with each grammar item is a ‘driver’ specific to that item.  The different forms for the brackets

give rise to three different grammar-item classes, making a total of nine altogether.  These drivers are

language-independent and so only need to be written once.  They also have much code in common.

This gives a very simple scheme for executing a parse.  We begin with the <start> production and a 

zero on the parse return stack.  For each grammar item, the drivers carry out the following actions:

Terminal

When a terminal grammar item is processed, the driver looks to see if there is a match with the 

current lookahead terminal.  If so, control is transferred past the item, otherwise a syntax error is 

declared.

Named nonterminal

For a named nonterminal, control is transferred to the start of the production that matches with the 

terminal lookahead, by looking it up in the main parse table.  The return position past the grammar 

item is saved on the parse return stack.

If the nonterminal derives the empty string (i.e. is optional in program source code) and the 

terminal is not in the start set of the nonterminal, control is transferred past the grammar item 

without any nesting.  If the terminal is not in the follow set, a syntax error is declared.

Opening parenthesis

This is very similar to that for a named nonterminal, except that, if the bracket-nonterminal can 

derive the empty string and the terminal is not in the start set  but instead is in the follow set, control 

is transferred past the closing parenthesis.

Opening (square) bracket

Again behaviour is very similar to a parenthesis.  If the lookahead terminal is in the first set for the 

bracket nonterminal, control is transferred to the start of the matching production (normally just past 

the opening bracket) and the location past the closing bracket is nested on the parse stack.  Thus 

control will be passed to that point, once processing of the production has been completed.

Since bracket pairs always indicate a single-option for a program, if the lookahead terminal is 

not included in the start set of the production but is in the follow set for the bracket nonterminal, 

control is transferred past the closing bracket without any nesting.  Again, a syntax error is declared if 

the lookahead terminal is in neither the start set nor the follow set for the bracket nonterminal.

Opening brace

This is almost identical to the behaviour for an opening bracket.  The difference is that, when a match 

is found with the start set for the brace nonterminal, it is the point before the opening brace that is 

saved on the parse return stack, so the process will be repeated until a terminal is found that is not in 

the start set.

Semantic reference

The driver for this type of item uses the index in the grammar item to look up a semantic routine 

whose address or Forth token can be found in a table of references to the semantic routines for the 

language.  This is the case where  the semantic call is located within the body of a production, which 

must be in LL mode at that point for it to work.

End of production

If backtracking is needed because there is a nonterminal in the production that can derive the empty 

string or is an option bracket, the driver works backwards through the parse tree stack and inserts an 

empty semantic record into the parse tree-stack if the nonterminal is not present.  It then executes the 

semantic routine, if there is one, which can then expect a fixed number of items on the parse tree-

stack.



The semantic routine must leave a single nonterminal on the tree-stack.  If required, it may need 

to add a semantic record, e.g. when an operator is encountered, as in Listing 8, there must be a 

semantic routine, e.g. #AddOp (not shown in the listing), that adds a semantic record for the operator 

using the most recent token extracted from the input stream to specify its type.

At the end, the driver marks the top item on the tree-stack with the index for the enclosing 

nonterminal, LHS nonterminal or bracket nonterminal, as appropriate.

LR Link

Processing of LR links is only slightly more complex than their LL counterparts and two drivers are 

used basically for looking up two different parser tables.

In the first case, the main parse table is looked up by row (LR state index) and column (terminal 

lookahead) and control is transferred to the point in the grammar code specified in the table, which 

can be to another LR-state link, or other grammar item, in which case processing will continue in LL 

mode.

However, the return destination saved on the parse return stack corresponds to the second class 

field in the LR link, Figure 3.  Ultimately, the return will always occur at the end of a production, after 

a switch has been made to a singleton state, i.e. LL parsing.

At this point the second driver comes into play and looks up the second parse table by LR index 

for the row number and nonterminal index from the completed end-of-production to determine the 

location in the grammar code to which control should now be transferred.

Parse tree-stack

It is envisaged that the semantic routines will be responsible for adding semantic records to the parse tree-

stack and for building tree structures by combining these, as required, by unlinking them from the stack

and relinking them into a tree structure that constitutes the intermediate representation.  From there it is

possible to convert the representation to assembler code, which may include optimisation.  An alternative

would be to convert the tree directly into Forth and load that via an optimising compiler.

It is also envisaged that syntax errors will simply generate an abort, with an appropriate error 

message.  Compilers that try to correct errors generally end up with more consequential errors further on 

in the parse, which only serve to confuse the issue (as in Java).  Correcting such errors is very quick on 

modern desktop computers so making corrections one-by-one easy to do.

7   Rewriting the grammar

Throughout, the intention has been to minimise the rewriting of the grammar.  In particular, it has been

found unnecessary to rewrite it in a bracket-free form, sometimes called a ‘standard’ form.  As shown

above, EBNF works fine and can be executed directly in Forth to produce a very compact set of parse

tables.

However, there is one area where some rewriting is necessary.  This involves the question of Identifier 

and is because nonterminals that have ‘identifier’ in their names invariably end up at a production that 

consists of Identifier on its own.  This means that we get a large number of reduce conflicts – almost 

fifty in Pascal, including the notorious ‘dangling’ else which occurs in both Pascal and languages based on 

the C syntax.

Thus, instead of

<field_identifier>    -> Identifier ;

we need to write

<field_identifier>    -> FieldIdentifier ;

This means that, when a field is defined, its entry in the dictionary must be flagged as being a

FieldIdentifier token type by the appropriate semantic routine.



8   Conclusion

The scheme given here has found to work very successfully in parsing simple Pascal programs, using a

subset of the semantic routines needed for a full compiler.  The tables and grammar code used for this are

very compact, amounting to around 15K bytes in 16-bit form.

The combination of LL and LR techniques has been found to operate very smoothly.  Only 25 LR states 

are needed in total, so there is no need to try to reduce the very large number of states generated by 

conventional LR-only parsers using the common SLR and LALR techniques, which also reduce the power 

of the parser.  The parser described here is fully LR-capable.  Pathological examples of grammars quoted in 

the literature, that are not able to be handled using SLR or LALR but still satisfy the conditions for LR 

parsing, are handled with ease by the parser described here.

For those studying compiler writing or defining a new language, the parser may be set to show how 

the first and follow sets for the different nonterminals are built up, pass by pass.  It is also possible to 

examine the various productions, including LR links in an easy to read form.  A report on the language can 

also be written automatically as a plain-text file to disk giving a variety of information about the language, 

including details of the LR states and how they link together.  This is reasonable for Pascal which has only 

25 LR states.

The report can then be examined at leisure.  If needed, the building of the start and follow sets, which 

require several passes on the grammar code, can also be included in the report.

At the same time, it is still possible to treat the parser as a ‘black box’ by feeding it with the files 

required to specify the language syntax without having to do any special coding.

The grammar code and lookup tables are such that the parser can easily be run in any computer 

environment, although it is simpler to do so in Forth.
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Some comments on the proposed Forth Standard
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Abstract

This paper discusses the current proposals for a new Forth standard following on from ANS

Forth.  Some changes of name are suggested.  It is shown that the proposals for the Extended

Characters wordset can either be subsumed into existing definitions for fixed-character sets or be

added in a way that make the two schemes compatible.  Proposals are also made for record

structures coupled with dot notation, that fit well with existing Forth practice and would allow

a natural extension to object-oriented Forth.

1   Philosophical

I feel that I am something of an interloper at this conference, as my background in astronomy is rather

different from most attendees.  I am fully aware that my comments may not always be welcomed by those

who have spent an enormous amount of work putting together the proposals for a new Forth Standard [1].

This is even before considering the considerable effort required to reconcile differing opinions, often

strongly held and to which I cannot claim to be an exception.  My comments are not intended as personal

criticism in any way but are based purely on technical considerations.  It is to be hoped too that any

misconceptions in my comments will be forgiven.

With thousands of Forth users worldwide, establishing a standard is very important.  The Holy Grail 

for desktop computing must be for the computer to run a pre-emptive multi-tasking Forth system on top 

of which other operating systems can be built, particularly Unix, Mac OS X and Windows.

Providing a standard for Forth presents unique problems due to its extensibility.  It must be able to 

provide a platform for a variety of uses, including robotic instrument control (the original use of Forth), 

embedded systems and use with modern desktop operating systems.

As operating systems get further and further apart from the hardware, which therefore becomes 

progressively more difficult to program (such as USB), the plea by the inventor of Forth, Charles Moore, for 

simplicity in computing becomes ever more valid.  Development environments have become very complex 

and documentation is no longer available in book form; on-line documentation does not have the 

disciplined structure required of paper manuals and is awash with unexplained acronyms and buzz words, 

each requiring a link to find out what it means, only to be confronted by further links.

When it comes to hardware, Forth provides a unique capability for accessing hardware directly.  In 

astronomy, this direct access to hardware is especially important, as recent spectacular scientific advances 

have been almost totally dependent on new technology, both engineering and applied physics.  Currently, 

developments are eagerly awaited in superconducting detector arrays that will revolutionise the 

observation of the most distant galaxies.

Despite the fact that Forth provides a unique perspective on computing, it is ignored in university 

courses: there even exists a book, purporting to compare computer languages, that ignores Forth 

completely (Cezzar [2]).  There appear also to be university courses which contain no practical electronics 

component.  We see the results in a myriad of ways in poor programming of a variety domestic devices.

In what follows, where examples are given, they use the truncated form of stack comment used in 

Forth/68 [3], which is used as a comparison in a number of places.  Readers should find no difficulty, 

however, in interpreting their format.



1.1   Some basic principles

Common practice is not necessarily a good argument for including features in a standard.  For example, in

the first Forth systems, LOAD was used to interpret Forth blocks when compiling programs; the natural

extension was to use LOAD" ..." for loading named files, yet INCLUDE was used instead.  Likewise, S"
was adopted in the ANS Standard for defining a string, when the argument for current practice was

extremely weak, stating that some users used " and some used S".  It is not even clear why some users

had departed from using " which had been common practice at that point, going right back to the

original systems of Charles Moore.  What is worse, it even looks rather fussy and ungainly.

The problem with using common practice as an argument is that there is a danger of 'standardisation 

by stealth'.  Whose common practice is it anyway?

Similarly, having always done something wrong is not a good argument for continuing to do so if it 

is technically incorrect (Section 3.1).

It is also important to take note of developments outside Forth so that, where appropriate, similar 

techniques can be adopted within the Forth framework.

Giving preference to avoiding breaking of existing code over technical soundness is also not a good 

argument.  For Forth/68, ANS Forth was the first standard Forth considered good enough to move from 

polyFORTH, which had been used by many programmers up to that point.  To make the transition, much 

code had to be rewritten, i.e. was 'broken' [3].  Nevertheless, the changes were not too difficult to make, as 

Forth is relatively easy to change and, in particular, to debug.

2   Some general points

2.1   A name for the Standard

The Standard needs a name.  The reasons are:

(i) ANS has been deleted in the text for the proposed Standard but programs conforming to the

Standard cannot claim to be the only valid Forth programs;

(ii) A name is needed to identify which Standard applies, i.e. a new prefix in place of ANS.

2.2   Cost

Cost of purchase of the Standard needs to be reasonable.  ANS Forth is outrageously expensive and does

not even include a printed copy, an essential for browsing the Standard.

2.3   Quoting from the Standard

It is important to make clear just what can be quoted form the Standard for those of us who are not

copyright lawyers.  An email query to ANSI over whether or not the Pascal grammar could be distributed

in machine-readable form elicited no reply.

2.4   System name

It is highly desirable to give each system a name, so that conditional compilation can be done depending

upon which system is being run at the time.  This could be implemented as

SYSTEM-NAME ( c-addr u)
Return the address and count for the name of the Forth system.

3   Fundamental Changes

Some changes seem to be essential to the proposals for the Standard.

3.1   Scanning vs. parsing

The terms 'parse' and 'parsing' are used incorrectly almost entirely throughout the text for the Standard.

In both the treatment of natural language and the theory of computer languages parsing implies 

analysing the structure of a sentence or language construct.  In computing it refers to checking that the 

tokens extracted from the source code of a program follow the grammatical rules of the language [3].



The correct term, as used elsewhere in computing, is 'scan', which is the process of extracting language 

tokens from source code.  This suggests that the vast majority of the descriptive text in the proposed 

Standard needs to be changed from variants of 'parse' to their 'scan' equivalents.

We cannot change PARSE itself, as it is now cast in stone (the penalty for inaccuracy in setting up the 

ANS Standard).  However, it is possible adopt SCAN-NAME in place of PARSE-NAME.  It would also be 

useful to have a multi-line SCAN, possibly similar to that in Forth/68, which bypasses comments.

The argument that it has always been done this way is surely not valid in the face of the fundamental 

usage of the term, parsing, elsewhere: Forth cannot ignore the outside world and, at least in this case, it is 

irrefutably common practice to use scanning for this type of process.

3.2   Word lists and vocabularies

Word lists were poorly designed in ANS, despite the intention of producing a set of primitives that could

be used in a variety of schemes.

The reason for the problems with the Standard is that there are unnecessary hidden effects on the 

search order.  The committee indeed accepted that the implementation of ALSO and ONLY with their hidden 

and not very intuitive effects was controversial.

It is difficult to see how this scheme was accepted for the Standard.  The way it should have been is

FORTH ( -- wid)
Return the wid for FORTH.

ONLY ( wid -- )
Given a wid, make it the only word list in the search order.

ALSO ( wid  -- )
Add the wid argument to the top of the search order.

DEFINITIONS ( wid -- )
Set the compilation vocabulary to wid.  Add wid to search order if not already at the top.  

Options on search order are to leave it as is or set it to what it was when the vocabulary was 

defined.

VOCABULARY ( $ -- )
Define a new named word list that returns its wid on execution.

With named vocabularies, which (fortunately) ANS avoids, it is possible to set up a specific search 

order without using ONLY/ ALSO.  In EBNF

ENDVIA { <vocab-name> } ENDVIA

The search order is set to the list of vocabulary names, last named to be searched first.

Even though the ANS Standard defines CODE and ;CODE which provide links to assembler code, it is 

acknowledged that the actual way that the assembler works is system-dependent, as it must be on different 

processors.  For this reason, ASSEMBLER should have been left out of the standard.  In Forth/68, switching 

to assembler code sets ASSEMBLER as a transient at the top of the search order, which is discarded 

whenever a new definition is added to the dictionary or ENDCODE is executed.

Had the above scheme been adopted in ANS (and would surely have been less controversial) it would 

have made FORTH-WORDLIST redundant and, maybe less so, SET-CURRENT.

Forth/68 uses the above scheme, for example, in the MetaForth cross compiler used to compile the 

minimal kernel for the system and for the Pascal parser [3], which makes extensive use of vocabularies.  

There is a software switch for a change of mode to ANS-compatible, although it is never used in practice.

Fortunately, it is possible to make an ANS Standard program compatible with the above by using very 

simple redefinitions.

It is unfortunate that the treatment of word lists has been cast in stone.  While I would like to see the 

ANS scheme deprecated and replaced by the above, it is probably impractical to do so.  However, it does 

highlight the dangers when what was technically a poor choice was made for the Standard.



3.3   LOCALS| and {:

{: is a big step-up from LOCALS| not least because the number of local definitions permitted has been

doubled, though it is not clear why it needs to be limited at all: the original eight seems to have been

determined by the number of D-registers in an MC680xx processor, so that only two instructions were

needed to transfer locals from the parameter stack to the return stack.

Also, it is not clear just why it should not be possible to access locals within, say, an >R ... R> segment 

after LOCALS|.  For systems that place locals and loop parameters on the return stack, return-stack tracking 

must be used anyway, so there is no problem with access to locals.  Likewise, if the locals are placed 

elsewhere, there is no problem anyway.

There is an inconsistency in the wording of the proposed Standard: in 13.3.3.2 d) it is implied that the 

return stack can be manipulated after LOCALS| variables have been defined, so long as return-stack balance 

is maintained; A13.3 implies that the return stack cannot be manipulated at all at this point.

The ability to include uninitialised variables in a {: list is a big plus, as it does not involve any 

transfer from the parameter stack.

However, the impression given in the Standard proposal is that {: ... :} would be used in place of 

the parenthetical comments normally used at the front of a definition.  This is both very limiting and 

surprising, given the large number of named variables allowed.  In Forth/68 LOCALS| are invariably 

preceded by some stack manipulation and {: would be used in the same context.  In this way of using it, 

the -- <out> becomes irrelevant.  In this system, the stack arguments are given in short form at the front 

of a definition, while the local names are more descriptive, see [4].  For example, we might use n-indx as a 

mnemonic in a stack comment but grammarIndex for its more descriptive LOCALS| name.

If large numbers of locals are to be allowed, or even relatively few descriptive names are to be used, it 

is essential that {: segments be able to cover more than one line; the same goes for LOCALS|.

The following changes are therefore suggested:

• Use the same order on the stack as with LOCALS|.  Reasons are, firstly, that the Standard must

be technically consistent.  Arguments that the proposed order is common practice do not hold

water here, as it is admitted that there are several ways of implementing the {: function.

Secondly, this will 'break' existing code for those that use different schemes anyway, so that

argument does not apply.

Thirdly, if items are added to the stack as commonly happens before the locals are defined,

it is easier to track backwards through the stack to identify the local names.

• The -- <out> should be dropped, as it is irrelevant to the function of {:, unless the

Standard specifies that {: is to be used only as a replacement for the normal ( ... ) argument

comments at the front of colon and CODE definitions; this would betray a very limited view of

the capability.

• Given the large number of possible locals, it essential that both LOCALS| and {: be allowed to

cover more than one line.

4   Code vectoring

It is much more common elsewhere in computing to use the term vectoring for the capability that DEFER is

intended to provide.

All references that I have been able to find to deferring of code refer to deferring of the time of execution 

of the code, for example in Java, where a horribly complex way of doing this is needed.  Of course, in multi-

tasking Forth, this is both much easier to implement and read.

However, it is suggested that the correct term to use is vectoring, which is in common use.  For 

example it has been used for many years for handling of interrupts, and is even given conceptually in 

MVP-FORTH where an example is shown of how to do this for PAGE.  This concept has also been in use in 

Forth/68 for for many years for the TYPE-style routines, TYPE, PAGE and CR, as a group, also for error 

message generation for routines in the kernel, which are needed before support for error-message display 

has been loaded.

It is therefore suggested that DEFER, DEFER@ and DEFER! be replaced by

VECTORED, VECTOR@ and VECTOR!
This has the advantage that VECTORED does not get confused with POSTPONE, which is easy to 

do with DEFER.



In this respect it is useful to have a definition

NULL
Take no action.  This is the equivalent of the usual NOP in assembler.

It is useful as a default for vectoring to avoid crashes if the vectored code is called accidentally before the

execute token has been set up.

5   Strings and characters

Given that there is very little provision for string handling in the Standard proposal, it is something of a

surprise that so many of the proposed changes to the Standard involve characters, strings and key strokes.

For those of us who do not normally use such extensions, the Standard needs to provide much more 

explanation as to how the various changes are to be used and why they should be included in the Standard, 

rather than being treated as specific to particular applications.

Again, it is not at all clear why operations such as REPLACES, SUBSTITUTE and UNESCAPE should be 

in the Standard rather than part of an application. They seem to belong in very specialised applications.

5.1   String operations

Some suggestions for very basic but highly desirable extensions for string support are:

CATENATE ( c-addr1 u1 c-addr2 u2 u3)

Append the first string the end of the second but limiting the maximum length to u3.  This is 

particularly useful for putting together file path-name strings.

STRING-COPY ( c-addr1 u1 c-addr2 u2)

Copy a string across to a buffer, truncating the length to u2 if u1>u2.

COMPARE-TEXT ( c-addr1 u1 c-addr2 u2 -- n)

This is a case-insensitive version of COMPARE.  It can be used for putting definition names in 

alphabetical order in WORDS listings but is also useful in other sorting situations.

These can easily be defined to work seamlessly with the Extended Character set.

5.2   Characters and bytes

There is a problem with the ANS Standard which seems to have been written to allow Forth systems to use

character coding of fixed but unspecified length.  It is presumably for this reason that CHAR has been used

instead of the somewhat clearer ASCII.

However, Conklin and Rather [5] specify that C, should append a byte to the data space, which does 

not accord with the Standard.  Similar considerations apply to CMOVE and CMOVE>, C@ and C!.  This 

assumption is made in several places in the text, despite the claim at the front of the book that it 'features 

Standard Forth'.

The limitation of a maximum of 255 characters in strings implies the use of C@ to extract the length 

of a string for ASCII-based systems.  Conklin and Rather make this explicit in a definition that they give for 

COUNT.  However, this can all be generalised very neatly using definitions similar to those for vectoring, 

Section 4.  Thus

COUNT ( c-addr1 -- c-addr2 u)

This is the same as the ANS Standard definition, which returns the address/count for a string.  

The generalisation of this allows for the fact that strings might be implemented as, say, 16-bit 

counts with 8-bit characters.  Also it allows for Extended Character strings, which might also 

have a byte length for the string following the count and which would be hidden from the user.  

The only requirement would be that the count itself would need to be character-aligned.

COUNT@ ( c-addr -- u)
Fetch the string character count stored at the given address according to the system-dependent 

string count size.

COUNT! ( u c-addr)
Store the string character count u at the given address according to the system count size.



This means that, to match the Standard, we need operations equivalent to C@ etc. but that are in sizes 

that match the address units of the computer.  It is suggested that these be prefixed by the letter 'B', which 

reflects the fact that the majority of processors use byte addressing (although this is not required):

B@ ( addr -- u)
Fetch the item that is one address-unit wide stored at the address, unsigned.

B! ( u -- addr)
Store u at the address, truncating its value if it is larger than the maximum unsigned number 

that will fit in one address unt.

B+! ( u addr)
Add u to the address-unit value at the address, truncating the result if it is larger than the 

maximum unsigned number that will fit in one address unit.

While character operations may continue for bytes, their use should be deprecated and replaced by their

B-equivalents for programs following the new Standard.

With this notation, MOVE should really have been BMOVE.  However, accepting that it is an address-

unit move, it needs to be generalised so that it can move bytes either up or down when the source and 

destination lists overlap; it is easy enough to implement this, as it only involves a check on the source and 

destination addresses.  For speed, we need also to have a cell-aligned move.

MOVE ( addr1 addr2 -- u)

Move u addresss-unit values from addr1 to addr2.  The list of values may be moved to upper or 

lower addresses and may overlap.

CELL-MOVE ( a-addr1 a-addr2 -- u)

Move u cell values from a-addr1 to a-ddr2, with addresses aligned.  The list of values may be 

moved to upper or lower addresses and may overlap.

5.3   Extended Characters Word Set

In what follows, it is assumed that the extended characters are used as the main input/output for the

Forth system, rather than occasionally interpreting a file that uses the Extended Character Set.  This is

implicit in the Standard proposal, which indicates that TYPE and ACCEPT need to be generalised.  The

same must also apply to such definitions as .", S", C! and WORD.

However, if different codings are to be supported on a given system, it is a simple matter to use code 

vectoring to switch between the character codings.

If we assume that the new definitions will also be found useful in systems using fixed character-sizes, 

then it is a simple matter to provide definitions that will work either within a fixed character-size system or 

one that uses the Extended Character Set.  This means that X can be dropped as a prefix for the definitions.

As with the definitions mentioned above, most of the X-definitions can simply be generalisations of 

existing definitions.  In particular

XHOLD, XCHAR+, XEMIT, XKEY, XKEY?, EKEY>XCHAR, XC,
--> HOLD, CHAR+, EMIT, KEY, KEY?, EKEY>CHAR, C,

These are straightforward generalisations of existing definitions.

XCHAR-, XC!+, XC@+ --> CHAR-, C!+, C@+
If these definitions are found useful for the Extended Character set, then equivalents are easy to 

define for fixed-width character sets.

XC!+? --> C!+?
This can again be implemented in fixed character-size systems, although it may be trivial in 

such cases.

+X/STRING, X\STRING- --> +/STRING, \STRING
These have obvious meanings in the context of fixed-width encoding but there are queries over 

the meaning of the stack arguments (see below).

X-SIZE, X-WIDTH, XC-WIDTH --> CHAR-SIZE, STRING-WIDTH, CHAR-WIDTH
All these have obvious meanings in fixed-width encodings and might be considered redundant 

but there is an advantage in being able to use the same definitions in different coding systems.



The above approach is much neater than the proposed Standard in that they are either generalisations of

existing standard definitions or are definitions that can easily be applied to fixed character-size codings.

5.3.1   Buffers

In several of the definitions for the Extended Character Words, the term 'string buffer' is used.  While the

address of the buffer is reasonably clear, the meaning of the count/size argument is not.  For example

XC!+? has arguments ( xchar xc-addrl ul -- xc-addr2 u2 flag) but ul is not defined.  Is it

the length of the buffer?  If so, where is the character supposed to go?  Is there a hidden size or place

within the buffer?  Generally, at least two parameters are required in such circumstances: some measure of

the size of the buffer and the size of any string currently within that buffer.

In +X/STRING, the length parameter appears to refer to the buffer size rather than a string within it, 

while -TRAILING-GRABAGE seems to refer to a string as such.

In X\STRING-, the description refers to the 'penultimate' character when it appears to be that the last 

one that is the only character that is relevant.

5.4   K-definitions and EKEY

Again it is difficult to see what relevance many of these definitions have in the context of an event-driven

system: the function keys need to be requested explicitly and do not initiate any action of themselves.

However, there is a problem with this on the Apple Mac, where the operating system uses several of 

the function keys to modify the way in which windows are displayed.  Even though Forth/68 intercepts 

the keyboard interrupt, OS X does not give any output on EKEY when these particular keys are struck.

There is a similar question over user aborts, which are an essential for computers that control robotic 

scientific instruments.  Here the query is: should the user be able to generate an abort when EKEY has been 

called?  In Forth/68, a user abort is generated for Command-Escape and is much easier to implement if it 

is allowed to generate an abort on EKEY.

Given the problems with function keys, it is suggested that the Standard include a phrase for EKEY 

that permits response to control keys to be implementation-dependent, especially as it may not be able to 

respond to the function keys.  KEY is slightly different but does need to include a similar comment that the 

user may generate an abort after KEY has been called, at which point the abort takes preference.

5.5   Pausing dumps

The ANS Standard rejected the use of X-ON/X-OFF (ctrl/Q amd ctrl/S, respectively) ostensibly because

different systems respond differently to these characters, even though it is heavily slanted towards ASCII

and these control characters are considered to be a 'standard' use of ASCII coding.  X-ON and X-OFF, or

equivalents, are an essential part of a programmer's toolkit and should be included in some form in the

Standard.  System-dependent coding for pausing dumps would nevertheless be entirely satisfactory.

Similarly, for pe-emptive multi-tasking systems at least, some sort of abort key should be provided to 

generate a user interrupt, again system-dependent.

6   Records and other structures

The Standard suggests use of BEGIN-STRUCTURE and END-STRUCTURE, presumably taken from C (the

hyphen is inconsistent with ENDCASE and ENDOF).  However, since an object might reasonably also be

considered a structure, a better name might be RECORD, as used in Pascal, coupled with ENDRECORD.

We can then follow what is similar to common practice elsewhere by making RECORD define a new 

word list to which to add field definitions, in a fashion similar to that given in the Standard proposal.

Thus we might have

RECORD ( $ -- addr 0)
This expects the name of a new record-type and assigns a new word list, making that the 

compilation word list.  It leaves the parameter field address for the named record on the stack 

and an initial zero field offset.

FIELD DEFINERS
These take a form similar to that in the Standard proposal and place definitions in the 

wordlist/vocabulary for the record:



INT: defines a new (32-bit) integer field;
WORD: defines a 16-bit unsigned integer field;
BYTE: defines an 8-bit unsigned integer field;
CHAR: defines a character field;
SFLOAT: defines a single-precision floating-point field;
DFLOAT: defines a double-precision floating-point field;
(n) STRING: defines a string field;
n FIELD: defines an uncommitted field of length n;
<record-type> RECORD: defines an embedded record.

As each field is defined, the offset is first aligned in accordance with the data type and then incremented

according to the data-item size.  Each field definition includes a data size and has its offset within the

record as a parameter.

There are questions over the string field.  Options are to use an in-line counted string or a handle for 

a relocatable block containing a string.  This is best left for discussion elsewhere.

ENDRECORD ( addr offset)
Terminates the record structure by setting the data size for the record from the final field-offset.

6.1   Record Instances and dot notation

If RECORD defines a new record type that, when executed, returns the data size and word-list identifier for

the fields in the record, then we can create an instance of the record in, say, Forth data space (e.g. the

dictionary).  We can then define an instance of the record:

<record-type> NEW-RECORD <instance-name>

When <instance-name> is executed, it returns the address of the instance data, along with the word-list

identifier for <record-type>.  The wid can be on the parameter stack, though there is a strong case for

placing it in an (anonymous) user variable, as it never needs nesting.  If, in addition, field names simply

add their offset to whatever is on the stack, the way is open to use dot notation.  For example,

<instance-name>.<field-name>

can be split into two tokens, each of which is processed separately.

In execute mode, the first token is executed and returns the record-instance address plus wid.  The next 

token (i.e. field) is looked up in the word list and executed so that the address of the field is returned.  If 

compiling, an address literal must be assembled that returns the address on the stack.  This is very 

straightforward for systems using direct-execution/subroutine-threading in colon definitions but would 

need a little more thought in other forms of threading.

This would allow the use of forth accessors and setters for the fields, including TO.

An advantage of using a wid hidden inside a user variable is that we can write

<instance-name>

simply to return the address of the record without having to pop the wid, which then remains hidden away

and unused.  This would work in both execution and compilation modes.

The above can be used with a new word, FROM, as

FROM  <instance-name>.<field-name>

which would push the contents of the field onto the parameter stack.  FROM is very similar to TO and

would be system-dependent in the way it was implemented.  For subroutine-threaded systems, this could

be implemented as an assembler push to the stack, either as an address or a field value, allowing for the

size of the appropriate field, e.g. extending character values to, say, 32-bit.

TO, with slight generalisation, could be used in the same way:

TO  <instance-name>.<field-name>



In both cases, the size of the data field would need to be accessible, which would modify the way in which

the token processing took place but that happens anyway in the case of a (2)VALUE variable.

6.1.1   Object-oriented programming

Considerable interest has been shown in object-oriented programming at this conference, see Ertl [6]

Schleisiek [7] and Haley [8].  The above can then readily be extended for this purpose.  While this is not the

place to put forward a full OOP proposal for Forth, the dot notation follows that used in C, Java and

Delphi and is both technically sound and easily implemented in Forth.

For OOP, we could use CLASS, in place of RECORD, to define a root class and SUBCLASS to define a 

subclass of another class, given its name.  FROM and TO could then also be applied to objects, whether they 

are addressed directly or, perhaps more usually, through a handle, in a very Forth-like way and would 

integrate well into existing Forth techniques for handling stack data.

A couple of points might be noted.  Firstly, the distinction between private and protected class members 

is often over-egged by OOP followers.  It is possible to get close to this by using GLOBAL and LOCAL 

definitions, as described in Section 8.5.  Private can be implemented by calling LOCAL, public by calling 

GLOBAL, with INVISIBLE-TO at the end of the file removing the private definition names from the 

dictionary.  Subclasses for the given class can access private members if they are defined within the same 

file.  There would then be no equivalent for protected members accessible to subclasses defined outside the 

confines of the file (Forth/68 could implement all three categories but the above scheme is simpler).  In any 

event, having three levels of visibility is only a problem for bad programmers, which surely we don't have 

in Forth!

Access to inherited members, particularly methods, requires access to superclasses.  This is not too 

difficult to do but would be system-specific in its implementation.

6.1.2   Advantages

By using dot notation, coupled with TO and FROM, we have a scheme that not only conforms to existing

practice outside Forth but, at the same time, dovetails very neatly into the existing ways in which stack

arguments are processed using existing Forth operators.  It is also simple to understand and elegant to use.

It is easy to implement in Forth in such a way that what the Forth programmer sees is system-

independent, apart maybe from deciding on sizes of the integer fields.

It also has the added advantage, not possessed by the current BEGIN-STRUCTURE proposal, that field 

names are attached to particular record types and so can be used freely for definitions elsewhere in an 

application, including fields in other records.  The scheme also provides a natural progression from support 

for records to the implementation of object-oriented programming.

7   Modern developments

Since most Forth systems are run on modern desktop operatings systems, some attention needs to be paid

to these.

7.1   File handling

When including files, it is essential to be able to use both full and partial file names.  For example in the file

that is included when processing the LR parser described in [3], the string

S" ::Compilers:Pascal:Character Classes"

is used for loading the file containing the character classes for Pascal.  This involves backing up by a

couple of folders from that containing the Forth system, then coming back down through the Compilers

and Pascal folders to reach the required file.  In Mac OS Classic, this is achieved using colons.

It is necessary to standardise the way in which these strings are expressed so that it is possible to open 

files using the following:

(i) a full path name starting at the root directory;

(ii) a parth name relative to a directory backed up from the one in which Forth resides;

(iii) a simple name for a file located in the same directory as the Forth application.



The Apple Mac only needs one character to cover these requirements.

No case is made here for following Apple Mac practice.  Rather, a standard way is required that allows 

path names to be converted to a form that works on a particular system.

Use of wildcards, as in Unix, could provide a considerable challenge on some operating systems and 

it seems unlikely that the Standard should attempt so support this way of specifying file names.

An important feature of GUIs is the ability to open a file using a system-dependent dialogue.  It is 

therefore important for Forth to provide a standard means of bringing up such a dialogue.

GET-FILE ( u-mode -- fileid ior)
Open a dialogue that opens a file by name using the read/write mode on the stack and return its 

fileid, zero if the user cancelled, and an io-result, zero if no error.

LOAD-FILE
INCLUDE a file selected from the OS standard file dialogue.  INCLUDE-FILE is already in use in 

the ANS Standard, so cannot be used here.

INCLUDE and REQUIRE cannot be used as defined, since file (and directory) names often contain 

spaces.  Also file names can start with spaces, which are significant.  Instead something like INCLUDE" is 

needed.

INCLUDE"
Scan the input stream for a string delimited by a double quote.  Open the file whose name is 

specified by the string, which can be an extended path name, and proceed as specified in 

INCLUDED.

REQUIRE has the same problem for file names as INCLUDE.  However, there is potentially a fundamental

flaw with REQUIRE in that the files are not necessarily loaded in a specified order so, if there is a name

clash with definitions loaded in other files, there will be an ambiguity over which definition is the one that

should be used.  REQUIRE and REQUIRED therefore really need to be abandoned.  Note that a close

equivalent, Uses, in Delphi still requires the 'unit' names to be given in their correct order.

Also extremely useful for examining the contents of files is

DUMP-FILE ( wid ud-start u-size)
Display the contents of a file in the normal DUMP format starting at location ud-start covering 

u-size address units

7.2   Relocatable blocks

Support for relocatable blocks is provided by the operating system for desktop computers, by means of

handles, i.e. indirect addresses, for access.  This allows the size of the a block to be changed, moving the

block when necessary.  For embedded systems, this can be accomplished by placing the block in the Forth

data space and moving it explicitly when the size is increased but, again, it is necessary to use indirect

addressing.

Relocatable blocks are very useful for structures whose size is not known beforehand, particularly for 

stacks and queues.  Forth/68 uses relocatable blocks for these purposes, especially dictionary headers, with 

control parameters placed at the start of each block.  Stacks and queues may use fixed or variable sizes of 

data items and are automatically extended in size, when needed.

At the very least, basic definitions are needed for relocatable blocks:

NEW-HANDLE ( u -- hndl rslt)
Allocate a relocatable block of size u address units.  Return a handle and a result code that is 

zero if okay, non-zero if it has not been possible to allocate a block of the required size.

FREE-HANDLE ( hndl -- rslt)
Dispose of a relocatable block, given its handle.  Return a zero if the operation was performed 

correctly, non-zero if there has been an error, e.g. if the input argument is not a valid handle.

7.3   Menus

Menus are an essential part of GUIs and, indeed, had been used with RS-232 video terminals at the Royal

Greenwich Observatory (RGO) well before Mac OS and Windows started to use them.



It is therefore important to have a standard scheme so that menus can be transportable.  At present it 

is necessary to include a separate menu file for each system that a program is to be run on.  Forth/68 makes 

use of the primitive definition, ENTER, to enter names into the dictionary.  As this expects a string 

address/count, it can enter names that include spaces.  Each name within a menu is defined in a vocabulary 

that belongs to that menu, so the names can be looked up in the dictionary in a robust manner.

For example, in an application for renumbering digital images by capture date, in an Actions menu:

   VOCABULARY Actions  Actions DEFINITIONS
S" Tag Movies..."   :ENTER   TAG-PREAMBLE  RENUMBER-FILES ;

where ENTER: is the 'colon' version of ENTER.

No case is made here for using this scheme in the Standard, although it is easy to implement.  

However, a standard method of setting up menus is highly desirable.

8   Miscellany

8.1   Interpretation Semantics

Some definitions don’t have interpretation semantics but have very obvious behaviour in that situation.

EXIT
This is very useful during development for exiting from compiling a file.

."
." has an obvious meaning for interpretation and is useful for displaying progress of a 

compilation.  It also looks more elegant in a source-file when displaying text during compilation 

than the rather ugly .( in the ANS Standard, which is redundant anyway if ." is allowed to 

have interpretation semantics.

S"
Although S" has interpretation semantics in the File-Access Word Set, it does not in the Core 

Word Set.  Essentially, this makes the two versions incompatible and is somewhat confusing.  It 

is therefore suggested that the two versions be given the same interprettion semantics.

It is not clear why the ANS Standard adopted S" in favour of " since the latter had been 

used since Charles Moore's original Forth came out and surely could have been able to claim 

common practice at the time.

8.2   UNLOOP

In the ANS Standard, UNLOOP is a somewhat enigmatic definition in that it must be followed by either

EXIT or UNLOOP itself and it is not clear what happens if neither of these follows.

However, there is a very useful feature if it can be followed by LEAVE.  If used inside an inner nested 

loop, UNLOOP LEAVE would  perfom the task of  leaving the outer loop and would branch past its LOOP 

terminator.

More than one UNLOOP could be used in a similar way.  This avoids what can be a somewhat 

complicated way of getting past the LOOP terminator in an outer LOOP.

8.3   EMPTY

EMPTY is essential in multi-tasking systems for emptying a terminal task dictionary, as it includes setting

of defaults, such as search order, and closing any files opened by a previous application.  These are

functions that cannot be undertaken using MARKER which, in any case, would always need to leave a

marker at the start of each terminal task.

8.4   Stack pointer access and SP@

Accepting that not all systems will have access to the stack pointer via SP@, it is nevertheless very useful

on desktop and similar systems, where it will normally be available.  This allows data structures placed on

the stack to be accessed, an important feature if other languages are also supported.  The fact that the stack

is not visible on all systems should not prevent SP@ from being included in the Standard as an option.



In this context, it can be useful to have a definition that reverses the stack order, especially in those

systems where the stack pointer is not visible:

>STACK< ( u)
Reverse the order of the top u items underneath the argument on the parameter stack.

8.5   WORDS

To be usable, WORDS really needs the list of definition names to be able to be displayed in alphabetical

order.  For example, in MacForth, WORDS displays the definition names in chronological order, making it

very difficult to see what words have been included in the dictionary.  The problem is made worse if all

words used in building the system are included in the list, as many of these are of no interest to the user.

Forth/68 includes some useful definitions that have been in use for many years and which discard the 

headers for selected words:

LOCAL
This is a compiler directive that causes subsequent definitions to be marked as local for 

discarding later.

|
Makes the next definition LOCAL, then retruns to the LOCAL/GLOBAL mode current at the time.

GLOBAL
Causes subsequent definitions to be marked to be kept visible.

INVISIBLE
Removes the headers for all definitions currently visible in the dictionary that have been 

marked as LOCAL.  There is also an INVISIBLE-TO which makes LOCAL definitions back to a 

particular point invisible.

This means that the many field names for certain data structures, subroutine labels and Mac OS 9

assembler traps in Forth/68 can be discarded to help reduce dictionary 'entropy'.  They therefore do not

appear in WORDS listings.

It is important to note that the purpose here is not to reduce memory usage but instead to simplify the 

dictonary.

9   Number conversion

The proposals for converting numbers are very complex.  Certainly, these numbers would look more

elegant if the discriminator followed the sign.

I would also suggest using the prefix 0x or 0X for hexadecimal numbers as used in C.  I have used 

this form for many years (common practice?).  Other numbers, including octal and binary were usually 

accomplished simply by base-switching, since they are only used occasionally.  It is not at all clear that all 

these different forms are really necessary.

10   Drawing tools

Since the Standard includes AT-XY for character-based positioning, it would seem desirable to include

definitions for drawing simple lines.  Forth/68 has

MOVE-TO ( u-h u-v)
Moves the 'drawing pen' to a position in the output window, u-h pixels in the horizontal 

position and u-v vertical pixels, measured from the top left of the drawing area of the output 

window.

LINE-TO ( u-h u-v)
This is similar to MOVE-TO but draws a straight line from the current position to that specified.

Forth/68 also has a definition that allows the output font to be set by name, FONT"; its size in

pixels/points is set by PT.  Other definitions allow the fore-colour and background colour to be set to some

basic colours such as BLACK, RED and MAGENTA.  The fore-colour specifies the colour that will be used for

drawing lines and text, while the background colour specifies the colour for the general background.



11   Execution timing

It is often useful to be able to compare program execution times on different systems.  A standard means of

accessing a clock is needed so the execution speeds can be compared when the same definitions are run on

different systems.  Resolution does not matter too much but does need to be much less than one second.

Mac OS 9 has a system variable called 'Ticks', that is measured in 60Hz clock ticks and is generally

adequate for this purpose, although a resolution of one millisecond is preferable.

12   Aborting

In the control of what has come to be called robotic instruments, it is important to be able to abort in a

controlled fashion.  This is also generally useful if there is a chance that a definition will end up in an

infinite loop.

One of the first requirements found with the RGO microdensitometer, [3], was the need for both pre-

emptive multi-tasking and the availability of a controlled user abort from the keyboard.  The practical need 

for this was that, if a scan were aborted without switching off the motors, these could run onto end stops 

and required manual rewinding of the drive screws, resetting of the power supplies and loss of registration 

of the carriage position, which could also mean having to discard any scans made previously.  The multi-

tasking had to be pre-emptive to ensure that the system would respond fast enough to the abort key.

The solution adopted was to implement an ESCAPE. . . ENDECAPE structure at the start of any 

definition that needs a controlled abort exit.  For example, if motor were a LOCALS| variable to identify a 

motor that was being switched on and off, the phrase

      ESCAPE  motor OFF  ENDESCAPE   motor ON ...

could be used. Although CATCH/THROW can potentially do this, it is not straightforward in use, the

principal reason being that handling an exception is split between two definitions, making the caller

responsible for an abort generated from within the called routine (including the case where the user might

have pressed the abort key).

The try. . .catch mechanism, as implemented in languages, such as C++ and Java does put the 

catch in the same routine but the catch only catches specific exceptions.

The ESCAPE mechanism is probably the easiest to use. Firstly, it occurs in the routine where the 

exception is generated.  Secondly, in Forth/68, the THROW code for an exception can be accessed through a 

user variable, THROW-CODE, so that special action can be taken for any given type of exception.  However, 

this is not proposed for the Standard.

Since CATCH has been used in ANS Forth in a way that is different from other languages, it is 

suggested that the TRY. . .FINALLY. . .ENDTRY mechanism, similar to that in Delphi, be adopted for the 

Forth Standard.  The above code would then be written as

      TRY  motor ON ...  FINALLY   motor OFF  ENDTRY

The code following FINALLY is always executed at the end, whether or not there has been an 

exception.  There are two options on the way in which FINALLY works.  The first would be for it to return 

the THROW code on the parameter stack, in a manner similar to CATCH, zero if there has been no abort; the 

second would be for it not to return anything but to provide a user variable, like THROW-CODE above, which 

could allow different exceptions to be handled individually or, indeed, allow different actions depending 

upon whether or not there had been an abort.

Big advantages for this mechanism over CATCH are:

• Crucially, the exception handler occurs at the 'heart of the action' and is handled at the same

level as the point at which the exception occurs;

• Code following the FINALLY follows on naturally from the code before it;

• It is not necessary to access the code before the FINALLY with the somewhat ungainly ['];

• Any LOCALS| words can be used within the FINALLY code, including when there is an

exception – these are not accessible with CATCH;

• At least in robotic instrument control, it is likely that the code following the FINALLY will be

executed whether or not there is an exception.
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Methods in objects2: Duck Typing and Performance
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Abstract

The major new feature of objects2 is defining meth-
ods for any class (like in Smalltalk): this means that
we can have two classes that are unrelated by inher-
itance, yet react to the same messages and can be
used in the same contexts; this is also known as duck
typing. This paper discusses the implementation of
method dispatch for these general selectors as well
as the more restricted class selectors of the original
objects.fs, and compares the memory and execu-
tion time costs of these method selector implemen-
tations: Unhashed general selectors are as fast as
class selectors (down to two instructions), but can
consume a lot of memory (megabytes of dispatch
tables for large class hierarchies); hashed general
selectors are significantly slower (≥ 43 cycles), but
consume less memory. Programmers don’t need to
choose a selector implementation up front; instead,
it is easy to switch between them later, on a per-
selector basis.

1 Introduction

My objects.fs package provided Java-inspired fa-
cilities for defining methods: Essentially the pro-
grammer defines a method selector for a certain
class or interface, and can then only define methods
for this selector for descendent classes of that class,
or (for interface selectors) for classes implementing
this interface.

One disadvantage of this approach and the way it
was implemented in objects.fs was that passing
an object of the wrong class to a selector was not
detected. Detecting this would be useful for debug-
ging, and also useful for, e.g., implementing proxies
that pass on every not-understood method call to
another object.

Also, some people argued that Smalltalk-style
methods, which can be defined for any class, would
be useful. They would allow the use of duck typing:
A type is defined as a set of selectors, and every
class/object for which methods are defined for these
selectors, has this type.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

At first the implementation of these features
seemed to me too expensive in run-time, and the
benefits did not appear to be very significant. But
eventually I learned about more efficient implemen-
tation techniques as well as additional uses for these
features, so I set out to devise objects2, which pro-
vides these features (as well as backwards compat-
ibility with objects.fs).

In this paper I look at the basic syntax (Sec-
tion 2), at various method dispatch techniques (Sec-
tion 3 and their performance (Section 5), and at
the minimally invasive ways offered by objects2 for
selecting between dispatch techniques (Section 6).
It also discusses (Section 4) how to implement the
current object pointer and measures the resulting
execution time (Section 5).

What this paper does not discuss whether you
should use Smalltalk-style methods and duck typ-
ing or use than Java/C++-like methods. Objects2
gives you both options (with a very easy transition
between them, and the choice available per selec-
tor), and it is up to you to decide which one you
want or need to use. This paper also does not give
a general documentation of objects2; the documen-
tation comes with the package.

2 Defining methods

Figure 1 shows an example program that defines
three classes: A, it’s child A1, and the unrelated
class B (apart from the common ancestor class
object, which is unavoidable in objects2).

It also defines two method selectors: foo and
bar; there are two method definitions for each of
these selectors. The first method definition for a
name defines the selector (a Forth word with that
name), any further method definition just defines
the method (an anonymous colon definition) and
makes it the method that the selector calls for the
current class and it’s children.1

The some-A1 foo call demonstrates that A1 in-
herits the foo-A method from A. The some-A bar

example demonstrates that objects2 reports if a se-
lector is invoked for a class for which no method is

1This kind of conditional definition is very unusual in
Forth; it is due to the fact that we we want to optionally
use duck typing, so we don’t want to have to define the se-
lector beforehand, as was done in objects.fs).
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object class

:: foo ." foo-A" ;;

end-class A

A class \ child class of A

:: bar ." bar-A1" ;;

end-class A1

A heap-new constant some-A

A1 heap-new constant some-A1

object class

:: foo ." foo-B" ;;

:: not-understood ( sel-xt obj -- )

( sel-xt ) some-A1 swap execute ;;

end-class B

B heap-new constant some-B

some-A1 foo \ prints foo-A

some-B foo \ prints foo-B

some-A bar \ method not understood

some-B bar \ prints bar-A1

Classes

S
e

le
c
to

rs

A BA1object

not-understood nu-objnu-obj nu-obj nu-B

foo

bar

foo-A foo-A foo-B

bar-A1

udfoo

udbar udbar udbar

Figure 1: An example program and its
class×selector matrix

defined for the selector (in contrast to objects.fs,
which would just blindly try to execute some xt,
with unpredictable results).

Finally, the some-B bar call demonstrates the
not-understood feature: Any call to a selector
for a class for which no method is defined results
in a call to the not-understood method for this
class. By default (i.e., inherited from object),
not-understood just produces an error report (as
demonstrated by some-A bar), but you can define
your own method to deal with not-understood mes-
sages, and this is done here: The not-understood

method for B just invokes the original selector
(which is passed as xt) for some-A1, which even-
tually prints bar-A1.

Objects2 has a bunch of other features (e.g., for
defining instance variables), but they do not play a
role for the issues discussed in this paper, so they
are not discussed here.

B

class

data

data

some-B

foo

bar

not-understood

(not yet used)

foo-B

udbar

nu-B

inst. vars

Figure 2: Object some-B and it’s class B. Some-B
has no instance variables

3 Dispatch Techniques

3.1 Unhashed general selectors

If any selector can be called with an object of any
class, we have to implement a class×selector ma-
trix. Figure 1 also shows the matrix for the ex-
ample program. Some entries are defined directly
by the programmer (e.g., the entry for foo×A),
some are defined by inheritance (e.g., foo×A1);
the rest gets the xt of the word udselector

(short for undefined-selector) which calls
not-understood for the class and passes it the xt
of selector .

In practice, instead of creating one big matrix,
we store each column in the data of its class (see
Fig. 2). Each object starts with a pointer to this
class data. So the code for dispatching an unhashed
method is:

: unhashed-selector ( u-offset "name" -- )

create ,

does> ( ... object -- ... )

( object selector-body )

@ over @ + ( object xtp ) @ execute ;

We cannot resize the class after objects of the
class have been created: resizing might require mov-
ing the class data, i.e., updating the class pointers
in the objects; since we do not track objects, we can-
not do that. Therefore, we specify in advance how
many unhashed selectors there are (see Section 6).

VFX Forth translates a call to such a selector
into:

MOV EDX, 0 [EBX]

ADD EDX, [<selector-body>]

CALL 0 [EDX]

The memory access to the selector body cannot
be optimized away by VFX, because the user is al-
lowed to change the offset there at any time. How-
ever, it is possible to define selectors in a way that
avoids that problem:
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Classes Selectors Cells
Minos 129 364 46956
GlForth 29 79 2291

Figure 3: Memory consumption of unhashed gen-
eral selectors

: do-unhashed-selector ( object offset -- )

over @ + ( object xtp ) @ execute ;

: unhashed-selector ( u-offset "name" -- )

>r : r> postpone literal

postpone do-unhashed-selector postpone ; ;

VFX compiles a call to such a selector into

MOV EDX, 0 [EBX]

CALL [EDX+<u-offset>]

Unfortunately, this version is only fast on com-
pilers that inline calls and optimize the result, like
VFX.

Figure 3 shows the memory consumption of the
dispatch tables of unhashed general selectors. For
large programs the size of the dispatch tables can
become a problem, because it grows approximately
quadratically with the size of the program.

3.2 Hashed general selectors

Larger programs have more classes and more selec-
tors, and usually the matrix is sparsely populated,
i.e., most matrix entries point to udselector . To
save memory, we can use a hash table for looking
up all the entries that are not udselector ; if no
entry is found in the hash table, we call undef (a
generic variant of udselector ), which eventually
calls not-understood. As a key into the hash table,
we can use an integer computed from a class index
and a selector index: the class indices are spread so
far apart that a class index can be just added to the
selector index to get a unique key. Fig. 4 shows a
hash table for our example.

The code for the hashed dispatch is:

does> ( ... object -- ... )

@ ( ... object sel-id )

over object-class @ class-base @ +

( object key )

tuck hash-multiplier um* +

( key object hash )

table-mask and 2* cells meth-hash-table +

rot begin ( object table-entry key )

over @ over = if \ right class/selector?

drop cell+ @ execute exit then

over @ 0= if

nip undef exit then

swap cell+ cell+ swap

again ;

foo-A

foo-A

foo-B

nu-obj

nu-obj

B::foo

A1::foo

A::foo

A::not-understood

object::not-understood

key value

nu-objA1::not-understood

nu-BB::not-understood

bar-A1A1::bar

Figure 4: A hash table for our example program

First this computes the key, then this key is
hashed with a simple hash function, then we per-
form linear probing in the hash table, until the key
matches our class/selector pair (then we execute

the method), or until we find an empty entry (then
we call undef). Note that the search loop is typi-
cally iterated very few times (ideally 0 times).

Whether the hashed or the unhashed version is
preferred depends on the memory and run-time re-
quirements of the application. E.g., if we assume
that each selector in Minos has four methods on
average, and that these methods are inherited to
four classes on average, then we have 5824 entries
in our hash table. We need either an 8K entry (16K
cell) hash table with a 71% load factor (which may
be slow), or a 16K entry (32K cell) hash table with
a 36% load factor, but that does not save much
memory compared to unhashed selectors.

Objects2 gives you the option of using the un-
hashed access for the most frequently used selectors
(also useful for selectors that have methods for most
classes), and hashing for the rest; see Section 6. By
using unhashed selectors for the most frequent se-
lectors, the relatively high load factor of the smaller
hash table becomes acceptable, because only infre-
quent selectors are hashed; also, there are now fewer
entries in the hash table, so the load factor is re-
duced somewhat.
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class-selector u

class-selector v

class-selector w

class-selector x

object class

:: u ." A-u" ;

end-class A

object class

:: v ." B-v" ;

end-class B

A class

:: w ." A1-w" ;

end-class A1

A class

:: x ." A2-x" ;

:: u ." A2-u" ;

end-class A2

u

A-u

v

B-v

u

A-u

u

A2-u

w

A1-w

x

A2-x

A B A1 A2

data

un-
hashed

data

un-
hashed

data

un-
hashed

data

un-
hashed

size size size size

Figure 5: Class selectors. Different selectors (u and
v, w and x) have the same index (optional checking
data in gray)

3.3 Class selectors

Consider the following restriction: A selector can
only be used on a specific class and its descen-
dents. This means that two selectors for two non-
overlapping classes (i.e., where neither class is de-
scended from the other) can use the same index,
resulting in densely populated dispatch tables (see
Fig. 5) and lower memory consumption. We call
these selectors class selectors.

We define classes starting with the most ancestral
ones, and define all class selectors before we define
child classes; this allows a very simple management
of the selector indices: Every class has a current
maximum selector index; defining a new class selec-
tor increases the maximum, thus creating an index
for the new class selector. A child class inherits the
maximum from its parent (and the parent’s maxi-
mum stays the same from then on).

The dispatch code for class selectors without
checking is the same as for unhashed selectors. The

difference is in the index management and in the
resulting restrictions: We have a limited number of
unhashed selectors (the number is specified when
loading objects2, see Section 6), whereas the class
selectors are unlimited, but must satisfy the class
selector restriction. In objects2 the indices of the
class selectors start right after the indices of the
unhashed selectors.

Using a class selector on an object of the wrong
class will call the wrong method, or whatever is
found at the class selector’s offset from the start of
the class; if we are lucky, we get a crash right away,
if we are unlucky, the program does something we
don’t want.

We can have class selectors that check whether
they are invoked for the right class: In addition to
the method xt, we store the body address of the
selector and the size of the class structure (shown
in gray in Fig. 5). The selector then checks that its
offset is within the class, and that what is stored
right before the method is its body address. If not,
the selector can produce an error (useful if check-
ing is turned off after debugging) or perform not-
understood processing. The selector code for the
latter case is:

does> ( ... object -- ... )

( object sel-body )

dup last-class-selector !

tuck @ over object-class @

( sel-body object offset class )

2dup class-size @ u< if

( sel-body object offset class )

+ rot over @ = if ( object p )

cell+ @ execute exit

then

drop

else

2drop nip

then ( object )

last-class-selector @ cell+ @

message-not-understood1 ;

With the parameters above (364 selectors, each
with 4 methods that are inherited to 4 classes on
average), class selectors consume 5824 cells of dis-
patch tables without checking and 11648 cells with
checking. However, to work around the class se-
lector restriction, programmers are likely to create
deeper inheritance hierarchies and define selectors
higher in the hierarchy, so the memory savings of
class selectors are probably less than would be ex-
pected from the simplistic calculation above. The
extreme variant of this would be to have a common
ancestor class for all classes and define all selectors
there, so all selectors are available for all classes, but
with the same memory consumption as unhashed
general selectors (for the unchecked version; check-
ing is not necessary in this case).
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interface

selector i1

selector i2

end-interface I

interface

selector j1

selector j2

end-interface J

object class

implements I

:: i2 ." A-i2" ;

end-class A

object class

implements J

:: j1 ." B-j1" ;

end-class B

B class

implements I

:: i1 ." B1-i1" ;

end-class B1

A B B1

interfaces
I

J

I

J

I

J

methods

interface methods
A-i2

B-j1 B-j1

B1-i1

Figure 6: Interfaces and their implementation

3.4 Interface selectors

The original objects.fs did not have general se-
lectors, so it included interfaces to make it possible
to go beyond the limitations of class selectors: An
interface is a set of selectors; you can define any
class to support an interface, and the selectors of
the interface can then be called for the class and its
descendents. Figure 6 shows an example. The code
for (unchecked) interface dispatch is:

does> ( ... obj -- ... )

( obj sel-body )

2dup @ ( obj sel-body object if-offset )

swap @ + @

( obj sel-body if-table )

swap cell+ @ + @ execute ;

Here the selector stores (first cell) the offset of the
interface from the class pointer, and (second cell)
the offset of the method from the interface pointer,
and uses both offsets to access the xt of the method.

Every interface requires a cell in every class (not
just those that implement the interface); there can
be several selectors per interface, so interfaces are
somewhere between class selectors and unhashed
general selectors in functionality and memory con-
sumption.

Objects2 has general selectors, and interfaces
do not appear to add enough to justify the ad-
ditional complexity, so objects2 emulates inter-
faces with general selectors (for compatibility with
objects.fs).

3.5 Monomorphic selectors

Sometimes a programmer defines a method (and,
implicitly, a selector) to keep the program flexible,
but does not define another method for the selec-
tor for now. Then the selector is actually used
monomorphically, and dispatch can be very simple:

does> ( ... object -- ... )

@ execute ;

In other words, a monomorphic selector is a de-
ferred word (this version does not check that only
descendents of the class for which the method was
defined are passed to the selector).

4 Implementing the current

object pointer

Apart from method dispatch, there is another in-
teresting implementation issue:

Like objects.fs, objects2 has a current object
this. This is set on method entry from the top of
stack, and is visible inside the method.

This sounds like an ideal use for locals (in par-
ticular, (local)), but there is one catch: Standard
programs must not use more than one locals defini-
tion per colon definition. And unfortunately there
are Forth systems like VFX that rely on and en-
force this restriction. So if we use locals for this,
the programmer cannot use locals inside methods.

The other alternative is to define this as a value.
The disadvantages are that this approach requires
hardening against exceptions which may be difficult
in some cases, and multi-tasking would require a
user value (or user variable), which may be slower
than global values.

Another property of the value implementation is
that it allows us to access instance variables from
outside methods; this has benefits in debugging,
and can also be used to access instance variables
from ordinary colon definitions, which can be used
for factoring or for converting non-object-oriented
code to object-oriented code. This kind of usage
also has dangers, and some may prefer a local this
because it prevents this usage.
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early binding
monomorphic
unhashed/class does>
unhashed/class :
checked class

interface
hashed (0 collisions)
hashed (1 collision)
hashed (2 collisions)
hashed (3 collisions)

VFX value VFX local VFX none Gforth value Gforth local Gforth none

cycles Core2 Duo E8400

0

20

50

100

150

Figure 7: Time for one method call (plus overhead) in the micro-benchmark, varying dispatch code, Forth
system, and this implementation

5 Execution time results

To compare the run time of various method dis-
patch (and current object pointer) techniques, I
wrote a microbenchmark. It’s a simple loop whose
body calls the same selector 10 times in a row, and
the object for which it is called is always the same
(the method pushes that on the stack). I.e., caches
should be hit and indirect branch prediction should
be optimal.2 The called method just increments
the top-of-stack and pushes an object on the stack,
but of course it does the handling of this (except
for the none variant, which just drops the object
from the stack and pushes the object again). The
shown times include the loop overhead around the
selector calls. We also compare with early binding,
where the method is compiled directly into the loop
(and VFX inlines it) instead of going through some
selector code. For the hashed selector, four timing
variants are measured (by initializing the hash table
appropriately): with 0, 1, 2 and 3 collisions (for this
particular lookup) when probing the hash table; for
a load factor of 50% (the value I recommend), most
lookups should have zero or one collision.

Figure 7 shows the times in cycles per iteration,
on a 3GHz Core2 Duo E8400. Two different Forth
systems are used: VFX, an analytic native-code
compiler that produces fast code for straight-line
code; and Gforth, a system with a simpler code gen-
eration strategy (concatenate C-compiler-generated
code fragments). Also, the two variants of imple-

2That’s not realistic, but indirect branch prediction
should affect every technique in the same way and cache
misses should be relatively rare for frequently-executed code;
and rarely executed code does not have a significant influence
on performance.

menting this are compared with each other, and for
perspective, we also compare with not having this

and (in this case) just dropping the object passed
into the method.

All dispatch techniques except checked class se-
lectors and hashed selectors have about the same
performance on VFX, except that early binding is
particularly fast for the none case, because VFX
manages to optimize most of the loop body away: it
inlines all the calls, and then VFX optimizes nearly
all the dropping and pushing of the object away,
leaving just the increments.

Interestingly, even though the VFX code for the
unhashed selector using : looks much better than
when using does>, this is not reflected consistently
in the timing data.

Looking at the other dispatch techniques, on
VFX a value this costs about 3–4 cycles more than
no this and a local this costs about two more cy-
cles. With more substantial methods, an out-of-
order CPU like the Core 2 Duo will probably over-
lap the this-handling overhead with other code,
reducing the cost for this even further.

The checked class selelector and the hashed se-
lector are quite a bit slower on VFX: 30–35 cycles
slower for the checked class selector, 43–50 cycles
slower for the hashed selector with zero collisions.
Each collision adds 9–10 cycles on average. The dif-
ference from the other selectors is surprisingly large,
especially given the high speed of the other selec-
tors. I believe this is mainly due to the fact that
VFX’s register allocation is limited to straight-line
code (the other selectors all perform straight-line
code). Hardware optimizations in the CPU might
also play a role, even though the benchmark was
modified so that the loop stream detector [Int12]
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\ 3 unhashed selectors

3 constant objects2-unhashed-selectors

\ hash table size: 2048

11 constant objects2-hash-table-shift

\ warn if >1200 methods in hash table

1200 constant objects2-max-occupation

require objects2.fs

\ declare three selectors, such that they

\ are unhashed

selector draw

selector foo

selector bar

\ declare class and monomorphic selectors

class-selector baz

monomorphic-selector flip

\ load class libraries

require graphical.fs \ graphical class

require wine.fs \ class about wine

\ load application code

require bla.fs

require blubb.fs

Figure 8: Choosing the implementation of selectors

should not come into play.

Unlike VFX, Gforth shows differences in perfor-
mance between early binding, monomorphic, un-
hashed, and interface selectors, with the unhashed
selector (implemented with does>) being 21–24 cy-
cles slower than early binding. Class selectors using
: as shown are significantly slower, because Gforth
does not inline. The extra cost for checked class
selectors is 40–45 cycles, and hashed dispatch with-
out collisions costs 32-40 cycles more than unhashed
dispatch, and each collision adds 34 cycles on aver-
age.

In Gforth a local this is faster than a value this
by about 10 cycles, and not dealing with this is
another 0–12 cycles faster.

Comparing unchecked class and interface selec-
tors (from objects.fs) with unhashed and hashed
selectors (new in objects2), we see that the added
flexibility of the objects2 selectors either costs space
(for the unhashed selector) or time and not as much
space (hashed selector). Whether these costs are
acceptable and whether the flexibility is worth the
cost depends on the application and its environ-
ment. One of the features of objects2 is that it is
easy to switch between these different selector vari-
ants, on a per-selector basis, as discussed in the
following section.

6 Optimizing Dispatch

Objects2 offers the choice of using unhashed
or hashed general selectors, class selectors, or
monomorphic selectors. Moreover, you can make
the choice on a per-selector basis, in a minimally
invasive way: You do not need to change the class
or method definitions, which may be libraries which
you may not want to change. Instead, you can spec-
ify in the load file of the application which selectors
use which dispatch implementation. The rest of this
section describes this feature.

By default selectors are general selectors. The
first n selectors are unhashed, the rest is hashed.
You can determine the unhashed selectors by set-
ting n before loading objects2.fs and then declar-
ing the n selectors that you want to be unhashed.

You can also set the number of classes and the
hash table size to reduce the memory consumption
to the necessary amount or to allow more than the
default number of classes and hash table entries.

You can also declare a selector as a class selector
or monomorphic selector in the load file.

Here is an example of how a load file might look:

Note that these selector declarations happen out-
side any class, they just influence what the later
method definitions do. Actually, implementation-
wise, these “declarations” define a selector word of
the desired kind, and a later method definition es-
sentially just defines the method and inserts the xt
into the appropriate table for this selector and class;
in case of a class selector the first method definition
inside a class also sets the root class for this selec-
tor, and every other method definition has to be in
a descendent class of that class.

7 Missing language features

There are two language features that would be use-
ful for implementing objects2 and which Forth sys-
tems usually provide in some way, but which are
not standardized:

body> ( addr -- xt ) would allow getting the
xt of the selector for not-understood processing.
But since this is not standardized, every selector
has to store its xt in an extra field. Absence cost:
one extra cell per selector.

>definer ( xt -- definer ) would allow to
check if a word has been defined as a selector or not,
and which kind of selector. But since this word is
not standardized, objects2 maintains several linked
lists, one for each kind of selector, and if it needs to
know the information, it searches these linked lists.
Absence cost: another extra cell per selector, more
CPU consumed by linear searches.
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8 Related work

There is a large body of work on implementing
object-oriented languages in general and method
dispatch in particular [ACFG01, DH96, VH96,
AGS94, ZCC97]. Ducournau [Duc11] presents a
very good survey, but it helps to be familiar with
some of the implementation techniques in order to
understand this survey. The present work does not
introduce any new techniques; instead, it makes a
few of the existing techniques available to Forth pro-
grammers in a way that allows them to switch be-
tween different techniques easily, as appropriate for
the application.

There have also been a number of object-oriented
Forth extensions. Rodriguez and Poehlman [RP96]
list 23, and since then more have been introduced,
including objects.fs [Ert97]. This paper focuses
on the main feature where objects2 differs from
objects.fs: Allowing selectors to be used on ar-
bitrary classes; it discusses the implementation of
this feature and presents performance data.

A relatively recent entry in the collection of
object-oriented Forth extensions is FMS (Forth
meets Smalltalk). Like objects2, it supports defin-
ing methods for a given selector for any class. The
implementation is not much documented, but seems
to be based on a compressed table. I do not under-
stand the table format enough to evaluate its space
consumption. The dispatch code is relatively long
compared to the variants shown above, so I expect
it to take at least as much time as objects2’s hashed
dispatch with 0 collisions. A more substantial com-
parison is future work.

9 Conclusion

Fast, small, flexible (duck typing): Pick any two.

Fast, small: Class selectors, monomorphic selec-
tors

Fast, flexible: Unhashed general selectors

Small, flexible: Hashed general selectors

Objects2 allows you to choose between these
method selector implementations. Moreover, you
can choose separately for each selector, and you can
change the choice easily, in many cases not even
touching the actual class code.
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Recognizers

Customize the Interpreter

Bernd Paysan

EuroForth 2012, Oxford

Overview

1 Motivation

2 Gforth’s Recognizers

3 Examples

The Problem

• Forth is extensible, provided all your extensions are simple,
space–delimited words

• Literals are already part of the non–extensible, unchangeable
part of the standard interpreter

• Many systems have mechanisms like notfound, where you can
plug in something in a system–dependent way. . .

Recent Development

• During the number prefix RfD discussion, Anton Ertl [1]
suggested a system called “Recognizer,” which was roughly
sketched, but would allow to dynamically reconfigure the
interpreter

• Matthias Trute had several discussions on IRC and
implemented a recognizer system in amForth[1]

• Win32Forth got recognizers in the current development
snapshot, as well as Gforth

• All these recognizers look slightly different, as they are still
experimental stuff

Gforth’s Recognizers

x–RECOGNIZER ( addr u | token r:x / addr u r:fail )
A recognizer takes a string, and converts it to a
token, which consist of some data on the stack and a
method table. The method table have three “virtual”
methods (which are only concept):

INT ( x*i token — y*j )
Invokes the interpretation semantics of a token
(similar to EXECUTE)

COMP ( token — )
Invokes the compilation semantics of a token

LIT ( token — )
Add the token to the currently defined word, so that
tokens can be postponed

Gforth’s Recognizers

RECOGNIZER: ( xt-int xt-comp xt-lit „name“ — )
Creates a recognizer table

Recognizers are organized as a stack (similar to wordlists), therefore
you can

GET–RECOGNIZERS ( rec–addr — recn .. rec1 n )
get the all the recognizers out of a stack

SET–RECOGNIZER ( recn .. rec1 n rec–addr — )
set the recognizers of a stack

Gforth’s Recognizers

DO–RECOGNIZER ( addr u rec–addr — token r:table | addr u
r:fail )
walks through all the recognizers in a stack until one
matches, and either return its result or the input
string and r:fail

R:FAIL ( – r:fail )
recognizer table, where all three methods fail with
-13 throw

Predefined Recognizers: Forth words

: lit, ( n -- ) postpone Literal ;

: nt, ( nt -- ) name>comp execute ;

: nt-ex ( nt -- ) name>int execute ;

’ nt-ex ’ nt, ’ lit, recognizer: r:word

: word-recognizer ( addr u -- nt r:word | addr u r:fail

2dup find-name

[ [IFDEF] prelude-mask ] run-prelude [ [THEN] ] dup

IF nip nip r:word ELSE drop r:fail THEN ;



109

Predefined Recognizers: Literals

: 2lit, postpone 2Literal ;

’ noop ’ lit, dup recognizer: r:num

’ noop ’ 2lit, dup recognizer: r:2num

: num-recognizer ( addr u -- n/d table | addr u r:fail )

2dup 2>r snumber? dup

IF 2rdrop 0> IF r:2num ELSE r:num THEN EXIT THEN

drop 2r> r:fail ;

Advanced Recognizers: Strings

: slit, postpone sliteral ;

’ noop ’ slit, dup recognizer: r:string

: string-recognizer

( addr u -- addr’ u’ r:string | addr u r:fail )

2dup s\" \"" string-prefix?

IF drop source drop - 1+ >in !

\"-parse save-mem r:string

ELSE r:fail THEN ;

’ string-recognizer

forth-recognizer get-recognizers

1+ forth-recognizer set-recognizers

For Further Reading
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