
29th EuroForth Conference

September 27-29, 2013

Haus Rissen
Hamburg
Germany

(Preprint Proceedings)

3

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 29th Euro-
Forth finds us in Hamburg for the second time (after 2010). The two previ-
ous EuroForths were held in Vienna, Austria (2011), and in Oxford, England
(2012). Information on earlier conferences can be found at the EuroForth
home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there were three submissions to the refereed track, and one was accepted
(33% acceptance rate). For more meaningful statistics, I include the numbers
since 2006: 16 submissions, 9 accepts, 56% acceptance rate. Each paper was
sent to at least three program committee members for review, and they all
produced reviews. Two papers were co-authored by a program committee
member, who was not involved in the review of these papers; the reviews of all
papers (including the ones co-authored by the PC member) are anonymous
to the authors. I thank the authors for their papers and the reviewers and
program committee for their service.

Several papers were submitted to the non-refereed track. These proceed-
ings also include these papers and slides for presentations without paper.

Workshops and social events complement the program.
This year’s EuroForth is organized by Klaus Schleisiek and Ulrich Hoff-

mann.

Anton Ertl

Program committee

Sergey N. Baranov, SPIIRAS, Russia
M. Anton Ertl, TU Wien (chair)
David Gregg, Trinity College Dublin
Ulrich Hoffmann, FH Wedel University of Applied Sciences
Phil Koopman, Carnegie Mellon University
Jaanus Pöial, Estonian Information Technology College, Tallinn
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart

4

Contents

Refereed papers

Andrew Read: Optimizing memory access design for a 32 bit FORTH pro-
cessor . 5

Non-refereed papers

Nick J. Nelson: Forth Query Language (FQL) — Implementation and Expe-
rience . 24
M. Anton Ertl: PAF: A Portable Assembly Language30
M. Anton Ertl: Standardize Strings Now! . 39
Sergey Baranov: Forth in Russia . 44
Willi Stricker: Forth Floating Point Word-Set without Floating Point Stack
. 51

Presentations

Ulrich Hoffmann: Forth Literate Programming with IPython notebook . 58
Gerald Wodni: Forth to .NET Bridge . 62
M. Anton Ertl: Region-Based Memory Allocation . 65
Bernd Paysan: net2o: Application Layer — Browser Components68

5

Optimizing memory access design for a 32 bit FORTH

processor

Andrew Read

June 2013

andrew81244@outlook.com

Abstract

This paper compares and contrasts two alternative approaches to designing system mem-

ory access for a 32 bit FORTH processor. One approach maximizes clock speed whilst the

other maximizes instruction throughput. Each approach is found to have advantages and dis-

advantages. The project's conclusion is that a hybrid memory access design that considers the

di�ering needs of the CPU control unit and datapath is likely to be the optimum performance

strategy for a FORTH machine.

1 Introduction

The N.I.G.E. Machine is a complete computer system implemented on an FPGA development
board [1]. It comprises a 32 bit softcore processor optimized for the FORTH language, a set of
peripheral hardware modules, and FORTH system software. The system is primarily designed to
support the rapid prototyping of experimental scienti�c apparatus. The N.I.G.E. Machine was
�rst presented in a paper at EuroFORTH 2012 [2]. In the conclusions of that paper a number of
avenues for further work were suggested. These included improving the bandwidth between the
CPU and system memory, implementing an SD-card interface with a FAT �le system, and porting
the N.I.G.E. Machine to a higher performance FPGA development board.

As of the date of this paper an SD-card interface, native FAT �le system, and FORTH File-
Access wordset have been successfully implemented and tested. This greatly simpli�es the transfer
of program and data �les between the N.I.G.E. Machine and a PC. The upgrade was relatively
straightforward and did not raise substantial new design issues. Porting the N.I.G.E. Machine to
a Digilent Atlys development board with a Spartan 6 FPGA is currently underway.

The goal of improving memory access bandwidth was set with the intention of redesigning the
connection between the system memory (i.e. FPGA Block RAM, �SRAM�1) and the softcore
CPU. The CPU is a 32 bit processor, but the memory databus between the CPU and system
memory is only 8 bits wide in the original N.I.G.E. Machine design (�g. 1). Widening the databus
from 8 bits to 32 bits to match the width of the softcore processor might initially seem to be a
worthwhile and simple capacity increase at the cost of some further FPGA resources. However
upon closer examination this design change actually raises a number of interesting implications

1In this paper and the N.I.G.E. Machine documentation, Block RAM that is used for system memory is given

the term �SRAM�.

1

6

Figure 1: N.I.G.E. Machine system diagram showing the principal components and CPU connec-
tions. This is the 8 bit databus con�guration (highlighted), as presented at EuroFORTH 2012.

in terms of con�icting requirements for functionality. As a result, the �nal preference between
the 8 bit and 32 bit memory databus con�gurations requires deeper consideration of the intended
application and the speci�c hardware on which the N.I.G.E. Machine will be deployed.

Using the N.I.G.E. Machine as an example, this paper explains the background and challenges in
optimizing memory access for a 32 bit FORTH processor. The problems faced are not new and
would be recognizable to any processor designer. The paper seeks to advance the state of the
art in softcore FORTH systems by providing a systematic, evidence-based report with detailed
implementation information.

The structure of the paper is as follows. First of all the memory access requirements of a FORTH
processor are discussed on a qualitative level (section 2). This section also introduces the general
tradeo�s between an 8 bit and a 32 bit system memory databus. The 32 bit databus design that
was successfully implemented on the N.I.G.E. Machine is described next (section 3). Performance
benchmark comparisons between the 8 bit and 32 bit databus con�gurations of the N.I.G.E. Ma-
chine are presented (section 4). In the light of the performance benchmarking results there is
a discussion about the tradeo� decisions guiding which implementation should ultimately be pre-
ferred (section 5). The conclusion attempts to synthesize the experience with the N.I.G.E. Machine
into lessons for FORTH processors in general and suggests avenues for further work (section 6).

All of the N.I.G.E. Machine design �les and software are available open source [11].

2 Memory access requirements of a FORTH processor

2.1 Review of prior work

A number of softcores have been designed speci�cally to execute FORTH [3, 4, 5, 6, 7, 8]. Several
aspects of the J1 [3] directly inspired the design of the N.I.G.E. Machine. In most of these examples
the focus of the design work has been the CPU itself while memory access requirements have been
less of a consideration. There have been some notable exceptions. For example the RTX 2000

2

7

includes an on-chip memory page controller that considerably enhances memory access [10], and
Klaus Schleisiek's microcore [4] features pre-incrementing and post-incrementing data memory
operations (++!, !++, ++@, @++) that are directly supported by hardware. Another approach
to improving memory access e�ciency is to pack more instructions per unit of data. For example
Bernd Paysan's b16 processor[5] packs 3 instructions into a 16 bit word.

Philip Koopman [10], in discussing the characteristics of 16 bit stack machines, makes the point
that the �t between the width of the CPU datapath and the FORTH programming model is a key
design factor. Koopman observes that an 8 bit CPU is likely be unsatisfactory from a performance
standpoint because too much time would be required in synthesizing 16 bit operations, whilst at the
time of writing (1989), specifying a 32 bit CPU might be too expensive. The reasonable assumption
being made here is that wider datapaths can also access memory across wider databuses, thus
increasing processing bandwidth.

Koopman also discusses the limits of memory bandwidth. He makes the point that traditional,
register-based processors are very dependent on cache memory. This creates performance bottle-
necks that are subject to the hit ratios of various caches, and the organization of the code produced
by the compiler. He envisages stack machines o�ering an alternative approach to memory orga-
nization because of their very fast procedure calls. (Procedure calls are fast on stack machines
because there is no need to save a register set in system memory). In the stack machine approach,
frequently executed code can be stored in on-chip memory, avoiding the requirement for dynamic
memory management. The design of N.I.G.E. Machine follows the approach envisioned by Koop-
man in that code density is very high, and system memory comprises FPGA static RAM (Block
RAM) that can be accessed in a single clock cycle.

This paper builds on Koopman's theme of e�cient memory access to focus on the speci�c problem
of how best to design the connection between the CPU and system memory on a 32-bit FORTH
machine. The �rst question to answer is, what are the memory access requirements of a 32 bit
FORTH processor?

2.2 Impact of system design objectives on memory access requirements

A FORTH processor has some distinct advantages in real-time control applications [9, 10]. The
design objectives of the N.I.G.E. Machine re�ect its intended role in the real time control of scienti�c
hardware. The principal objectives are listed below and are in turn the main in�uence on memory
access requirements.

Deterministic execution. Avoiding jitter in electronic interfaces is an essential real time re-
quirement for precise control and measurement. This necessitates that the softcore CPU is
designed so that any given instruction will alway execute in a certain number clock cycles,
including instructions that access system memory.

High instruction throughput. High instruction throughput translates directly into higher pro-
cessing performance and shorter interrupt response times. This is especially important on
FPGA softcore processors that operate at lower clock rates than comparable dedicated mi-
crocontrollers. Throughput of once instruction per clock cycle is the ideal target.

Maximum code density. The fastest memory resource available to a softcore CPU is FPGA
Block RAM. Block RAM also has the advantage over external memory of deterministic
access (i.e. guaranteed single clock cycle read/write). However Block RAM resources are
typically limited to several tens or hundreds of kilobytes. To maximize the use of Block
RAM as program memory, code density needs to be as high as possible. Ideally instructions
should be encoded in no more than a single byte.

Flexible memory access. With a 32 bit processor, optimizing the speed and �exibility of mem-
ory access requires that CPU instructions are available that read or write memory in byte,

3

8

16 bit, and 32 bit formats. Flexibility is further enhanced if even address alignment is not
required when accessing 16 bit or 32 bit data in system memory.

2.3 Advantages and limitations of an 8 bit wide databus

Block RAM can be con�gured in a variety of formats by specifying (with the FPGA design tools)
the width (i.e. data size: 8 bits, 16 bits, etc.) and depth (i.e. number of address lines) of the
required memory resource. The N.I.G.E. Machine's softcore is a 32 bit CPU, but the system
presented at EuroFORTH 2012 incorporated system memory con�gured in an 8 bit wide format.
Coupling the 8 bit wide Block RAM to the CPU in this design is an 8 bit databus and an address
bus that references memory byte-by-byte (�g 1).

This con�guration has some advantages: an 8 bit databus naturally facilitates the fetching of single
byte instructions, and a byte-by-byte address format avoids misaligned address boundaries. The
design of separate CPU instructions that read or write memory in byte, 16 bit, or 32 bit formats is
also easily facilitated in this con�guration by arranging for the CPU control unit to read or write
byte data from/to consecutive memory locations in consecutive CPU clock cycles, as required by
the length of the data.

In conjunction with the N.I.G.E. Machine's three stage pipeline [2], the 8 bit databus con�guration
provides straightforward memory access and throughput of one instruction per clock cycle for
almost all instructions. The important exceptions are those instructions that require access to
more than a single byte of memory and which therefore require more than one cycle to execute.
These include all of the load literal instructions and the word and longword memory fetch and
store instructions.

This impact of this limitation becomes apparent when considering the relative frequency of in-
structions that comprise the FORTH system software (table 1). The most common instruction,
which occurs almost twice as frequently as any other, is LOAD.W (or �#.W�), the instruction to
load a 16 bit literal to the stack. The ubiquity of the LOAD.W instruction in the FORTH system
software re�ects the load/store architecture of a stack machine CPU and the subroutine threaded
nature of FORTH (LOAD.W is the instruction used to load a subroutine address prior to a JSR
(jump to subroutine)). In the N.I.G.E. Machine instruction format, LOAD.W is a three byte in-
struction comprising an opcode byte followed by the high and low data bytes in big endian format.
It takes three CPU clock cycles to execute with an 8 bit databus con�guration. On account of the
narrow instruction fetch, the most commonly executed instruction is therefore one of the minority
of instructions that have low throughput (less than one instruction per clock cycle). This is a
defeat of the optimization maxim, �make the common case fast�, and was the key motivation to
consider the design of a wide (32 bit) memory databus.

(Looking ahead, a 32 bit memory databus also allows the development of a new jump-to-subroutine
instruction (JSL) that takes a 24 bit immediate literal target.)

Instruction Frequency

LOAD.W 17.88%

JSR 9.17%

RTS and ,RTS 9.06%

LOAD.B 6.47%

Table 1: The most used CPU instructions in the FORTH system software in the 8 bit databus con-
�guration of the N.I.G.E. Machine that was presented at EuroFORTH 2012. The most frequently
used instruction, LOAD.W, is one of the minority of instructions that have low throughput (less
than one instruction per clock cycle).

4

9

Figure 2: Illustrative scheme for reading individual bytes from 32 bit width RAM. There is no
equivalently simple, single step scheme for writing individual bytes to 32 bit width RAM.

2.4 Design complications resulting from a 32 bit wide databus

When Block RAM is con�gured in longword (32 bit) data format, each memory address references
a separate, complete longword. Consecutive memory addresses therefore step through memory
in units of 4 bytes at each increment. The �rst concern in designing a wider databus are the
mismatches that arise between the 4 byte wide data format and the width of each instruction (1
byte) and the smallest unit of memory access (also 1 byte). These mismatches have a number of
important design implications.

The �rst implication is that the address bus cannot directly reference memory at the level of
individual bytes or 16 bit words. This is at odds with the design requirement that the CPU should
be able to read or write to memory either longwords, words or bytes. For memory read instructions
this problem can be circumvented by creating a composite address bus whereby the high bits of
the composite address bus are matched directly with the Block RAM address bus, and the low 2
bits are used to multiplex individual bytes from within the relevant longword (�g 2).

For write instructions there is, however, no simple solution because when con�gured in longword
format, FPGA Block RAM writes complete longwords without the �exibility to specify only indi-
vidual words or bytes within them. (Note however that a full review of alternative FPGA device
families was not made and this limitation may not apply to higher-end or more recent devices.)

The second implication is the problem of address boundaries. Suppose that the CPU wishes to
read 4 consecutive bytes from memory. Two di�erent situations arise (�g. 3). In the �rst case,
the address of the �rst byte happens to coincide with a longword address within memory. This
is aligned access and can be accomplished with a single read instruction to that memory address,
with a duration of one clock cycle. However in the second case, the desired 4 bytes may be spread
across two consecutive longword addresses in memory. This is non-aligned access and it requires
the CPU to execute two read instructions from the two consecutive memory addresses, thus taking
two clock cycles. Either that, or non-aligned access must be prohibited by the CPU speci�cation.

Neither of these constraints are attractive. Prohibiting non-aligned memory access, especially at the
longword level, decreases the �exibility available to the programmer and the FORTH compiler, and

5

10

Figure 3: Aligned and non-aligned memory access operations require di�erent treatment.

wastes space in memory. Requiring the CPU to switch between single cycle and two cycle memory
access modes depending on address alignment would mean that instruction execution would no
longer be deterministic, thus introducing jitter into signals being generated in real time. Fixing
the duration all memory read accesses at the worst case of two-cycles would solve the problem
of non-deterministic execution, but at the expense of halving the throughput of all load/store
instructions.

These issues are a particular concern for FORTH processors for the reasons mentioned earlier. The
real-time control applications of a FORTH processor mean that deterministic execution is often
sacrosanct. At the same time, FPGA based softcore processors are inevitably clocked a much
lower frequencies than general purpose CPU's and so high instruction throughput is essential.
FPGA Block RAM is also usually limited to tens or hundreds of kilobytes and FORTH has a
natural advantage in the very small code size of its applications compared with other high level
languages. For memory e�ciency reasons, byte level memory access and byte sized instruction
coding is therefore also highly desirable.

Fortunately by leveraging a particular capability of FPGA Block RAM it is possible to design a 32
bit wide memory architecture which circumvents almost all of these constraints. That FPGA Block
RAM feature is dual ported memory access. It is possible to con�gure FPGA Block RAM
with two independent address and data buses that read or write to separate memory locations in
the same clock cycle. (In the Xilinx Spartan 3 FPGA family dual ported Block RAM memory
access is a standard feature available at no additional cost, however a full review was not made
to determine if that also generally applies to other device families.) The 32 bit N.I.G.E. Machine
memory architecture leverages dual ported Block RAM to provide a 32 bit wide memory databus
whilst maintaining byte level memory access, deterministic execution and single cycle throughput
for most instructions.

3 Design for 32-bit wide system memory access

Figure 4 shows the N.I.G.E. Machine system diagram in 32 bit databus con�guration. The design
is described in detail below.

3.1 SRAM memory controller

The key component in the N.I.G.E. Machine's 32 bit memory datapath is the SRAM controller
that sits between the CPU and dual-ported SRAM, as shown in �g 5. It provides byte, word and
longword read/write access to system memory.

6

11

Figure 4: N.I.G.E. Machine system diagram showing the principal components and CPU connec-
tions. This is the 32 bit databus con�guration, as highlighted.

Figure 5: Block diagram of the SRAM memory controller showing the connection to dual ported
Block RAM

7

12

Figure 6: Details of the SRAM controller read functionality. The o�set multiplexer select the
appropriate longword from the 8 bytes available from SRAM ports A and B. The length multiplexer
either passes through the longword or left pads a word or byte output with zero bits, according to
the selected size.

3.1.1 Read functionality

The functionality of the SRAM controller during a memory read is shown in �g. 6. The memory
address provided by the CPU points to an individual byte address in memory. The SRAM controller
splits this address into two parts: the lowest 2 address bits and the remaining (high) address bits.
The high address bits point to the longword address within which the selected byte address lies.
The lowest 2 address bit can be interpreted as the o�set of the byte address from the zeroth byte
of the longword address. The SRAM controller passes the high address bits directly to SRAM
port A. It also adds 1 to the high bits address (equivalent to adding 4 to the byte level address)
and passes this address to SRAM port B. One clock cycle later, the SRAM read operations occur
on both ports simultaneously, and the SRAM controller will have a total of eight contiguous bytes
available to it from SRAM ports A and B combined. The o�set multiplexer selects four contiguous
bytes out of these eight according to the lowest 2 bits of the address speci�ed by the CPU. Finally,
the size multiplexer takes a 2 bit control signal from the CPU control unit and selects either a
single byte, a single word, or the full longword from the output of the o�set multiplexer. In the
case of selecting a byte or a longword, the multiplexer shifts the relevant bits to the low end of the
output longword and pads the high end with zero.

Table 2 illustrates some worked examples of the SRAM controller read functionality.

3.1.2 Write functionality

The functionality of the SRAM controller during memory write mode is shown in �g. 7. Essentially
a write to SRAM now takes place over two cycles, during which time the CPU must hold the address
and data constant on the memory bus. In the �rst cycle, the existing contents of SRAM memory
at the relevant addresses are read and multiplexed with the write data from the CPU. Multiplexing
takes into account both the memory address o�set, and the size of the data being presented by the
CPU (longword, word, byte). The result is that the appropriate overlay of the CPU write data

8

13

CPU
address

CPU size
request

Port A
address

Port B
address

O�set Memory bytes
at output

A) 0 longword 0 1 0 [00][01][02][03]

B) 0 word 0 1 0 [--][--][00][01]

C) 7 longword 1 2 3 [07][08][09][10]

D) 7 byte 1 2 3 [--][--][--][07]

Table 2: Worked examples of SRAM controller read functionality. In case (A) the CPU is reading
a longword from memory address 0. The �rst four bytes in memory appear at the output, in big
endian format. In the case (B), the CPU is also reading from memory address zero, but a word.
In this case the size multiplexer has shifted the word at memory address zero to the low end of the
output databus and �lled the high bits with zero (indicated [�] in the table). Cases (C) and (D)
illustrate a read from memory address 7. In these cases port A reads longword memory address 1
(byte memory address 4) and port B reads longword memory address 2 (byte memory address 8).
The o�set of 3 selects a longword starting at third byte on port A.

onto the existing memory contents becomes available at the end of the �rst cycle. In the second
cycle the outputs of the multiplexers are written to SRAM.

As with SRAM read functionality both of the dual SRAM ports are active. The low two bits of
the address presented by the CPU form the address o�set used by the multiplexers, while the high
address bits are used to access two consecutive longwords in SRAM. A single cycle delay on the
write enable signal from the CPU defers the SRAM write to the second cycle.

3.1.3 Dual data output

In addition to providing non-aligned (byte addressable) longword access for any given memory
address, the SRAM controller is also con�gured to output the memory contents at the next following
address. This databus is labeled �Data (addr + 1)� in �g. 5. The purpose of this data is to expedite
the execution of load literal CPU instructions. The format of a load literal instruction is a single
instruction byte followed by a longword, word, or byte of data. By making available to the CPU
the contents at the next memory address beyond the current instruction, the literal data can be
multiplexed directly into the datapath during single cycle execution of a load literal instruction.

3.2 Datapath

Minimal changes were required to the CPU datapath design to accommodate the 32 bit memory
databus since the datapath width is already 32 bits.

In the 8 bit databus con�guration of the N.I.G.E. Machine, memory read data is made available to
the 32 bit datapath on a 32 bit accumulator register that is managed by the control unit �nite state
machine. The register functions to accumulate the required data byte by byte over the required
number of memory read clock cycles. In the 32 bit databus design memory the accumulator is not
required because 32 bit data is available directly from the SRAM controller.

The datapath also has direct access to the Block RAM's that hold the parameter and return stacks.
The stack databuses are always 32 bits wide. The memory holding the parameter and return stacks
is dual ported and is also available to the CPU over the system memory databus. When Block
RAM is con�gured with a 32 bit databus on one port (in this case for direct stack access) and
with an 8 bit databus on the other port (in this case for system memory access in 8 bit databus
format) the Xilinx memory layout is little endian by default. The N.I.G.E. Machine is big endian
format and hence the 4 bytes of the longword must be reversed when read over the stack databus.

9

14

Figure 7: Details of SRAM controller write functionality. A write operation takes place over two
cycles. In the �rst cycle the existing memory contents are read and overlaid at the appropriate
position with the data from the CPU. In the second cycle the memory contents are updated.

This is a minor detail that does not a�ect performance, but the complexity is avoided in the 32
bit databus con�guration.

3.3 Control unit

The control unit required a more considerable redesign to accommodate the 32 bit databus and
optimize instruction execution.

3.3.1 Program counter logic

The principal impact of the 32 bit memory datapath on the control unit is that the program
counter (�PC�) logic needs to be recon�gured to process variable length instructions that execute
in a single cycle. In the N.I.G.E. Machine instruction set instructions longer than a single byte
only occur when literal data is provided in the second and subsequent bytes (the instruction itself
is always fully speci�ed by the initial byte). These include the load literal and branch instructions.

In the 8 bit databus con�guration, variable length instructions are executed over several cycles
with each successive instruction byte being read from memory in successive cycles. The program
counter is therefore hardwired to step in units of a single byte in all circumstances except when
a branch or jump occurs. This considerably simpli�es the program counter control logic. In the
32 bit datapath format, instructions that are longer than one byte and which include literal data
also need to be executed in a single cycle. Therefore the program counter logic must decode the
length of each instruction and advance by the relevant number of bytes during a single cycle. This
process for PC update is as follows (�g 8).

Firstly the program counter logic must determine the location of the next instruction (i.e. the
instruction that will be executed after the currently executing instruction). The control unit is
con�gured so that the currently executing instruction is always found as the byte at the lowest
memory address on the 32 bit datapath. (This is the highest order byte of the whole longword on a

10

15

Figure 8: Identi�cation of the next instruction byte on the databus by the program counter logic.
In case (A) there is no currently executing instruction and the o�set to the next instruction is
zero. The next instruction is a load literal byte instruction of length 2. In case (B) the currently
executing instruction is one byte in length and the o�set to the next instruction is one byte. In case
(C) the currently executing instruction is a load literal byte instruction of length 2 bytes, and this
is also the o�set to the next instruction. Case (D) illustrates that when the currently executing
instruction is load literal longword of length 5 the next instruction lies beyond the width of the 4
byte databus and the o�set cannot be calculated.

11

16

Component / clock cycle Cycle
#0

Cycle
#1

Cycle
#2

Cycle
#3

Cycle
#4

Program counter 0 0 2

O�set 0

Next instruction byte 53

Length of next instruction 2

Instruction byte 53

Opcode 53

Microcode 1191

Datapath combinatorial logic 255

Datapath synchronous logic register 255

Figure 9: Illustration of the execution pipeline for the CPU instruction to load a literal byte with
value 255. Executing variable length instructions in a single cycle requires an extra stage in the
pipeline (clock cycle #1 in this illustration).

big endian machine such as the N.I.G.E. Machine.) The size of the currently executing instruction
is also always known to the control unit �nite state machine and made available as an output
(labeled as the �o�set�, �g 8). The program counter logic refers to the o�set to identify which byte
of the longword corresponds to the next instruction. For example, the majority of instructions are
encoded as single bytes and so the next instruction is the next byte. The load literal byte and
word instructions are two or three bytes in length respectively and so the next instruction is two
or three bytes ahead respectively. O�sets are not calculated for branch or jump instructions since
these require that the PC be diverted rather than incremented.

Once the instruction byte of the next instruction has been identi�ed, that instruction byte is
multiplexed to the second stage of the PC logic which determines the instruction length. Finally,
in the third stage of the PC logic, the length of the next instruction is added to the current value
of the PC, so the the PC will be appropriately updated in the next cycle.

3.3.2 Four stage pipeline

Implementation of the program counter logic is made more complex by the fact that the N.I.G.E.
Machine CPU is a pipelined design. As a result the program counter needs to decode the instruction
length before, and independently of, the rest of the instruction execution logic. This requires an
extra stage at the beginning of the pipeline, which is now 4 stages long as illustrated in �g. 9. The
pipeline stages are:

1. �READ INSTRUCTION SIZE�. In the example of �g. 9 the pipeline is being started afresh
(following a jump, branch or reboot) and there is no currently executing instruction. The
�o�set� is therefore zero. During clock cycle #1 the PC logic identi�es the next instruction
byte according to the scheme described above. In this case 53, corresponding to the load
literal byte instruction which is 2 bytes long.

2. �FETCH OPCODE�. On the rising edge of clock cycle #2, SRAM system memory reads the
instruction byte at the current PC address and extracts its opcode. A �new� PC address is
determined by adding to the PC the instruction size increment calculated in the previous
cycle, in this case 2 bytes.

3. �DECODE AND COMPUTE�. On the rising edge of clock cycle #3, SRAM microcode mem-
ory within the control unit takes the opcode as a lookup address and returns the corre-
sponding microcode value (1191). During the same clock cycle the combinatorial logic in

12

17

Instruction Mnemonic Cycle
count
(8 bit

databus)

Cycle
count
(32 bit

databus)

Load literal byte LOAD.B (or #.B) 2 1

Load literal word LOAD.W (or #.W) 3 1

Load literal longword* LOAD.L (or #.L) 5 2

Branch (conditional or unconditional)* BEQ / BRA 3 3

Jump to subroutine (address on stack)* JSR 2 3

Jump to subroutine (literal address)* JSL n/a 3

Return from subroutine* RTS 2 3

Fetch/store byte in SRAM* FETCH.B / STORE.B 2 3

Fetch/store word in SRAM* FETCH.W / STORE.W 3 3

Fetch/store longword in SRAM* FETCH.L / STORE.L 5 3

Fetch/store in PSDRAM FETCH.[] / STORE.[] variable variable

Multiply (signed/unsigned) MULTS / MULTU 6 6

Divide (signed/unsigned) DIVS / DIVU 43/42 43/42

?dup IFDUP 2 2

All other instructions 1 1

Table 3: Clock cycles per instruction in the N.I.G.E. Machine softcore CPU in both 8 bit and 32
bit databus con�gurations. Instructions marked * require a restart of the pipeline following their
execution. Most, but not all, instructions are faster in the 32 bit con�guration.

the datapath is con�gured according to the microcode value through its control signals. The
value of the datapath computation becomes available as the combinatorial output, in this
example the literal value loaded is 255.

4. �SAVE�. On the rising edge of clock cycle #4, the output of the datapath in combinatorial
logic (i.e. the result of the computation in the previous pipeline stage) is written into the
synchronous logic register that holds the value of the top of stack.

3.3.3 Instruction throughput

The number of clock cycles required to execute each instruction in both the 8 bit and 32 bit
databus con�gurations of the N.I.G.E. Machine is scheduled in table 3. The di�erences in through-
put between the two con�gurations results from two opposing factors. (i) The 32 bit databus
con�guration reduces the number of clock cycle required to execute instructions that load, fetch,
or save access word and longword data in SRAM system memory because of the greater bandwidth.
However, (ii) the additional pipeline stage adds an extra cycle to all instructions that require the
restart of the pipeline.

The following analysis of instruction throughput speaks from the perspective of the 32 bit datapath
con�guration and the changes made from the 8 bit format.

• The load literal byte and load literal word instructions now execute in a single cycle. However
the load literal longword instruction actually requires two cycles to execute. This is because
the length of that instruction (5 bytes) means that whilst it is being executed, the next
instruction byte is not visible on the datapath to the PC update logic (�g 8), and hence an
extra cycle must be added with no instruction to restart the pipeline.

13

18

• Branches also require a restart of the pipeline because of the change to the PC. However the
extra cycle this entails is o�set by the fact that the whole two byte instruction can be read
and decoded in a single cycle. As a result the total execution cycle count is unchanged at 3
cycles.

• The JSR instruction is now one cycle longer due to extra cycle to restart the pipeline. This
might imply a considerable performance penalty in executing FORTH code, which is heavily
subroutine dependent. However the 32 bit databus con�guration permits the inclusion of
a new instruction, JSL, that provides a considerable e�ciency. This instruction is a �jump
to subroutine� with the subroutine address speci�ed as a 24 bit literal value. Previously,
the typical FORTH code to execute a subroutine branch comprised (i) #.W, to load the
subroutine address onto the stack, followed by (ii) JSR. This combination requires a total
of 5 cycles. The JSL instruction accomplishes the same result in 3 cycles. However the
advantage of 2 cycles on a subroutine call is o�set by the fact that an RTS instruction is also
one cycle longer due to the lengthened pipeline. The net di�erence is that subroutine calls
are now one cycle faster overall. (As a side note, the introduction of the JSL instruction did
not necessitate signi�cant rewriting of the N.I.G.E. Machine system software. The system
software is written in assembly language, and the macro assembler implements either style
of subroutine call with a macro, �CALL�, appropriate to whichever version of the hardware
is being compiled for.)

• Fetches and stores to SRAM system memory of all datasizes now execute in three cycles,
compared with two, three, and �ve cycles for byte, word and longword data previously. In
FORTH terms, C@ and C! are slower than before, W@ and W! are unchanged, and @ and !
are faster than before.

• Other instructions that do not access SRAM system memory and do not restart the pipeline
are unchanged. Fetch and store to the external pseudo-static dynamic RAM (�PSDRAM�)
takes place through the PSDRAM controller and timing depends on the arbitration of the
bus with other users of PSDRAM memory such as the VGA controller.

In summary, whilst for most instructions the softcore CPU throughput has been increased in the
32 bit datapath design, it is clear that there have been tradeo�s in certain cases. To assess whether
the 32 bit datapath con�guration should be expected to lead to higher performance overall, it is
also necessary to examine the frequency of instruction usage. Table 4 schedule the most frequently
used instructions in the N.I.G.E. Machine system software (i.e. the FORTH operating system).
Despite the fact that some instructions are slower in the 32 bit datapath con�guration, taking into
account which instructions are most common, the data suggest that average instruction throughput
should be improved in this con�guration.

4 Results

4.1 Hardware implementation

Implementation of the 32 bit datapath format on the Nexys 2 FPGA development board proved
more challenging than anticipated. Whilst synthesis was satisfactory in the electronic simulator,
the new design was not able to complete place and route to meet the timing constraints of a 50MHz
clock speed. This was in spite of considerable optimization work with the FPGA design tools. The
reason for the slower timing in the 32 bit bus con�guration was revealed by analyzing the place
and route results and identifying the longest signal path. This signal path is the logic required
to operate the variable instruction length program counter logic in the control unit. The steps
involved are shown schematically in �g 10. As described in the section discussing the control unit,

14

19

Instruction Frequency Clock cycle
di�erence

JSL 10.2% -2

#.W 9.8% -2

RTS and ,RTS 8.7% +1

BRA and BEQ 8.7% 0

#.B 7.3% -1

DUP 4.8% 0

DROP 4.1% 0

FETCH.L 3.5% -2

FALSE 3.3% 0

SWAP 3.3% 0

OVER 3.2% 0

STORE.L 3.1% -2

R> 2.6% 0

+ 2.6% 0

FETCH.B 2.6% +1

>R 2.1% 0

STORE.B 1.9% -1

Table 4: Relative instruction frequency for the 80% most common instructions in the N.I.G.E.
Machine system software (counted by code frequency rather than execution frequency). The clock
cycle di�erence values are the instruction duration di�erence in moving from the 8 bit to 32 bit
databus con�guration. Negative values indicate that the 32 bit con�guration is faster. The most
used instruction, JSL, is 2 cycles faster in the 32 bit databus con�guration than the previous
equivalent.

15

20

N.I.G.E. Machine
(8 bit databus)

N.I.G.E. Machine
(32 bit databus)

Best achievable timing (ns) 18.22 22.97

Equivalent clock frequency (MHz) 54.89 44.84

Table 5: Best achievable synthesis and place and route timing for the N.I.G.E. Machine on the
Nexys 2 development board with a Xilinx XC3S1200E FPGA. The 32 bit databus con�guration
fails to make timing for a 50MHz clock speed.

Figure 10: Schematic of the longest signal path in the N.I.G.E. Machine 32 bit databus con�gura-
tion that is responsible for limiting the best achievable timing to more than 20ns

these steps are necessary if the N.I.G.E. Machine is to execute variable length instructions in a
single clock cycle.

Table 5 summarizes the best achievable timing of the N.I.G.E. Machine in both 8 bit and 32 bit
databus formats. The best achievable clock frequency in 32 bit format was 44MHz. However it is
not possible to operate the N.I.G.E. Machine at arbitrary clock frequencies (say 40MHz), because
there are also timing constraints imposed by the peripheral components. In particular the VGA
controller should operate at 25MHz or 50MHz on account of to the VGA signal speci�cation, and
the system clock needs to be synchronized at a multiple of the VGA clock frequency. (Note that
this limitation is a consequence of the design of the VGA controller in the N.I.G.E. Machine rather
than a limitation of the Xilinx Spartan 3 FPGA device family or the VGA speci�cation in general.)

For the purpose of comparative benchmarking, the 32 bit databus con�guration N.I.G.E. Machine
was successfully implemented at 50MHz by reducing the depth of SRAM memory to 4K only. (By
reducing memory depth, the number of Block RAM multiplexers is reduced and therefore also the
signal time for an SRAM read. The saving was enough to compensate). However this workaround
has limited scope, since whist the benchmarks can be run in under 4K of memory, this restriction
in memory size is too severe for a general purpose microcomputer.

4.2 Performance benchmarks

A series of benchmarks were run to compare the performance of the N.I.G.E. Machine in both the
8 bit and 32 bit databus con�gurations at 50MHz. The benchmarks were based on a number of
standard FORTH tests [12], minimally adapted to run in an embedded environment. As a baseline
comparison, the benchmarks were also run on a Intel i7 desktop PC at 2.8GHz using VFX FORTH.
Tables 6 and 7 show the results.

The N.I.G.E. Machine in 32 bit databus format is on average 14% faster in primitive operations
and 20% faster in applications than in 8 bit databus format. However the speed increase varies
according to the application. Eratosthenes's sieve is only 4% faster while the eight queens problem
is 29% faster. This is because not all instructions are faster in the 32 bit datapath format and so
the instruction mix of an application is also important.

The N.I.G.E. Machine in 32 bit databus con�guration is approximately 150x slower on average than
an Intel i7 PC running VFX FORTH, but again the range varies from 120x for random numbers to

16

21

Benchmark Iterations N.I.G.E.
Machine

(8 bit bus)

N.I.G.E.
Machine

(32 bit bus)

PC i7
VFX

FORTH

Primitives ms ms ms

DO LOOP 1,000,000 260 260 -

+ 1,000,000 340 300 -

* 1,000,000 440 420 -

/ 1,000,000 1,240 1,200

/MOD 1,000,000 1,240 1,200 16

*/ 1,000,000 1,420 1,400 -

Array �ll (1000 items) 1,000,000 9,008 7,207 15

13,948 11,987 31

Applications

Eratosthenes sieve 3000 19,680 18,884 110

Fibonacci recursion 1 44,272 37,947 265

Quick sort 1,000 10,924 9,171 31

Random numbers 1,000 48,795 35,643 296

Bubble sort 100 41,089 33,387 218

Eight queens 50 37,774 26,968 141

202,534 162,000 1,046

Table 6: Benchmark timing results for the N.I.G.E. Machine in 8 bit and 32 bit datapath con�gu-
rations, and the same tests run on an Intel i7 PC using VFX FORTH.

almost 300x for quicksort. However the N.I.G.E. Machine was clocked at 50MHz while the PC was
clocked at 2.8GHz, a di�erence of 56x. Allowing for the di�erence in clock speeds, the N.I.G.E.
Machine was only 3x slower on average than the PC.

5 Discussion

At the outset it was expected that the main challenge in widening the memory datapath from 8
to 32 bits would be to design appropriate logic to maintain deterministic execution, instruction
throughput, byte-sized instruction format, and �exible memory access. Two major components
had to be developed to accomplish these objectives. Firstly, an SRAM controller that leveraged
the dual ported Block RAM available on the FPGA. Secondly, an adaption to the control unit to
facilitate the execution of variable length instructions in a single clock cycle.

However these components were included at the expense of additional logic levels and a longer
signal path. This reduced the maximum achievable clock frequency. Whilst the 32 bit memory
databus con�guration completes benchmarking tests in approximately 20% less clock cycles than
the 8 bit con�guration, the maximum clock frequency that can be achieved at implementation is
also roughly 20% less (~40 MHz c.f. ~50 MHz)

Perhaps in retrospect this tradeo� should have been anticipated. It is similar to the tradeo�
between the RISC (reduced instruction set computing) and CISC (complex instruction set com-
puting) approaches to CPU design, and occurs for similar reasons. RISC designs utilize less logic
but can operate at a higher clock speed compared to CISC designs that have more sophisticated
instruction set functionality.

17

22

Benchmark N.I.G.E.
Machine (32 bit)

/ (8 bit)

N.I.G.E.
Machine (32 bit)

/ PC i7

% multiple

Eratosthenes sieve 96% 172

Fibonacci recursion 86% 143

Quick sort 84% 296

Random numbers 73% 120

Bubble sort 81% 153

Eight queens 71% 191

Total 80% 155

Table 7: Relative benchmark timing results for the 32 bit datapath format N.I.G.E. Machine
compared to the 8 bit datapath format N.I.G.E. Machine and a PC i7 running VFX FORTH . The
32 bit datapath con�guration is on average ~20% faster than the 8 bit con�guration.

One avenue for further consideration might be to review alternative device families to determine
whether FPGA's that incorporate Block RAM with a byte select feature are available, given the
utility that would have with a 32 bit databus. However, an overarching aim of the N.I.G.E. Machine
is to use only low-cost, ubiquitous hardware and consequently the design preference in general is
to work around inherent limitations rather than �up-spec�.

The question is then, which approach is more appropriate for a FORTH softcore such as the
N.I.G.E. Machine? A �CISC like�, 32 bit databus with the ability to execute variable length
instructions in a single cycle, resulting in instruction execution that completes in few clock cycles.
Or a �RISC like�, 8 bit databus matched to the instruction size with fewer layers of logic, resulting
in a higher implementable clock frequency?

The answer to this dilemma may be to look more carefully within the CPU at the di�ering needs
of the control unit and the datapath. The datapath within the N.I.G.E. Machine's softcore CPU
is 32 bits wide. Matching the 32 bit datapath to a 32 bit memory databus optimizes execution
speed by maximizing data transfer bandwidth. On the other hand, the control unit can operate
at a higher clock speed when there is no need to execute variable length instructions in a single
cycle. A hybrid design can be envisaged that maintains the 32 bit memory databus matched to
the 32 bit datapath, but reverts to a control unit that processes instructions on a byte-by-byte
basis. Such a hybrid design might have the following characteristics:

• Maximum clock speed no slower then the 8 bit databus con�guration (i.e. 50MHz)

• Fetch/store instructions execute approximately as fast as with the pure 32 bit databus con-
�guration

• The fast JSL (jump to subroutine literal address) instruction is included

• The pipeline could revert to 3 stages, eliminating the extra clock cycle restart penalty of the
4 stage pipeline

• Load literal instructions would have a throughput of less than one instruction per clock cycle

Based on the results discussed above, such a hybrid design is likely to prove a better performer
than either the pure 8 bit or 32 bit databus con�gurations. Development along these lines is an
attractive avenue for further work on the N.I.G.E. Machine.

18

23

6 Conclusion

This project set out to widen the N.I.G.E. Machine's memory databus from 8 bits to 32 bits. In
doing so it was found that neither con�guration is absolutely better than the other. The tradeo�s
between them concern maximizing clock speed versus maximizing instruction throughput. This
result parallels the di�erences between the RISC and CISC approaches to CPU design. In the case
of the N.I.G.E. Machine, a hybrid memory databus that addresses the di�ering needs of the CPU
control unit and datapath is likely to be the optimum performance strategy. Further work will be
undertaken on the N.I.G.E. Machine to implement such an approach.

Whilst it is recognized that di�ering processor designs have di�ering design tradeo�s at a detailed
level, some general conclusions about the strategy for optimizing memory access design for a 32
bit FORTH processor can be drawn from these project results. A FORTH processor is likely to
be optimized for the e�cient execution of a basic set of stack and memory operations, subject to
embedded control objectives such as deterministic execution and high code density. Maximum clock
speed is achieved with simple control unit logic. Given these considerations, it is likely desirable to
match the width of the memory databus to the control unit to the width of a single instruction (8
bits on the N.I.G.E. Machine). On the other hand, a FORTH processor is a fetch/store architecture
and so data bandwidth will be maximized by matching the width of the memory databus to the
width of the CPU datapath (32 bits on the N.I.G.E. Machine). The best overall approach is
therefore likely to adopt a hybrid databus design, whereby the needs of the CPU control unit and
datapath are separately identi�ed and addressed.

The author would like to thank the anonymous academic reviewers for their comments and sug-
gestion, all of which have helped to improve the paper.

References

[1] The author, http://www.youtube.com/watch?v=0v-HuVLRoUc

[2] The author, �The N.I.G.E. Machine: an FPGA based micro-computer system for prototyping
experimental scienti�c hardware�, in EuroForth, 2012

[3] James Bowman , �J1: a small Forth CPU Core for FPGAs� in EuroForth, 2010

[4] K. Schleisiek, �MicroCore,� in EuroForth, 2001.

[5] B. Paysan, �b16-small � Less is More,� in EuroForth, 2004.

[6] E. Hjrtland and L. Chen, �EP32 - a 32-bit Forth Microprocessor,� in Canadian Conference on
Electrical and Computer Engineering, pp. 518�521, 2007.

[7] E. Jennings, �The Novix NC4000 Project,� Computer Language, vol. 2, no. 10, pp. 37�46,
1985.

[8] Rible, John, "QS2: RISCing it all," Proceedings of the 1991 FORML Conference, Forth
Interest Group, Oakland, CA (1991), pp. 156-159.

[9] Stephen Pelc, �Programming FORTH�, MPE, 2011

[10] P. J. Koopman, Jr., �Stack computers: the new wave�, Halsted Press, 1989

[11] The author, Github open source repository https://github.com/Anding/N.I.G.E.-Machine

[12] MPE benchmark suite for 32 bit Forth systems, http://www.mpeforth.com/arena/benchmrk.fth

19

24

����������	
��

������
����������������
����

�����������������������������

����������	�
�����
���	�����������

�����������������	��������

����������������	�
����

 �����	����

!���"��#�$���

! %�&'(

)*

�����+���,%-%�&.-/-/

������	0	1������������2

� !�����

���3����#���	�������$�3���$��#�4��5�����	��67�5������������3$�	����5�	�	�

�67��	#�8���$����	��867���98���$�6�����7�	�����9�

�"�������������

:���5�������������$��������"���	�����4������44�������	�;��	#������������

#���5���������4��������#����	���67���	���4��<�����4�4���=����8���$�>//.?���

�	���#���#��$����	��4���"���$��$����""����	�����$�#��"��3���$�	��5��3��	�8���$�

�	#��67;������������$��<���$����@�����5�	�"����"����5��$�����$�<��	�3�$�#�

��<������������@4����	����"�867��	#���	���4�����	�������������

	"��������!��#�$
�

�67����	#��"���9���������#�6�����7�	�����9��	#��$������4����5����$�������

#���4��<��	�����<���#�<���#�5�������4���������	�������67����<����#�""���������

���������;���	�#����$����$�	���5���#���A������;��	#����	����<�	�����	�������	��$��

��	����$�����8���$�4����������3���#��	#�����	#����������9#��������<�9���	�����;�

�	��$����	��#�����5����$�����4����$����	��	��#�;�5���	����$�����$�#����#�"���

�5���	�	���$������4���������		���5�����#�5�������";��	#���3����	��#�������

4�������3�����	��	��	��$�����	������"����	��	���"����

!�3�<��;�"����$�����2���$������3��������	�����#����	�#�"��;��������@�����������4���

�	#��""����<����������	���3$�	��	�����������������$����5���	#�����	�������

��4�5�������;��$������5�������$��#������	����

�"��������!��#������

8���$;����3������2	�3;�����$��������	#�	����	������"���������	��$��$������������#�

�	#����	���	�5���������4���������!�3�<��;�������	���4���������������#����������	�

�������	#����4��@�����	��;�3$��$����3$��������A����#������	�������67�A�������

25

%"���&������������ �������$
�

���$���$��67�$���"�	����	����@��	���	��=�"�"����@��4����8�����������	���$�<��

5��	��##�#?;���������	��4��5����3$��$���A��������4������"�	����	����������	;����

#�""�����������#���	���#���67�

!����������@��4���3$��$�������4������#�����5�;�5���	���������4��������#���

��44����3��$�<������5���3$��$������#���$�������3$�	��4���������������	#����4�

3��2�	�������4����������3��2�B�	������3�	�����4��#��������4������2���$��C

����������2�	������$��������$������4�	������$���3��2B�	�;��<�����4����#��"���

3��2;��	#��	��	�������5��#��;��	#�5���4�������

�$����44��������5��#���4��<�������4����D���0������5���������$��4������E�������	�

�����"����$��������""�����;��	#��##��$��������4�

)	"����	�����;������4��4���3��2�	��$���$�"��;��	#��������<�������$���3��2B�	��

"�������������������<�	���;��$���������$�����"���������������	#�����	#���"�3��0����

�@���������������	��	#������""�������"������$�#��;�3����	�4�����$�����	���	4����#

��������	��$�	�5��4����#�3��$��$���������	#��	#��"��$��#��;�����44��4��������$�	�

3����	������������$�������"�#�""���	����

���3����5�����	��$���3$�����$��#�����@�������	;��	#��$�������"�#�""���	���;�����<���

������	���#��������<����	���������$�����67;��$��4����	���	#��5�<�������$��

�������	���"��	4����#������;������@��������$��#��F	��$����$���$�	#;���"�	����	���

��	���������$����8���$���	��������#����3��$��$��4����	��

26

'"�$���������������#�����������(������!�����
�

�"�3������#���������3���$�5��3��	��67��	#�8���$;�3������#��$�����3$��$�4����

�"���4��5�������������������3$��$���	��������$������3$���867���$��<���

�	��$���5�<���@��4��;�3��"������@������"�����$����5�����������"������C

��������	
����
���
���	��
������ !�����"#����$����#�!%&�'!('��)!%&�)*�+�����,�--#�
��.��(/���0)*�+�����,�-#�.�!�.%//)*�+�����,�#1(�)--
��/�(&�����*�+
������������� ���(�(1(//��� ��&�$2����*�+��������""
���1.�������� �����0������� ��&����������3����
���1.������������(�04(1���� ��������+����56����
��(�.���7������"#*�+�����,�
����	�8� ��%1���!������ ��%���������3*�������������
9

�$��3��#��67G�������������������	��67�A����;��	�����$��	�@��G�����	���	����#;�

3$�	�3���3���$�5��2����8���$������$�	�������	�8���$��	�����	��$���G����

�	���	����#;�3$�	�3���3���$�5��2�����67��8�	����;�G�67H��@��������$��A�����

���<�	����4��	��������$���������	����������$��������������$�	�4����#��	������4������

��5����	�������;����#��"����$��4����	���4������	��

������$����$���5����#<�	������"�867���3��$�<���	���#���#�8���$����������	���	��

�67���#�;���2�	��������$��������������#�����$�4�����"��$��9�!� �9�����������

��������#����	����$��8����@��4��;�9
!����*9�����������;��	�8���$;��$��#������"�

�$��4��<�������	#����	#��$��"����3�	�������#��;���<�	��	���4���"��#�#���;��	#�

�	�������$����#������	����$���67���#�������9
������9��������

27

)"�$� (��������!������
�

!�<�	��������#���������4����	���	#�������"�#�""���	���;�3����	��$�	�"��#��$��

��������	��������4������#���5������5�����$��"�	����67�A��������������"������

���4��@C

������(
���
������������	��:3�����2���*��������������2�3��������$5��+������;�����5
����
������ !�%/1
��)��������<��,�#=!���*=-����=(����������,�=#�
��!%&�'/(�&�!))�� '!('!%&�)�3����<,��3������>?@--#)=A��A�=--�����3�#�
��!%&�'/(�&�!))�� '!('!%&�),�����<,��3������>?@--#)=A��A�=--����&��#�
��!%&�'/(�&�!))�� '!('!%&�)�3�����<,��3�����>?@--#)=A��A�=--����!3�#�
��!%&�'/(�&�!))�� '!('!%&�)���������<,��3���>?@--#)=A��A�=--�������#�
��!%&�'/(�&�!))�� '!('!%&�)�23�����<,��3����>?@--#)=A��A�=--����!23#�
��!%&�'/(�&�!))�� '!('!%&�)"�����<,��3������>?@--#)=A��A�=--����/��#�
��!%&�'/(�&�!))�� '!('!%&�)���3����<,��3����>?@--#)=A��A�=--�������#�
��!%&�'/(�&�!))�� '!('!%&�)����*<,��3�������>?@--#)=A��A�=--����!��
��/�(&��������������(����!(���������,�*����
����/!�B(%1����@� ��&%1
!�����������3��������(1��,�*����<����"�C��3����<����"
����/!�B(%1����D� ��&%1
!����������,���������(1��,�*����<����"�C�,�����<����"
����/!�B(%1����E� ��&%1
!�����������3��������(1��,�*����<����"�C��3�����<����"
����/!�B(%1����F� ��&%1
!��������������������(1��,�*����<����"�C����������<����"
����/!�B(%1����G� ��&%1
!�����������23�������(1��,�*����<����"�C��23�����<����"
����/!�B(%1����H� ��&%1
!����������"���������(1��,�*����<����"�C�"�����<����"
����/!�B(%1����?� ��&%1
!�������������3������(1��,�*����<����"�C����3����<����"
����/!�B(%1����D� ��&%1
!��������������*�����(1��,�*����<����"�C�����*<����"��
����/!�B(%1���������
��(1��,�*����<����"�C���������<����"
��(�.���7����������<��,�
���
9

�$�����������������"���$������"���"��������"�867��9
!����)���9���	��������	�

�67���5�A�����3$��$����������#������4�����������$�����4�����A���������	�"����

���$�����	���	#�������	����������������$������������3$�	�3�����	������	�"�����

�@4�����	������	�8���$���2����$������������������

9
!����)���9���2�����4���������3$��$���	�������������$����#�""���	����5�

A��������$������

�� ��&%1
!���
�������������%��������2����,���3;:3���
���
��)����� !�%/1
��)����"#@-��������"#��
&)�,���-����,��3���
����/�(&������*�+
����������������� ��.����
������(
��7������"��%!���(��
����
��-
���
9

28

���$�	��$���3��#;�9
!�:�D9����$����	���#�������9�!� �9��������"������$�#��;

�����9�!� ��,I,9���4��������;�"����$���������

�� ��.���
�������������%�����������$*�3��#�@C��*�$���**
����)����C���������D�I8�%/�
�����������4/(�&�!�
���������
������4JJ�����J� ����*�$���**�+�K�������C����
����!��1�8�	����-��
9

������$���3������#�$�<���	���#���#��3��8���$�:F���7FF(��"����$��#�����"�

3��2;�3$��$�3���#�$�<����#���$����#����������4�����!�3�<��;����$�	2��$��

���#�5���������4��5�5���5������3��$�����$�����4��

*"�+�,�����
���������!�#�

��������67�A��������"��	���2���	��44�����5������������@�����;��$���������������

������#������	���4�������$���#���"��@������	��8���$������;��	��	����������	�

�44�������	;����$��������"����$�4�4�������9����2	��9;��$��������5����	��

#���5�����4������	����2�	��4������������	������;��	�#�""���	���$���#�����2�	��

867��$���#���"��������4�������������"������	�	����4��<�����67���		�����	�$�	#��

�	#�A���������	��4�#;�"������$��$���#�

�!�
 !�'!��0��%L�
����.�%4� /%��. <(�1��.E ����.E�������.F�"����2����2����
����.�%4� /%��. <(�1��.F
��&�M	
����%4� /%��. <(�1�	���. ���	������"����2����
�� ��� /%��. <(�1��	� ������*���"��	��$����$����
��&�M'��!�� /%��. <(�1
����!� �� 3����������$�����"����2����2����
�� ��� /%��. <L��.!��0 ����.����5
�� ���� /%��. <L��.��(� ����.����+����
�1.��!�
 !

���	���.�)���������-����	������������;�����2����
����!�!��0���%L�!��<(�1�	���.
9

���!����.�	��)���������-�������*������	��$����$�����������;�����2����
����!�!��0���%L�!��<(�1��	�
9

-"�.������!����#������!�/�

���	���#��$����#����	��$�;�3$�	�3����	<����#���4����������A�����"�����	���#���

���$	�A���=�����3����3�2�;�����8���$�>//.?����867���$����#���#����A����#�,J.�

��	��;�#��4�����$����	���5��	����	�����	#�#�""������������#���$��867��������	�

��A����#�-%���	��;�#��4�����$����	���5��	��#���5���������$����	�#������4��<��

�����5���������4������;��$����#��������	���A����#��44��@���������/K��������#��

�$�	�867�

29

0"�.������!����#����#�������

L�������	�"���	��4��"����	�����4��<���	�����	�����������5����$��<�#�5��

���	��867��	����#��"�4�����67���$�������#����������4��<���	��������5���<�#�

3$�	��$���67���#����	���	�#��@��	��<�������"�4����#�����9�	$�	����	��9�"���

3$��$��67�3���	�<��������	�����#����	�#��

�@�������@��4��C�F4��������""����	���A�����

(�����67 -.�

867 ����

��"���$����#<�	���������$��;�5��������$���67����5��2�	��4��	���������"���������

A������;�������4����5��������44������4�����5���94�������9�5����	#���	����5����	;�"��

�������	����	���4������	��

�
"�.�����!���

�����5�	�	���$��5����"���������"�5��$��67��	#�8���$;�867�����������#���$������

"�����;���������4���;���������#�5����	#��������������	���	�

���

��4���5���>/,J

1�#������!2

,���$����������	<���5���:���5�������8���$67�

����������	;�����8���$�>//.

>��:���5�����������"��������������4����������

*�
��3�����3�2�;�����8���$�>//.

30

PAF: A portable assembly language∗

M. Anton Ertl†

TU Wien

Abstract

A portable assembly language provides access to
machine-level features like memory addresses, ma-
chine words, code addresses, and modulo arith-
metics, like assembly language, but abstracts away
differences between architectures like the assembly
language syntax, instruction encoding, register set
size, and addressing modes. Forth already satisfies
a number of the characteristics of a portable assem-
bly language, and is therefore a good basis. This
paper presents PAF, a portable assembly language
based on Forth, and specifically discusses language
features that other portable assembly languages do
not have, and their benefits; it also discusses the
differences from Forth. The main innovations of
PAF are: tags indicate the control flow for indirect
branches and calls; and PAF has two kinds of calls
and definitions: the ABI ones follow the platform’s
calling convention and are useful for interfacing to
the outside world, while the PAF ones allow tail-call
elimination and are useful for implementing general
control structures.

1 Introduction

Traditionally compilers have produced the assem-
bly language for the various target architectures,
and interpreters were written in assembly language.
The disadvantage of this approach is that it requires
retargetting for every new architecture. As a result,
many such compilers and interpreters target only
one or few architectures, and ports to new architec-
tures often take quite a while.1

∗An slightly shorter version of this paper appears at KPS
2013; I recommend the present version.

†Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

1E.g., AMD64 CPUs became available in 2003; The lina

interpreter for AMD64 became available in 2008, the iForth

compiler became available for AMD64 in 2009 (and 32-bit
releases were stopped at the same time), and other signifi-
cant Forth compilers like SwiftForth, VFX, and bigForth still
do not offer 64-bit support in 2013. By contrast, the Gforth

interpreter which uses a portable assembly language, was
available there right from the start (thanks to our portable
assembly language being there from the start), and we veri-
fied that by building and testing Gforth on an AMD64 system
in August 2003.

Portable assembly languages promise to solve this
problem: The source language compiler (the front
end) compiles to (or the interpreter is written in)
the portable assembly language, and the compiler
or interpreter will work on a variety of architectures
without extra effort. Of course the portable assem-
bly language implementation has to be targeted for
these architectures, but that effort can be reused
(and possibly the cost shared) by several compil-
ers/interpreters.

In this paper we present a new portable assembly
language, PAF (for “Portable Assembly Forth”).
There have been a number of languages that been
designed and/or used as portable assembly lan-
guages (Section 2), so why introduce a new one?

1.1 Contributions

An issue that a number of portable assembly lan-
guages have had is that they require the code to be
organized in functions that follow the standard call-
ing convention (ABI) of the platform, which usually
prevents tail-call optimization. PAF provides ABI
calls and definitions for interfacing with the rest
of the world, but also PAF calls and definitions,
which (unlike ABI calls) can be tail-call-optimized
and can therefore be used as universal control flow
primitives [Ste77] (see Section 3.10 and 3.11).

Another problem is that indirect branches and
calls have a high cost, because the compiler has to
assume that every branch/call can reach any en-
try point. PAF introduces tags to specify which
branches/calls can reach which entry points (see
Section 3.9 and 3.10).

The most significant difference between PAF and
Forth is that PAF contains restrictions that en-
sure that the stack depth is always statically deter-
minable, so stack items can be mapped to registers
(Section 3.3 and 3.9). It is interesting that these re-
strictions are relatively minor and don’t affect much
Forth code; it’s also interesting to see an example
of Forth code that is affected (see Section 5).

2 Previous Work

This section discusses existing portable assembly
languages, their features and deficiencies and why
we feel the need for a new one.

31

Ertl PAF: A portable assembly language

2.1 C

C and its dialects, like GNU C, have been used as a
portable assembly language in many systems: It is
the prevalent language for writing interpreters (e.g.,
Python, Ruby, Gforth) and run-time systems; C
has also been used as target language for compilers:
(e.g., the original C++ compiler cfront, and one of
the code generation options of GHC).

However, the C standard specifies a large number
of “undefined behaviours”, including things that
one expects to behave predictably in a portable as-
sembly language, e.g., signed integer overflow. In
earlier times this was not a problem, because the C
compilers still did what the programmer intended.
Unfortunately, a trend in recent years among C
compiler writers has been to “optimize” programs
in such a way that it miscompiles (as in “not what
the programmer intended”) code that earlier com-
piler versions used to compile as intended. While
it is usually possible to find workarounds for such a
problem, the next compiler version often produces
new problems, and with all these workarounds the
direct relation from language feature to machine
feature is lost.

Another problem of C (and probably a reason
why it is not used as often as compiler target lan-
guage as for interpreters) is that its control flow is
quite inflexible: Code is divided into C functions,
that can be called and from which control flow can
return; the only other way to change control flow
across functions is longjmp().

Varargs in combination with other language fea-
tures have led to calling conventions where the
caller is responsible for removing the arguments
from the stack. This makes it impossible to im-
plement guaranteed tail-call optimization, which
would be necessary to use C calls as a general con-
trol flow primitive [Ste77].

As a result, any control flow that does not fit the
C model, such as unlimited tail calls, backtracking,
coroutining, and even exceptions is hard to map to
C efficiently.

2.2 LLVM

LLVM is an intermediate representation for compil-
ers with several front ends, optimization passes and
back ends [LA04].

Unfortunately, it shares many of the problems of
C: In particular, you have to divide the code into
functions that follow some calling convention, re-
stricting the kind of control flow that is possible.
To work around this problem, it is possible to add
your own calling convention, but that is not easy.2

2Usenet message <KYGdnTH8PMyMpM7MnZ2dnUVZ_j-dnZ2d@

supernews.com>

LLVM was also promised to be a useful interme-
diate representation for JIT compilers, but report-
edly its code generation is too slow for most JIT
compiler uses.

LLVM supports fewer targets than C. Given that
it also seems to share many of the disadvantages of
C, it does not appear to be an attractive portable
assembly language to me, despite the buzz it has
generated.

2.3 C--

C-- [JRR99] has been designed as portable assembly
language. Many considerations went into its design,
and it appears to be well-designed, if a little too
complex for my taste, but the project appears to be
stagnant as a general portable assembly language,
and it seems to have become an internal component
of GHC (called Cmm there).

While C-- does not appear to be an option as
portable assembly language for use in practical
projects at the moment, looking at its design for
inspiration is a good idea.

2.4 Vcode and GNU Lightning

Vcode [Eng96] is a library that provides a low-level
interface for generating native code quickly (10 ex-
ecuted instructions for generating one instruction)
and portably. It was part of a research project and
has not been released widely, but it inspired GNU
Lightning, a production system.

The demands of extremely fast code generation
mean that GNU Lightning cannot perform any reg-
ister allocation on its own. Therefore the front end
has to perform the register allocation. It also does
not perform instruction selection; each Lightning
instruction is translated to at least one native in-
struction.

GNU Lightning also divides the code into func-
tions that follow the standard calling convention,
and one can call functions according to the calling
convention. However, it is also possible to imple-
ment your own calling conventions and other con-
trol flow, because the front end is in control of reg-
ister allocation, but (from reading the manual) it
is not clear if this can be integrated with the stack
handling by GNU Lightning und if one can use the
processor’s call instruction for your own calling con-
vention.

It is possible to use better code generation tech-
nology with the GNU Lightning interface, and also
to provide ways to use the processor’s call and re-
turn instructions for your own calling convention.

With these changes, wouldn’t the GNU Light-
ning interface be the perfect portable assembly lan-
guage? It would certainly satisfy the basic require-
ments of a portable assembly language, but as a

32

Ertl PAF: A portable assembly language

replacement for a language like C, it misses conve-
niences like register allocation.

3 Portable Assembly Forth
(PAF)

3.1 Goals

• Portability: Works on several different archi-
tectures

• Direct relation between language feature and
machine feature, i.e., if you look at a piece of
PAF code, you can predict what the machine
code will look like.

However, the relation between PAF and the
machine is not as direct as for GNU Lightning:
There is register allocation and instruction se-
lection, there may be instruction scheduling,
and code replication. Instruction selection and
instruction scheduling make better code possi-
ble (at the cost of slower compilation); regis-
ter allocation interacts with these phases, and
leaving it to the clients would require dupli-
cated work in the clients, as register allocation
is not really language-specific.

• Capabilities of the (user-mode part of the) ma-
chine can be expressed in PAF. However, this
goal is moderated by the needs of clients and
by the portability goal. I.e., PAF will at first
only have language features that compilers and
interpreters are likely to need (features can be
added when clients need them); and machine
features of particular architectures that cannot
be abstracted into a language feature that can
be implemented reasonably on all the intended
target machines will not be supported, either.

3.2 Target machines

While a portable assembly language can abstract
away some of the differences between architectures,
there are differences that are too difficult to bridge,
and would lead PAF too far away from the idea of
a direct correspondence between language feature
and architectural feature, so here we define the class
of machines that we target with PAF:

PAF targets general-purpose computer architec-
tures, i.e., the architectures that have been designed
as compiler targets, such as AMD64, ARM, IA-32,
IA-64, MIPS, PowerPC, SPARC.

Memory on the target machines is byte-addressed
with a flat address space; e.g., DSPs with sepa-
rate X and Y address spaces are not target ma-
chines. The target machines use modulo (wrap-
around) arithmetics and and signed numbers are
represented in 2s-complement representation.

The target machines have a uniform register set
for integers and addresses (not, e.g., accumulators
with different size than address registers), and pos-
sibly separate (but internally also uniform) floating
point registers.

3.3 Forth and PAF

Forth’s low-level features are quite close to assem-
bly language; e.g., like in assembly language, nei-
ther the compiler nor the run-time system main-
tains a type system, and the language differentiates
between different operations based on name, not
based on type; e.g., Forth has < for signed compar-
ison and U< for unsigned comparison of cells (ma-
chine words), just like MIPS has slt and sltu, and
Alpha has cmplt and cmpult.

Therefore Forth is a good basis for a portable as-
sembly language. However, there are features that
are problematic in this context: In particular, in
Forth the stack depth is not necessarily statically
determined (unlike in the JVM), even though in
nearly all Forth code the stack depth is actually
statically determined (known to the programmer,
but not always the Forth system). So we change
these language features for PAF.

A number of higher-level features of Forth are
beyond the goal of a portable assembly language,
so PAF does not support them.

On the other hand, there are a few things that are
missing in standard Forth that have to be added to
PAF, such as words for accessing 16-bit quantities
in memory.

3.4 Example

The following example shows two definitions writ-
ten in PAF:

\ cmpl %edx,%eax

: max \ jle L28

2dup >? if \ ret

drop exit endif \ L28:

nip exit ; \ movl %edx,%eax

\ ret

abi:xx- printmax {: n1 n2 -- :}

"max(%ld,%ld)=%ld\n\0" drop

n1 n2 2dup max abi.printf.xxxx-

exit ;

\ Call from C:

\ main() { printmax(3,5); return 0; }

The first, max, looks almost like conventional
Forth code, and corresponding assembly language
code for IA-32 is shown in comments to the right.
max does not have a fixed calling convention; the
PAF compiler can set a calling convention that is
appropriate for max and its callers (e.g., it can be

33

Ertl PAF: A portable assembly language

tail-called). Since max does not follow the plat-
form’s calling convention, it cannot be called from,
e.g., C code.

The second definition, printmax, follows the
standard ABI of the platform (as indicated by using
an abi: defining word. The xx- in abi:xx-3 shows
that printmax expects and consumes two cells from
the data stack and 0 floats from the FP stack and
produces 0 cells and 0 floats; a C prototype for this
definition could be void printmax(long, long).
Printmax calls max, and the compiler can choose the
calling interface between the call and max; it calls
printf using the standard calling convention with
the call abi.printf.xxxx-, where the xxxx- indi-
cates that four cells are passed as integer/address
parameters and the return value of printf is ignored.

Locals are used in printmax but can be used in
every definition. Exiting from the definitions is ex-
plicit.

3.5 Registers

Several language features correspond to real ma-
chine registers: Stack items, locals, and values.

Stack items (elements) are useful for relatively
short-lived data and (unlike locals) can be used
for passing arguments and return values. There
is no stack pointer and memory area specific to
the stack, it’s just an abstraction used by the
compiler. Stack manipulation words like DUP

or SWAP just modify the data flow and there is
no machine code that directly corresponds to
them (indirect consequences may be, e.g., move
instructions at control flow joins).

Locals live within a definition and are a conve-
nience: Local variables of the source language
can be mapped directly to PAF’s locals with-
out needing register allocation or stack man-
agement in the front end. If a source local
needs to be distributed across several PAF def-
initions (e.g., because a control structure of
the source language is mapped to a PAF (tail)
call), the local can be defined in each of these
definitions, and the constants are passed on the
stack across calls; this is not as convenient as
one might like, but seems to be a good com-
promise.

Values are global (thread-local) variables whose
address cannot be taken, so they can be stored
in registers.

If stack items and locals don’t fit in the registers,
they are stored in a stack that is not visible to PAF

3This paper assumes the use of a recognizer feature in
the Forth system to process parameterized names; the con-
ventional Forth way would be to use a parsing word, in this
case, e.g., abi: xx- printmax.

code; this stack stores items from the data and FP
stack, locals, and return addresses, so this does not
correspond to the memory representation of, e.g.,
the data stack.4

If values don’t fit in the registers, they are stored
in global/thread-local memory.

3.6 Memory

The words c@ uw@ ul@ (addr -- u) load un-
signed 8/16/32-bit values from memory, while sc@

w@ l@ (addr -- n) load signed 8/16/32-bit val-
ues from memory; @ (addr -- w) loads a cell (32-
bit or 64-bit, depending on the machine) from
memory; sf@ df@ (addr -- r) load 32/64-bit
floating-point values from memory. c! w! l!

! (x addr --) and sf! df! (r addr --

) store stack items to memory.

3.7 Arithmetics

The usual Forth words + - * negate and or

invert lshift rshift correspond to the arith-
metic and logic instructions present in every ma-
chine. There are also additional words like / m*

um* um/mod sm/rem that correspond to instruc-
tions on some machines, and have to be synthesized
from other instructions on other machines.

3.8 Comparison

The words =? <? u<? f=? f<? etc. compare
two stack items and return 0 for false and 1 for true.
They correspond to the Forth words = < u< f= f<

etc., with the difference that the Forth words return
−1 (all-bits-set) for true. A number of machines
have instructions that produce 0 or 1 (MIPS, Alpha,
IA-32, AMD64), while for others it is as easy to
produce 0 or 1 as to produce 0 or −1, so ”0 or 1”
is more in line with the goal of the direct relation
to the machine feature. An implementation of a 0-
or-−1 language like Forth would use a sequence like
<? negate for which good code can be generated
easily.5

3.9 Control flow inside definitions

The standard Forth words begin again until

ahead if then cs-roll are available in PAF

4Some languages have local variables whose address can
be taken; it may be a good idea to provide a way to store
them in this stack eventually, but for now such variables have
to be stored elsewhere. The interaction of such a feature
with, e.g., tail calls has to be considered first.

5Conversely, one might also decide to have < etc. instead
of <? in PAF, and let the compiler handle the mismatch
to some machines, but that would be somewhat against the
spirit of a portable assembly language.

34

Ertl PAF: A portable assembly language

and are useful for building structured con-
trol flow, such as if ... then ... elsif ...

then ... else ... end.
While one can construct any control flow with

these words [Bad90], if you want to implement la-
bels and gotos, it’s easier to use labels and gotos.
Therefore, PAF (unlike Forth) provides that, too:
L:name defines a label and goto:name jumps to it.

PAF also supports indirect gotos: ’name/tag

produces the address of label name, and goto/tag

jumps to a label passed on the stack. The tag indi-
cates which gotos can jump to which labels; a PAF
program must not jump to a label address gener-
ated with a different tag. E.g., a C compiler target-
ing PAF could use a separate tag for each switch

statement and the labels occuring there.
These tags are useful for register allocation. One

can use different tags when taking the address of
the same label several times, and this may result in
different label addresses, with the code at each tar-
get address matched to the gotos that use that tag
(i.e., several entry points for the same PAF label).

Whichever method of control flow you use, on
a control flow join the statically determined stack
depth has to be the same on all joining control flows.
This ensures that the PAF compiler can always de-
termine the stack depth and can map stack items
to registers even across control flow. This is a re-
striction compared to Forth, but most Forth code
conforms with this restriction. Breaking this rule
is detected and reported as error by the PAF com-
piler.

So the tags have another benefit in connection
with the stack-depth rule: The static stack depth
for a given tag must be the same (for all labels and
all gotos), but they can be different for different
tags. If there were no tags, all labels and gotos in a
definition would have to have the same stack depth.

3.10 PAF Definitions and PAF calls

A definition where the compiler is free to determine
the calling interface is defined in the classical Forth
way:

: name ... exit ;

The end of the definition does not produce an
implicit return (unlike Forth), so you have to return
explicitly with exit.

You call such a definition by writing its name, i.e.,
the traditional Forth way. You can explicitly tail-
call such a definition with jump:name ; this can be
written explicitly, in the spirit of having a portable
assembly language. Optimizing implicit tail calls is
not hard, so the PAF compiler may do it, too.

We can take the address of a definition with
’name:tag , call it with exec.tag and tail-call it

with jump.tag . The tags indicate which calls can
call which definitions.

The stack effects of all definitions whose address
is taken with the same tag have to be compatible.
I.e., there must be one stack effect that describes all
of them; e.g., (x x -- x) is a valid stack effect
of both + and drop (although the minimal stack
effect of drop is (x --)), so + and drop have
compatible stack effects.

The use of tags here has two purposes: It informs
the PAF compiler about the control flow; and it
also informs it about the stack effect of the indi-
rect call (while a Forth compiler usually has to as-
sume that execute can call anything, and have any
stack effect). Or conversely, in connection with the
stack-depth rule: Tags allow different stack effects
for indirectly called definitions with different tags;
without tags, all indirectly called definitions would
have to have the same stack effect.

3.11 ABI definitions and ABI calls

We need to specify the stack effect explicitly as sig-
nature of an ABI definition or call. The syntax
for such a signature is [xr]*-[xr]*, where x indi-
cates a cell (machine word/integer/address) argu-
ment, and r a floating-point argument; the letters
before the - indicate parameters, and the letters
afterwards the results. The division into x and r

reflects the division into general-purpose registers
and floating-point registers on real machines, and
the role these registers play in many calling con-
ventions.

A definition conforming to the calling convention
is defined with abi:sig name . Sig specifies the
stack effect, and indicates the correspondence be-
tween ABI parameters and PAF stack items. This
signature is not quite redundant, e.g., consider the
difference between the following definitions:

abi:x-x id exit ;

abi:- noop exit ;

These definitions differ only in the signature,
yet they behave differently: id returns its argu-
ment, noop doesn’t, and with ABI calling conven-
tions, there is usually a difference between these
behaviours.

You can call to an ABI-conforming function with
abi.name.sig , where name is the name of the func-
tion (which may be a PAF definition or a function
written in a different language and dynamically or
statically linked with the PAF program). The sig-
nature specifies how many and which types of stack
items to pass to the called functions, and what type
of return value (if any) to push on the stack.

Putting the signature on every call may be a
bit repetetive for human programmers, but PAF is
mainly intended as an intermediate language, and

35

Ertl PAF: A portable assembly language

an advantage of this scheme is that different calls to
the same function (e.g., printf) can have different
stack effects.

You can take the address of an ABI funtion with
abi’name and call it with abi-exec.sig . There
are no tail calls to ABI functions, because we can-
not guarantee that tail calls can be optimized in all
calling conventions.

Unlike PAF definitions, for ABI functions there
is no point in tagging these function addresses, be-
cause the call always uses the ABI calling conven-
tion (whereas the compiler is free to determine the
calling interface for PAF calls). The signature in
indirect ABI calls has the same significance as in
direct ABI calls.

3.12 Definitions and Calls Discussion

Why have two kinds of definitions and two kinds of
calls?

The PAF definitions and calls allow to imple-
ment various control structures such as backtrack-
ing through tail calls [Ste77]. They also allow the
compiler to use flexible and possibly more efficient
calling interfaces than the ABI calling convention.

On the other hand, the ABI counterparts allow
interfacing with other languages and using dynam-
ically or statically linked binary libraries, includ-
ing callbacks, and using PAF to build such libraries
(e.g., as plug-ins).

3.13 Exceptions

It is possible to build non-local control-flow such as
exceptions with tail-calls, but it is often more conve-
nient to let a PAF definition correspond to a source
language function/method/procedure (no need to
spread locals across several definitions). Exceptions
are a common non-local control-flow construct, so
PAF includes them.

4 Non-Features

This section discusses various features that PAF
does not have and why.

4.1 Garbage collection

A number of virtual machines, e.g., the Java VM,
support garbage collection. However, this feature
significantly restricts what can be done. In particu-
lar, the data representations are restricted, and one
cannot implement “unmanaged” languages or use a
different data representation for a garbage collected
language (e.g., the Java VM representation is quite
different from how most Prolog or Lisp systems rep-
resent their data).

Even C--, which is intended as a portable assem-
bly language for garbage collected languages does
not implement garbage collection itself, but leaves it
to the higher-level language, because that leaves the
full freedom on how to implement data and garbage
collection to the higher-level language [JRR99].

4.2 Types

PAF does not perform type checking during compi-
lation, nor at run-time; also, there is no overloading
of several operations on the same operator based
on types. This is consistent with the descent from
Forth, and non-portable assembly languages have
the same approach.

In contrast, in C-- the compiler knows about data
types and uses that knowledge for overloading reso-
lution. The disadvantage of such approaches is that
it complicates the C-- compiler without making life
easier for the front end compiler, which has to know
exactly anyway whether it wants to perform, say,
signed or unsigned comparison.

One may wonder about the “absence” of some op-
erations in PAF; e.g., there is <? U<?, but only =?

+ - *. The reason is that, on the two’s-complement
machines that PAF targets, these operations are the
same for signed and unsigned numbers.

4.3 Debugger

Quite a bit of effort in C-- is devoted to supporting
the standard debugger. For now there are no plans
to make such an effort for PAF. C became a suc-
cessful portable assembly language even though it
has very little debugger support for languages that
use it as intermediate language.

4.4 SIMD

Supporting SIMD instruction set extensions such as
SSE, AVX, AltiVec etc. is not planned, mainly be-
cause few higher-level languages need such features.
They can be added later if there is demand.

5 PAF vs. Forth

The restrictions on stack handling in PAF provide
new insights into Forth, and we take a closer look
at that in this section.

5.1 Effect on implementation

PAF has restrictions and features that allow the
compiler to statically determine the stack depth.
As a consequence, in PAF there is no need to im-
plement the stacks in memory, with a stack pointer
for each stack (data stack and return stack for cells,
floating-point stack for floating-point values).

36

Ertl PAF: A portable assembly language

\ Forth

: selector (offset --)

create ,

does> (... o -- ...)

@ over @ + @ execute ;

1 cells selector foo

2 cells selector bar

\ PAF

: foo (... o -- ...)

dup @ 1 cells + @ jump.foo ;

: bar (... o -- ...)

dup @ 2 cells + @ jump.bar ;

Figure 1: Defining method selectors in Forth and in
PAF (simplified)

In contrast, Forth needs to have a separate mem-
ory area and stack pointer for each stack, and while
stack items can be kept in registers for most of the
code, there are some words (in particular, execute)
and code patterns (unbalanced stack effects on con-
trol flow joins), that force stack items into memory
and usually also force stack pointer updates.

This property of Forth is avoided in PAF by
requiring balanced stack effects on control flow
joins (see Section 3.9), and by replacing execute

with exec.tag (see Section 3.10); all definition ad-
dresses returned for a particular tag are required to
have compatible stack effects, so exec.tag has a
statically determined stack effect.

5.2 Effect on Programs

The effect on real programs is relatively small: most
Forth code has balanced stack effects for control
flow anyway, and most occurences of ’ and execute

can be converted to their tagged variants, because
programmers keep the stack depth statically deter-
minable in order to keep the code understandable.

However, there are cases where the restrictions
are not so easy to comply with. E.g., object-
oriented packages in Forth use execute for words
with arbitrary stack effects. Programs using these
words have a statically determined stack effect, too,
but it is only there at a higher level; e.g., if you
use a separate tag (and a separate exec.tag) for
each method selector, typical uses comply with the
restriction, but in most object-oriented packages
there is only one execute.

Figure 1 shows code for this example: the Forth
variant defines a defining word selector, and the
selectors are then defined with this defining word;
in contrast, the PAF variant defines the selectors
directly (and pretty repetetively), each with its own
tag.

If you want to define a defining word for method
selectors like you usually do in Forth, the tag would
have to be passed around as a define-time parameter
between the involved defining words. This support
for higher-level programming is not required inside
PAF (there we leave such meta-programming to the
higher-level language), but if we want to transfer
the tag idea back to Forth, we would have to add
such things.

5.3 Compiling Forth to PAF

Translating Forth code that is not PAF code into
PAF code can be instructive.

As an example, we use another variant of the se-
lector code above6:

: do-selector (.. obj m-off -- ..)

over @ + @ execute ;

: foo (.. obj -- ..)

1 cells do-method ;

: bar (--)

1 2 my-obj foo . ;

This is not PAF because of the execute, which
can have an arbitrary stack effect. We translate this
execute into a PAF jump with tag forth; we decide
that the PAF calling convention for xts with that
tag is (--). I.e., any Forth stack effects have to
be translated into accesses to an explicitly imple-
mented memory stack in PAF. The stack pointer of
the data stack is implemented as a value sp.

Do-selector itself only needs to store the stack
item obj into this explicit stack, but the direct and
indirect callers of do-selector usually have to ac-
cess this explicit stack as well. In our example, bar
has to push two items on the explicit stack and pop
one item from the explicit stack:

0 value sp

: do-method

over sp cell- tuck ! to sp

swap @ + @ jump.forth ;

: foo

1 cells jump:do-method ;

: bar

sp cell- 1 over !

cell- 2 over !

to sp

my-obj foo

sp dup @ swap cell+ to sp

jump:. ;

37

Ertl PAF: A portable assembly language

One would have to implement the floating-point
stack in the same way.

Some people would like to extend standard Forth
with return-address manipulation. One can also do
a translation from such an extended Forth to PAF,
and it shows how expensive that feature can be.
Looking just at the do-method part of the example
above:

0 value sp

0 value rp

: thunk1

exit ;

: do-method

over sp cell- tuck ! to sp

swap @ + @

rp cell- to rp ’thunk1:forth rp !

exec.forth rp cell+ to rp

jump:thunk1 ;

The return stack pointer has to be made explicit
(as rp). Instead of translating the execute into
an indirect tail call (jump.forth), we have to first
store the return address ’thunk1:forth on the ex-
plicit return stack, then use an indirect non-tail call
exec.forth, then drop the return address from the
explicit return stack, and then continue with the
rest of the definition (thunk1), which just returns
in this case.

6 Related work

We have discussed C, LLVM, C--, and Vcode/GNU
Lightning in Section 2.

There are projects that are similar to PAF in us-
ing a restricted or modified form of a higher-level
language as portable assembler:

• The Python system PyPy uses a restricted
form of Python called RPython as low-level in-
termediate language [AACM07].

• Asm.js7 is a subset of JavaScript that is so re-
stricted that it can serve as portable assembly
language.

• PreScheme is a low-level subset of Scheme
used as intermediate language for implement-
ing Scheme48 [KR94].

In all these cases the base language is much
higher-level than Forth, and it is much more of a
stretch to create a low-level subset than for Forth..

6This variant defines a selector as a colon definition in-
stead of with does>; for presentation purposes we leave the
defining word selector away and define the selector foo di-
rectly instead of with selector foo.

7http://asmjs.org/

Machine Forth (which evolved into colorForth) is
a simple variant of Forth created by Chuck Moore,
the inventor of Forth. It closely corresponds to the
instructions on his Forth CPUs, but he also wrote
an implementation for IA-32 that creates native
code. The IA-32 compiler is very simple, basically
just expanding the words into short machine code
sequences.8 It does not map stack items beyond
the top-of-stack to registers, yet the generated code
is relatively compact; this reflects the fact that ma-
chine Forth is close to the machine, including IA-32.

7 Conclusion

PAF is a subset/dialect of Forth that is intended as
a portable assembly language. The main contribu-
tions of PAF are:

• Tags indicate which indirect branches can
reach which labels and which indirect calls can
call which definitions. Compared to general in-
direct branches and calls, this gives more free-
dom to the front end’s stack usage and to the
PAF compiler’s register allocator. Tags need
less implementation effort and produce better
results than trying to achieve the same result
through program analysis.

• Definitions and calls are split into those con-
forming to the ABI/calling convention of the
platform, and others for which the compiler can
use any calling interface (and different ones for
different sets of callers and callees). This al-
lows tail-call optimization (unlike ABI calling
conventions), which in turn means that we can
use the calls as a primitive for arbitrary control
structures (e.g., coroutining).

• Restrictions (compared to Forth) on the use of
stack items make it possible to have a static
relation between stack items and registers for
all programs, and avoid the need for a sepa-
rate stack pointer and memory area for each
stack. This highlights which Forth features are
expensive and where they are used.

References

[AACM07] Davide Ancona, Massimo Ancona, An-
tonio Cuni, and Nicholas D. Matsakis.
RPython: a step towards reconciling
dynamically and statically typed OO
languages. In Pascal Costanza and
Robert Hirschfeld, editors, DLS, pages
53–64. ACM, 2007.

8http://www.colorforth.com/forth.html

38

Ertl PAF: A portable assembly language

[Bad90] Wil Baden. Virtual rheology. In
FORML’90 Proceedings, 1990.

[Eng96] Dawson R. Engler. vcode: A re-
targetable, extensible, very fast dy-
namic code generation system. In SIG-
PLAN ’96 Conference on Programming
Language Design and Implementation,
pages 160–170, 1996.

[JRR99] Simon L. Peyton Jones, Norman Ram-
sey, and Fermin Reig. C--: a
portable assembly language that sup-
ports garbage collection. In Inter-
national Conference on Principles and
Practice of Declarative Programming,
September 1999.

[KR94] Richard A. Kelsey and Jonathan A.
Rees. A tractable Scheme implementa-
tion. Lisp and Symbolic Computation,
7(4):315–335, 1994.

[LA04] Chris Lattner and Vikram S. Adve.
LLVM: A compilation framework for
lifelong program analysis & transforma-
tion. In Code Generation and Optimiza-
tion (CGO), pages 75–88. IEEE Com-
puter Society, 2004.

[Ste77] Guy Lewis Steele Jr. Debunking the
“expensive procedure call” myth or pro-
cedure call implementations considered
harmful or lambda: The ultimate goto.
AI Memo 443, MIT AI Lab, October
1977.

39

Standardize Strings Now!

M. Anton Ertl∗

TU Wien

Abstract

This paper looks at the issues in string words: what
operations may be required, various design options,
and why this has lead to the current state of stan-
dardization of string operations that is insufficient
in the eyes of many.

1 Introduction

Despite the presence of a string wordset in Forth-94,
there are frequent complaints about lack of string
support in Forth, and many Forth programmers de-
sign their own string library to counter this lack.

2 String operations

This section looks at the string operations present
in the language AWK, which is designed for string
handling, which gives us an idea of what things
string words should be capable of.

AWK is a language that is designed for process-
ing text files, extracting data from them, and out-
putting the data in some different format. Below
we describe GNU AWK (gawk), which offers some
features that other AWK variants do not have.

AWK has some language-level capabilities: It
splits a file into lines/records (based on a record
separator regexp), splitting a line/record into fields
(based on a field separator regexp, or a field regexp);
it matches lines/records with regexps and uses that
to select an action to perform; the action can access
the fields through the $n syntax. AWK also allows
easy string concatenation by juxtaposing the two
strings, and it supports strings as array indexes.

AWK also provides a number of string functions,
which can be divided into several categories:

sorting asort, asorti

substitution within strings gensub, gsub, sub

replace patterns in arbitrary strings, sprintf
constructs a string from a template.

conversion strtonum, sprintf

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

searching index, match

information length

splitting patsplit, split

substrings substr

case conversion tolower, toupper

3 Design issues

This section discusses the design issues of string
words in Forth.

3.1 Desirable Properties

Ease of use One property we would like strings to
have is that programming with them is as easy
as programming with single or double numbers,
without such encumbrances as explicitly man-
aging buffers (including avoiding buffer over-
flows).

Integration Another nice property is that exist-
ing words are useful for dealing with strings.
E.g., we can use 2dup 2swap 2over to handle
c-addr u type string descriptors on the stack,
2@ 2! for storing them, and arithmetic words
for computing substrings.

As we will see, these two properties are somewhat
at odds with each other.

3.2 Allocation

Manual buffer management

Who allocates string buffers, and who frees them?
This issue comes up when generating new strings,

such as string concatenation, and is probably the
primary issue why we have not found a consensus on
a string wordset that includes words for generating
new strings (not even concatenation).

One approach is that the word that produces the
new string allocates it, e.g.

\ s+ (c-a1 u1 c-a2 u2 -- c-a3 u3)

dir s" /" file s+ s+ r/o open-file throw

40

Ertl Standardize Strings Now!

The usage looks cute, but it does not free the
strings, and therefore is a memory leak. With
proper freeing it is no longer so cute:

dir s" /" file s+ over >r s+ r> free throw

over >r r/o open-file throw r> free throw

This is one reason for disliking this approach, but
a stronger one for a significant subset of the Forth
community is the use of allocate-style allocation
itself.

Embedded systems Forths do not necessarily sup-
port allocate, and even if they have it, one may
not want to use it, because of fragmentation or per-
formance concerns. On the other hand, just like
embedded users can avoid allocate even though it
is standardized, they can just as well avoid string
creation words that allocate, and create strings
in the way they do now. One probably won’t use
Forth as a scripting language on these embedded
systems anyway.

Instead of allocating the string buffer in the cre-
ating word, one can pass a buffer to the word. This
approach is used in read-line and substitute,
and a variant of s+ with this kind of interface looks
as follows:

\ s+ (c-a1 u1 c-a2 u2 c-a3 u3 -- c-a3 u4 n)

create buf1 200 chars allot

create buf2 200 chars allot

dir s" /" buf1 200 s+ 0< abort" buf short"

file buf2 200 s+ 0< abort" buf short"

r/o open-file throw

This does not appear attractive, either. A major
problem with this approach is that it is possible to
provide a too-small buffer, and in general (not for
s+, but, e.g., for substitute), it is hard to know in
advance how large the target buffer should be.

Automatic reclamation

So we want to avoid the problems of passing a pre-
allocated buffer as well as the problems of having
to free the buffers. Many other languages do this
by using garbage collection. We can do that, too,
and there is a garbage collector for Forth (written in
standard Forth). With garbage collection, we can
use the original s+ usage example.

Requiring garbage collection as part of a string
wordset is probably not going to find consensus,
however. Garbage collection has a number of dis-
advantages: It is more complex to implement than
explicit deallocation; it is most easily implemented
in a stop-the-world fashion, and that does not com-
bine well with real-time systems or multi-threading.

There has been a lot of work on making garbage
collection compatible with real-time requirements
and multi-threading, but the implementation cost is

significant. Also, most (all?) of this work assumes
that the compiler and run-time system knows what
is an address and what is not; this is generally not
possible in Forth.

A practical problem with garbage collection is
that, in general, garbage collection has to scan all
the data memory, the stacks, and the locals to see
which strings are still referenced.

This need can be reduced by always using special
words to deal with strings, to keep track of string
references. E.g., one might declare all memory stor-
age for string descriptors explicitly, thus avoiding
the need to scan all data memory (for dynamically
allocated memory, one needs to untrack the mem-
ory in some way).

Furthermore, we could have a separate string
stack with separate string stack operations, and
str@ and str! instructions for accessing string de-
scriptors in memory. This approach has a low inte-
gration, though.

If the Forth system knows all the string descrip-
tors, there are additional ways for automatic recla-
mation: In particular, we can use reference counting
(since strings don’t contain pointers, the cycle prob-
lem of general reference counting cannot occur).

Or, as a variant of that, we can use the follow-
ing simple string buffer management strategy that
ensures that every string only has one reference:
copy the string when we copy the descriptor and
free the string when we drop or overwrite the de-
scriptor (this is inspired by Henry Baker’s article on
linear logic [Bak94]).

Region-based memory management

A manual reclamation method that is more conve-
nient than allocate/free is region-based memory
management. The program can create several re-
gions, allocate memory in these regions, and finally
free all the memory allocated in a region at once.

You typically collect data into a region if it all
becomes garbage and should be freed at (mostly)
the same time. E.g., in a compiler you might have
a region for stuff that is relevant for a basic block
and can be freed after you are done with the block, a
region for stuff that is relevant for a colon definition,
etc.

One nice feature of regions is that it allows the
programmer to decide whether he wants to live
with more not-yet-freed garbage or whether he
wants to invest more programming effort and have
finer-grained regions for less not-yet-freed garbage
(up to having the same programming effort as
allocate/free).

The following example shows a fine-grained use
(each of the two memory allocations has a separate
region), with the region passed explicitly as a pa-
rameter on the stack:

41

Ertl Standardize Strings Now!

\ s+ (c-a1 u1 c-a2 u2 region-id -- c-a3 u3)

: make-path

{: dir-a dir-u file-a file-u outer --

path-a path-u :}

new-region {: tmp :}

dir-a dir-u s" /" tmp s+

file-a file-u outer s+

tmp free-region ;

Here we have two regions: outer, and tmp. We
pass the id of the target region to s+, and once we
are done with the strings in tmp, we free the region.

One problem with this approach is that we have
to pass a region-id to any word that returns allo-
cated memory, which causes stack juggling (avoided
above by the use of locals); and that additional pa-
rameter is needed for every word that generates a
string. Instead of passing the region-id explicitly,
it can be passed through an implicit current region

through a context wrapper [Ert11].
Another problem with the example above is that

it is not any simpler than explicit deallocation.
That’s because it does exactly the same thing, and
deallocates the intermediate result as soon as pos-
sible.

Here is an example where the programmer
chooses to let the intermediate result hang around
longer, in exchange for easier programming. E.g., if
we let the the intermediate result live as long as the
final result, and pass the current region implicitly,
we can program make-path in the ease-of-use way:

\ s+ (c-a1 u1 c-a2 u2 -- c-a3 u3)

: make-path

{: dir-a dir-u file-a file-u --

path-a path-u :}

dir-a dir-u s" /" file-a file-u s+ s+ ;

: open-path (dir-a dir-u file-a file-u --)

new-region dup >r

[’] make-path with-region

r/o open-file throw

r> free-region ;

The region management happen at an outer level.
Regions are an interesting idea, but have not

made a big impact outside Forth; I guess most go for
garbage collection if they want anything more auto-
matic than explicit deallocation. However, given all
the problems of general garbage collection, regions
may be the way to go for Forth.

One widely available implementation of regions
are glibc’s obstacks (which offer the additional con-
venience that every region can be treated as a
stack).

3.3 String representation

The favoured string representation in standard
Forth is c-addr u. It allows representing strings

of any length with any content, and you can pro-
duce arbitrary substrings without needing to copy
the string to a new buffer. The disadvantage of
this representation is that it takes two cells on the
stack, and dealing with several strings at once can
therefore be cumbersome.

The other common string representation in stan-
dard Forth is the counted string: The on-stack rep-
resentation is the address of the count byte; the
count byte is followed by the characters of the
string. The advantage of this representation is that
it needs only one cell on the stack. But it can only
represent strings with up to 255 chars, and any
substring operation needs to create a new string
buffer. Converting from counted to c-addr u is
easy (count), but the other direction is cumber-
some. Some people have suggested using cell counts
instead of byte counts to get rid of the length limi-
tation.

Some people have proposed using zero-
terminated strings (as in C). The on-stack
representation is the address of the first character.
It can represent strings of arbitrary length that
don’t contain a NUL char. Substring operations
usually need to create a new string buffer (unless
the substring is just the tail of the input string).
The main advantage is that this string repre-
sentation makes interfacing to some C functions
easier; note that C offers c-addr u-compatible
versions of many functions in order to be able to
deal with arbitrary text; e.g., there is fputs() for
zero-terminated strings and fwrite() for c-addr

u strings.

If we go with a separate string stack and an in-
memory string representation that is only accessed
through string words, strings become an abstract
data type, and the implementer has a choice of in-
ternal string representations. Such a representation
may include such things as a reference count.

3.4 Regular expressions

Many scripting languages support searching within
strings for a pattern; this is used for selecting among
strings, for splitting strings into parts (with the
pattern used either as separator or to specify the
parts), or for replacing the patterns with replace-
ment strings. The common practice for specifying
patterns is regular expressions (regexps); there are
some variations of regular expressions, and the Perl
5 variant is probably the most popular one.

All of the uses mentioned above can be imple-
mented with the following regular expression prim-
itive:

42

Ertl Standardize Strings Now!

search-regexp (c-a1 u1 c-a2 u2 --

c-a1 u3 c-a4 u4 c-a5 u5 true | false)

Search for regexp c-a2 u2 in string c-a1

u1; if the regexp is found, c-a1 u3 is the
substring before the first match, c-a4 u4

is the first match, and c-a5 u5 is the rest
of the string, and the TOS is true; other-
wise return false.

If you use the same regexp several times, it can be
more efficient to compile the regular expression into
a more readily executed form once, and then use
that form repeatedly. An interface for that would
be:

:regexp (c-a2 u2 "name" --)

Compile regular expression c-a2 u2, de-
fine name to perform the action below:

name execution: (c-a1 u1 --

c-a1 u3 c-a4 u4 c-a5 u5 true | false)

Search for regexp c-a2 u2 in string c-a1

u1; if the regexp is found, c-a1 u3 is the
substring before the first match, c-a4 u4

is the first match, and c-a5 u5 is the rest
of the string, and the TOS is true; other-
wise return false.

3.5 Implicit parameters

The c-addr u representation leads to words with a
lot of stack parameters, e.g., compare, search and
search-regexp. This is often cumbersome to work
with, and one may want to use some of the tech-
niques for reducing stack depth [Ert11]. In particu-
lar, we can use implicit parameters and context-
wrappers to get rid of one input and/or output
string.

The obvious implicit input parameter is the parse
area (source), and we can use the context-wrapper
execute-parsing (addr u xt --) to put an
input string in the parse area; then we need pars-
ing variants of the words that have too many input
strings. E.g., we could have a parsing variant of
search-regexp:

parse-regexp (c-a2 u2 --

c-a1 u3 c-a4 u4 true | false)

Search for the regexp c-a2 u2 in the parse
area. If a match is found, c-a4 u4 is the
address of the match, and c-a1 u3 is the
string that was skipped before the match
was found. The next parse starts right be-
hind the matching string.

For string results, the implicit output parameter
is the user output device; i.e., type is the implicit-
output variant of move. The context-wrapper is
>string-execute (xt -- c-a u).

As an example, here we have a program that re-
places all the occurences of natural numbers with
<num>, passing both input and output parameters
through a context wrapper.

: repl-num1 (--)

begin

s" [0-9]+" parse-regexp while

2swap type 2drop ." <num>"

repeat

0 parse type ;

: repl-num2 (c-a u --)

[’] repl-num1 execute-parsing ;

: repl-num (c-a1 u1 -- c-a2 u2)

[’] repl-num2 >string-execute ;

This code would be a bit tighter with quotations.

4 Conclusion

There are a number of partly conflicting require-
ments for string packages, in particular

• Ease of use

• Integration with the rest of Forth

• No garbage collection

The various approaches to these problems have
led to a large variety of string packages, that can-
not be reconciled. Yet, extending the string capabil-
ities of Forth is a much-requested (and, in my case,
often-used) feature, so we should standardize ad-
ditional string capabilities at some point, although
the new words will be in parallel to what various
string packages offer and ideally make them redun-
dant.

When I started working on this paper, it was un-
clear to me what the right approach is. Now, it
seems to me that the solution is to continue in the
direction that the standard string wordset has gone,
and add to that:

• Use c-addr u as on-stack string representa-
tion.

• Add words that create new strings by allocat-
ing space for them (e.g., >string-execute).

• To make memory reclamation easier, add a
region-based memory allocation mechanism
(useful not just for strings).

43

Ertl Standardize Strings Now!

• To reduce the stack depth, use implicit
parameters with context-wrappers such as
execute-parsing and >string-execute.

• Add a word or several for matching regular ex-
pressions.

References

[Bak94] Henry Baker. Linear logic and permutation
stacks — the Forth shall be first. ACM

Computer Architecture News, 22(1):34–43,
March 1994.

[Ert11] M. Anton Ertl. Ways to reduce the stack
depth. In 27th EuroForth Conference,
pages 36–41, 2011.

44

Forth in Russia

Sergey Baranov

St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences

(SPIIRAS)

SNBaranov@gmail.com

This paper provides an extended version of a presentation made by the author at the

International Conference “Development of Computing and Software in the States of the Former

Soviet Union and Russia” SoRuCom-2011, held at the Yaroslav the Wise Novgorod State

University (Velikiy Novgorod, Russia) on 12-16 September 2011 [27]. The purpose is to highlight

the major milestones of Forth expansion in Russia since its early days, the current status of the

Russia Forth community, and derive certain lessons learnt with an outlook into the future.

Forth became known in the USSR since the end of 1970-ies. After its appearance in the US

– the first official publication dates to 1974 – this language and associated technique of

programming quickly won acknowledgement as a fast and

efficient means for creating meaningful applications for

microprocessor machinery, where efficiency of memory

footprint and small program size were often vital. The

Forth Interest Group [2] was soon founded, which is active

still now, with the purpose to standardize this language and

make it popular among software developers.

At that time a rapid growth of microprocessors was

in place, a widespread Soviet one was K580IK80 – a sound

copy of Intel 8080. At the Computer Center of the

Leningrad State University (now the St. Petersburg State

University) a team was established with an assignment to

develop software for a new Soviet microcomputer with this

processor under a contract with customers from industry.

The team was headed by Associated Prof. Boris Katsev,

PhD; he was a well-known specialist in computing

machinery, with talent, authority and organizing skills. Shortly before, he joined the University

faculty after terminating his career in computer industry. Prof. Katsev staffed the team with young

researchers and engineers of the Computer Center and faculty, the author being among them.

Contracts with leading Moscow industrial institutions NITSEVT and NIISCHEMASH for

developing software of computer terminals with

K580IK80 as the core processor were won for the

University through Prof.Katsev’s efforts. The mentioned

institutions just started to develop such terminals for

manufacturing for the whole Soviet Union. At that time

the major computer facility of the Computer Center was a

new mainframe ES 1030 (an analog of IBM/360) and old

original Soviet ones M-220 and M-222, ending their life

cycle. To test and debug software for K580IK80 the team

decided to develop a cross-system for the K580 family,

which included an assembler and a byte-code emulator.

PL/I was selected as an instrumental language for

developing the cross-assembler, development took over a

half-year. The resulting source code seemed to be

enormous at that time (over 1000 lines in PL/I). All tasks

running in parallel partitions of the IBM/360 compatible

have to be shut down in order to provide the PL/I

compiler with all available memory (less than 512K bytes

at that time) for compilation of the cross-compiler code in

one extended partition.

The Forth language special issue of
BYTE (August 1980)

Forth Interest Group logo

45

Just at that time the team came across a copy of an article in the Dr. Dobb’s Journal with a

listing of an Intel 8080 assembler in Forth which took only 54 lines of text, one third of which

being a table with recognizable mnemonics of Intel 8080 assembler instructions. Especially

striking was the authors’ claim that this was a complete assembler encompassing all modes and

features of the Intel 8080 instruction set! The team spent considerable effort to clarify and

understand how the assembler was done (with the CREATE-DOES> constructs); however, as

soon as we got it, the power and beauty of this approach was greatly appreciated. As there were

no other texts on Forth available at that time, the challenge was in grasping how this suite of Forth

words worked as expected from just this listing. Only much later we accessed a special Forth issue

of BYTE in 1980 [3] with many bright samples of how Forth may be used in various cases.

The most remarkable feature of Forth is its mechanism of introducing in a very elegant

manner new basic language constructs, which render specifics of the task under consideration in

the most appropriate way. Actually, Forth proposed a meta-language mechanism which allowed

for creating new abstract data types along with their implementation at any level of abstraction, up

to the machine code level. The latter allowed for reaching the maximal speed of code execution

which was so important for many applications. For example, the fundamental notions of a

variable and a constant may be quite elegantly introduced in just one line of text as:

: VARIABLE CREATE 0 , DOES> ; : CONSTANT CREATE , DOES> @ ;

Having acquired that even fundamental control flow structures – branches and loops – may

be so easily and simply expressed in the Forth core, we started to create quite exotic and unusual

(at that time) control structures and experiment with them:

switches, backtracking, exceptions handling and throwing,

etc., based on the idea of a vector code field and

manipulations with the return address and self-modifications

of the running code.

The team immediately started to develop an

implementation of Forth for ES 1030 (an IBM/360

compatible) – the only available computer at that time. An

implementation in assembler was done remarkably fast, it

was then used to bootstrap a Forth system from its baseline

written in Forth; this source code was later published as an

appendix to the first monograph on Forth in Russian [4],

specifically aimed at industrial applications. At the same

time another implementation of Forth was developed for the

terminal ES-7970 with the K580 microprocessor [5], along

with a number of utility applications for it.

The next phase started with implementing rather

complicated projects in Forth. One of them was incorporated

in the PhD thesis of Vyacheslav Kirillin “An Instrumental

System for Developing Language Means of Microprocessor

Machinery”, proved at the Leningrad State University in 1985. In particular, it contained

descriptions of portable compilers from Pascal and Basic into K580, which worked on the terminal

ES-7970 on top of its Forth system. Further popularization of Forth was contributed by Prof.

Joseph Romanovsky at the Mathematical Department of the Leningrad State University [6]. A

computer class was organized in form of a series of over 20 terminals connected to a powerful (at

that time) ES mainframe (an IBM/370 compatible), where students could study Forth and

experiment with it, surfing through an on-line Forth manual developed by Igor Agamirzian,

Sergey Baranov, Vyacheslav Kirillin, and Nikolay Nozdrunov. While working at the terminal,

students could create their own Forth programs, run them, and observe the results in parallel with

reading manual sections. After studying Forth, it was much easier for students to learn PostScript

and other interpretative programming languages provisioned at the curriculum.

At that period only the names of relevant technical journals were known in Russia: BYTE,

Datamation, Dr. Dobb’s Journal, and Forth Dimensions. We learnt about annual Forth

conferences, held at the Rochester University, N.Y., by Institute for Applied Forth Research, Inc.

However, to get access to these journals or to attend this conference seemed to be unrealistic. We

The first monograph of Forth in
Russian published in 1988 in

100 000 copies

46

learnt that since 1983 the Institute published the Journal of Forth Applications and Research, that

SIGForth (Special Interest Group) on Forth was established within the Association for Computing

Machinery (ACM) with its periodicals SIGForth Bulletin and Newsletters, while in Europe annual

euroForth conferences were regularly held by industrial companies and R&D institutions

interested in Forth. A colleague of us, Alexander Sakharov, who worked at that time at the Library

of the Academy of Sciences of the USSR, managed to provide within several years a subscription

to the Journal of Forth Applications and Research, thus

making this journal available to the interested people in

Leningrad at least for reading at this open public library.

We found and contacted a team developing a

dedicated Forth-processor [7] at the Institute of Cybernetics

of the Estonian Academy of Sciences. The project was

financed within a special contract with industry. As the

leading engineer of the team Alexander Astanovsky came

from Leningrad, we soon established common relations and

interests of this group with our team in the Leningrad State

University. Due to the efforts of these Estonian colleagues, a

number of our R&D papers appeared in the collections of

articles “Programming for Microprocessor Machinery”

regularly published by the Institute of Cybernetics in Tallinn.

In 1982 a Soviet conference on Forth was organized by Matti

Tombak at the Tartu State University in Tartu, Estonia.

Approximately in 1980 within the framework of the

Commission on Technology of the State Committee on

Science and Technology headed by Prof. Igor Velbitsky of

the Institute of Cybernetics of the Ukrainian Academy of

Sciences, a Working Group on Microprocessor Machinery was formed, headed by Dr. Raivo Raud

of the Institute for Cybernetics of the Estonian Academy of Sciences. In this Working Group a

Forth division was quickly established with active participation and contributions from Vsevolod

Kotlyarov, Sergey Baranov, Grigory Pogosiants, and Alexander Liberov.

Appearance of the already mentioned monograph [4], which incorporated accumulated

experience of developing Forth systems, became a noticeably milestone on the Forth path in the

USSR. Its first print was made in 50 000 copies; however, after receiving many requests from

practitioners, the public house Mashinostroyenie (Machine-building) made another print of

additional 50 000 copies, which turned out to be a rare case in its publishing practice!

A number of Soviet Forth systems, based on the standards fig-Forth and Forth-83, had

already been known by that time: Forth-SM (S.Katsev, I.Shendrikov), Forth-Tartu (R.Viainaste,

A.Yuurik), Forth-K580 (V.Kirillin, A.Klubovitch, N.Nozdrunov), Forth-ES (S.Baranov), Forth-

Iskra-226 (G.Lezin), Forth-M6000 (V.Patryshev), Forth-BESM-6 (I.Agamirzian), Forth-Elbrus

(A.Soloviev), Forth-Agat (A.Trofimov), to name just a few, which clearly demonstrates a great

interest to this language and the respective programming technique among the Soviet software

community. In the mentioned monograph, principles of Forth were systematically explained and

demonstrated with the source code of a Forth core for the IBM/360 instruction set. Later, with

appearance of personal computers, Forth systems for IBM PC and compatibles under MS-DOS

were developed and widely deployed: Astro-Forth (I.Agamirzian) and Beta-Forth (S.Baranov).

In parallel with implementations of Forth as per se, various dialects of the language were

developed, mainly for control applications. One of them – the Comfort system – was developed

by a team at the St. Petersburg State Polytechnic Institute (V.Kotlyarov, N.Morozov, A.Pitko,

S.Kireyev) for two families of 16-bit microcomputers Elektronika S5 and Elektronika 60, which

were successfully employed in industrial control systems of various classes. In the Leningrad

Construction Bureau of the state company “Svetlana” a chip for Forth and Comfort was developed

and manufactured.

At the peak of “perestroika” (re-building) in the USSR in April 1988, through enormous

efforts of Boris Katsev and Nikolay Nozdrunov the coop “Forth-Info” was established and

registered in Leningrad, at that time it was one of the first coops in the area of programming and

computing machinery. Employees of the laboratory of system programming of the Department of

Major periodical on Forth

published since 1983

47

mathematics and mechanics of the Leningrad State University with experience in Forth formed its

core. Their direct task was creating and further developing of new programming techniques based

on Forth. A noticeable outcome of the coop first three years was developing the 16-bit

microprocessor Dofin-1610 for real-time control systems. The processor turned out to be the

fastest one in its class of 16-bit processors in the USSR at that time. It displayed performance 50

times higher than its closest analog i8086 and was produced in small parties at the state company

“Integral” in Minsk, Belorussia, mainly thanks to Prof.Katsev’s connections in the industry. Later

the coop was transformed into an innovative and technology company “TechnoForth”.

It so happened that the monograph [4] caught attention of Forth activists in the USA and

the author received an invitation to come to the Rochester Forth Conference in July 1989. There

were many technical hurdles in organizing this trip, which was handled through the Presidium of

the USSR Academy of Sciences in Moscow;

however, all was over thanks to the efforts and

good will of the American colleagues. Within

several following years thanks to established

and strengthened connections, Soviet Forth-

people could participate in the annual Forth

conferences in the USA and Europe with their

contributions and presentations of their

accomplishments, exchanging experience and

new ideas in this domain with the world “Forth

elite”. In 1992 with support from the coop

“Forth-Info” a group of students from the

Leningrad State University was brought to

Rochester, and after that they were invited as

interns for summer practice in several US

companies interested in Forth. That was

genially new experience in this transition

period of the Russian history! Companies in

US and Europe, including MMS, MPE, Delta-

T, Silicon Composers, and others demonstrated

tangible interest to the “Russian experience”

and established partnership with Soviet

organizations and specialists.

At that time conferences on Forth and its applications started to be regularly held in the

USSR as part of activities of the Working Group on Microprocessor Machinery. Some of them

were sponsored by the coop “Forth-Info” and some were held under financing from the state

budget. Return visits of Director of the Forth Institute in Rochester Larry Forsley and Prof.

Nicholas Solntseff of the McMaster University in Hamilton, Canada, took place. Their itineraries

included visiting institutions in Leningrad, Moscow, and Novosibirsk. In 1991 the first issue of

the Russian journal “Forth in Research and Development” under the aegis of the Leningrad State

University; unfortunately with no continuation because of financial reasons due to the collapse of

the USSR. In 1996 and 1999 the 12
th

 [8] and 15
th

 [9] annual conferences EuroFORTH were held

in St. Petersburg, Russia, in the hotel “Rus”,

organized by SPIIRAS with leading contribution

from S.Baranov, I.Podnozova, E.Ignashkina,

M.Kolodin, and M.Gassanenko. In 1996 Michael

Gassanenko proved his PhD thesis “Mechanisms

of Code Execution in Open Extendible Systems

Based on Threaded Code” and then continued his

research in this direction [10].

In 1991 a local ACM chapter on Forth

was created in Leningrad, which worked for

several years. Due to these activities, the chapter

received subscriptions of all ACM periodicals

(over 30 titles) that were deposited at the Library

Certificate for establishing an ACM Forth

Chapter in Leningrad

Participants of Rochester conference in 1989

48

of the Academy of Sciences with free access to the general public. This helped the Library to

maintain the completeness of its repository when the state funding for purchasing technical literary

nearly stopped because of the USSR collapse.

Later on, translations of books on Forth and its practical applications started to appear in

Russia, such as [11], [12], [13], [14]. They stimulated further R&D in this area in Russia. For

example, after learning about hardware implementation of cellular automata, which T.Toffoli and

N.Margolus worked with at MIT [12], S.Baranov developed its software implementation of a

cellular automata machine on top of his Beta-Forth system. Due to thorough programming of the

main kernel, the resulting implementation Beta-CAM [16] displayed acceptable performance at

the very first IBM PC with the processor i8080, which caused a surprise of those specialists when

they saw its demonstration, inviting the author to visit MIT after the Rochester conference of

1991. Similarly, A.Kutuzov developed an expert system IBM PC based on the approach of

C.Townsend [13], the system was later used to teach students at the St. Petersburg State

Polytechnic University.

The second Russian monograph on Forth was that by V.Diakonov [15] published in 1992

at 30 000 copies, in 1993 followed by 50 000 copies of the monograph by Yu.Semyonov [17]

where experience of the Institute for Theoretical and Experimental Physics in this area in this area

was described. The valuable feature of this monograph was its appendices with the source code of

a Forth interpreter for the processor Intel 80286 in the macro assembler MASM, implementing the

standard fig-Forth, and a number of applications in Forth.

At the end of 1990-ies Andrey Cherezov [18] implemented his SP-Forth which is still in

use in a number of Russian developments. A dedicated site of the Russian Forth community was

established and is being supported [19], it stimulates further R&D and offers new ideas and

solutions based on Forth.

Fallout of the USSR and transition of the former Soviet Union states to market economy

made corrections to the status of Forth in Russia. The number of Forth enthusiasts and Forth

addicts decreased, as the lion’s share of programmers became employed in software companies

with C/C++ and Java as their major instrumental languages. It’s noteworthy that Java uses the

same two-level structure of its code as Forth does: the source text is first translated into an

intermediate representation (byte-code), which is interpreted by a Java virtual machine at run time.

The Forth strength which allowed it to quickly

fill-out its proper niche in software development

for microprocessor machinery – direct access to

all processor resources – at the same time turned

out to be its vulnerability with respect to software

security and safety. The Forth ideology –

everything allowed! – opens doors to unwanted

self-modifications of the executable code with

penetration of software viruses and reduces code

portability to other platforms. Java partially

resolves this issue forbidding direct execution of

machine instructions at the language level by

protecting its assembler kernel from direct access

from running applications via a complicated

mechanism of their certification, while Forth can

only rely on self-discipline and good will of the

programmers.

Nevertheless, Forth developments

continued to go on in Russia and in the rest of the

world. Appearance of the Forth ANSI standard

[20] which replaced the previous de facto

standard Forth-83, became a strong argument for

accepting Forth by the software industry. The

new standard resulted from enduring efforts of

the Technical Committee X3J14 which eliminated previous limitations of 16-bit address space and

introduced the necessary ordering in the structure of the language. Since the beginning of 2000-ies

Draft of the ANSI standard Forth-200x

49

the standard is being revisited by a team of enthusiasts with support from companies which

continue to use this language. Annual EuroForth conferences became the forum for their meetings,

including the 29
th

 one EuroForth 2013 in Hamburg [21].

One of the projects aimed at implementing the complete ANSI standard for IBM PC under

MS Windows was carried out in 1994-1995 under a contract with Motorola, Inc. by the joint-stock

company IBS created at SPIIRAS and headed by S.Baranov at that time. V.Kirillin, A.Klubovitch,

and D.Preobrazhensky who participated in this project, later became authoritative specialists in

Java and its implementations. The project curator from Motorola was A.Sakharov; before that he

left for US and was employed by Motorola.

At the end of 1980-ies S.Baranov developed a Forth-based technology of porting large size

legacy programs to other platforms, which included automated building of a compiler of the

source language from its grammar representation in formal regular expressions considered as texts

in Forth [22]. With this technology a known system of symbolic computations SAC-2 written in a

special algorithm description language ALSDES was successfully ported to IBM PC from CDC-

6000 and IBM/360 mainframes. Due to additional strong type control, included into the porting

technology, 2 errors in SAC-2 algorithms were found which went unnoticed for many year of

using this system on mainframes. Based on the results of this and other adjacent research works,

in 1990 S.Baranov proved his Doc.Sci thesis “A Forth-Based Technology for Porting and

Implementing Large Computer Algebra Packages”.

Application of the Forth technology in school informatics may be also considered as an

important accomplishment. In the beginning of 1990-ies an implementation of full Logo for the

Russian school PC “Elektronika UKNTS” [23] was carried out under a contract with the St.

Petersburg branch of the Institute for New Technologies. This product was used for some time in a

number of schools in St. Petersburg and Moscow before a massive migration of IBM PCs

occurred. Due to Forth features all computer graphics of Elektronika UKNTS worked remarkably

fast, in spite of limited processor performance and small memory size. To minimize memory

requirements of this implementation, a special mechanism of detaching the finished software

product from its instrumental Forth system and making it a minimized stand-alone one [24] was

developed. Starting from the main Forth word of the application (similar to the function main in

C), only words from the Forth core were selected, which were referenced to from this word in the

process of automatic construction of their transitive closure. Moreover, if dynamic search in the

Forth vocabulary was not anticipated, then the vocabulary entries were deprived of their headers,

making the entries “truncated” and consisting on the code field and parameter field only. Thus, the

resulting applications became remarkably small – just 8K for a complete implementation of the

Logo language.

Using the same approach, a version of the school micro PC Elektronika 31 was created at

the already mentioned Construction Bureau of the state company “Svetlana”, the operating system

and a programming system in Basic being implemented in the Forth dialect Comfort.

Interesting ideas in the same area of interpretative programming languages were developed

by A.Baehrs in Novosibirsk. He proposed a notion of the “working mix” [25] which became a

conceptual basis for developing software for the work station “Mramor”. His PhD thesis presented

for viva in 1993 was unanimously qualified as a Doc.Sci work by examiners and members of the

dissertation council, so his Doc.Sci viva took place in Moscow in the next year of 1994. On an

advice from A.Baehrs and with his support a detailed analysis of the Forth phenomenon was made

and published [26].

Summarizing, one can say that for nearly 40 years Forth continues to exist and attract

talented programmers with its options “to do everything” with high quality, little effort, and quite

fast. In spite of reduced share of implementations for embedded applications, it continues to find

its champions and supporters and allows them to succeed in their developments in the current

market environment.

References

[1] Moore C.H. FORTH: A New Way to Program a Mini-Computer. – Astronomy and

Astrophysics Supplement, 1974, vol.5. – P.497-511

[2] Forth Interest Group – http://www.forth.org/index.html

[3] BYTE, Vol.5, No 8, August, 1980

50

[4] Baranov S.N., Nozdrunov N.R. The Forth Language and its Implementations. – Leningrad.:

Mashinostroyeniye, 1988. – 156 p. (In Russian)

[5] Baranov S.N., Kirillin V.A., Nozdrunov N.R. Implementation of Forth for the Display

Terminal ES-7970. – In the collection: “Programming of Microprocessor Machinery”.

Tallinn: Institute for Cybernetics, 1984. – P. 41-49 (In Russian)

[6] Burago A.Yu., Kirillin V.A., Romanovsky J.V. Forth – a Language for Microprocessors.

Leningrad.: Znaniye, 1989. – 36 p. (In Russian)

[7] Astanovsky A.G., Lomunov V.N. A Processor Oriented to Forth. In the collection:

“Programming of Microprocessor Machinery”. Tallinn: Institute for Cybernetics, 1984. – P.

50-67 (In Russian)

[8] EuroForth 1996. – http://www.forth.org/bournemouth/euro/index.html

[9] EuroForth 1999. – http://www.forth.org.ru/~mlg/ef99/EF99repo.html

[10] Gassanenko M.L. A One-Stack Implementation of Backtracking for Forth. – Proceedings of

SPIIRAS. 2002. Issue 1. Vol. 1. St. Petersburg.: Nauka, 2002. – P. 211–223 (In Russian)

[11] Brodie L. Starting Forth. An Introduction to the Forth Language and Operating System for

Beginners and Professionals. – Moscow: Finance and Statistics, 1990. – 352 p. (In Russian)

[12] Toffoli T., Margolus N. Cellular Automata Machines: A New Environment for Modeling. –

Moscow: Mir, 1991. – 280 p. (In Russian)

[13] Townsend C., Feucht D. Designing and Programming Personal Expert Systems. – Moscow:

Finances and Statistics, 1990. – 314 p. In Russian)

[14] Kelly M.,Spies N. Forth: A Text and Reference. – Moscow: Radio and Telecom, 1993. – 320

p. (In Russian)

[15] Diakonov V.P. Forth Systems for PC Programming. – Moscow: Nauka, 1992. – 352 p. (In

Russian)

[16] Baranov S.N. Cellular Automata on a PC. Priroda, 1992, №9. – P.17-23. (In Russian)

[17] Semyonov Yu.A. Programming in Forth. – Moscow: Radio and Telecom, 1991. – 241 p. (In

Russian)

[18] Site of Andrey Cherezov – http://www.enet.ru/win/cherezov/ (In Russian)

[19] Site of the Russian Forth-community – http://www.forth.org.ru/news/ (In Russian)

[20] American National Standard for Information Systems. Programming Languages. Forth. –

http://www.openfirmware.info/data/docs/dpans94.pdf – 210 p.

[21] EuroForth 2013. – http://www.complang.tuwien.ac.at/anton/euroforth/ef13/

[22] Baranov S.N. Implementation of the MINISAC System for Symbolic Computations in Forth.

– In collection of papers: Mathematical Methods of Constructing and Analysis of Algorithms

Leningrad: Nauka, 1990. – P.3-15 (In Russian)

[23] Baranov S.N., Preobrazhensky D.S. Logo in Forth. – Prolog, 3(5), 1993. – P.6-10 (In

Russian)

[24] Baranov S.N., Software Product Alienation in Beta-Forth. – In book: Problems of Software

Engineering. St. Petersburg: SPIIRAS, 1992. – P.139-147 (In Russian)

[25] Baehrs A.A. On Object-Oriented Aspects and Organization of the Architecture of Software

Systems. – In collected articles “Actual Problems of Software Engineering”. Leningrad,

LIIAN, 1989. – P.4-15. (In Russian)

[26] Baranov S.N., Kolodin M.Yu. The Forth Phenomenon. – In book: System Informatics, issue

4, Novosibirsk: ISP, 1995. – P.193-271 (In Russian)

[27] SoRuCom 2011 – http://sorucom.novgorod.ru/

About the Author

Sergey Baranov graduated with honor the Leningrad State Universithy in 1972,

worked at this university, at SPIIRAS, Motorola, St.Petersburg State Polytechnic

Univeristy; PhD since 1978, Doc.Sci since 1991, Prof. since 1993. Currently

works at SPIIRAS as a Chief Research Associate, teaches students at 3 major St.

Petersburg Universities, and performs consulting at Motorola Mobility LLC.

Major scientific interests are software engineering, compilers, analysis and

verification of software specifications, formal methods, and symbolic

computations.

51

�����������	
����	
��
�������
�	�����������	
����	
�������

�����������	
�

�����

���
�������

�
��
��
�����������

�������

���
�������������
������	���������

������
���������������������
������
�������
� ��������
������
�
���
��

�������������������!��"#$��"#%#�&���!������
��$���%��#�&��$%���!�$%#�&�

 ���������������
���������

��������
�������'
����
������
!���!���
�
��
�
������������
������������
�
���
�������
�������������
�������������
�������
����(���������������������

������
�����
�
���
��������������
������
����
��
�
����������
�����������
����&�
��������������
����
�)***�����!��!���������

�
��������
!���
�)***�
����!��!�����������
�����������
����

��
����������
���
����
+
��
��������
�����������
������
�����
!����,������+���
�����
�����������!�-���������
!.�
/���
���
��
���
�������������������
��
!���-���������.�-�������0
!����������
�����!
�������0
!���
���
�������'
���������
����
��.��
*��
���������
������!��!��
!������������+����
�
���
�������-,���������!
.���!�!����
���
�������-12��������!
.�
��!��!!��������������
�������������������
������
��
�
��������-3���������!
.�

�������������������������

4����������
��������
�������������
�����������
����
!�����������
������
�!���
�
������������5��
������!���
�
������
�����
�
����
�
!�����'��!�
/�
���'
����
������
���!�
/
����������
��
��
�����������
���
�)***6
�����������
��������
!�����
���
������������
����������!���
����
���
�����)%�6�����������������
!�
7������
����8��9�����
�������
��������
������������������
!��������!��!����������
������
��
�������
����
������������
�������������
��������
+

� "�
��������
�����������
��������
����
��������
������������������

� ��
����
������
��
�
������������������
�����������
������3�������-)***���
�����������.

�)�����������������
���������	������������
�����������
��

� ��
����
��������
���
���!���

!����
��������
������
���
��������7�����!
8�'�����
��������
�������
����	�

9���!���������7�
��
�8����������
��������'
�������

���
���������
�������������
�����������
����
�����!�

��
����������������
������
�����������������
��������������
���
���
�
�����������
��������
�����������
���
��!�������
������!������������
����
����
!�����������
����

��
����
���
��
�
���
����������
�+

� "���
���
��������
�������������
�����!��
������������
�������
��������
���
���!�������
��������
�������
����	��������
�������
���������������������������!����������

���
���

� "���
�������
�������������
�������������������
�����������	������
���
���������
���������
��
!����
�������
�-���������
����.��������
���
�������
�������!��
����������!��
���
����!���
�����������
�
�!�������

�
�������������������
����� �������	���������������!�	"#��"�
���	�
���#�
��
�$

�����	
��#�	
����	��"��	���	�����������	
��#�	
��������	
�������

������
������
�����!��!� ����������
�
������	������
!�������������
��������
����
�����
��� �����,������
����
�+�)��

����!����
�
���
��������������
�����������
�����'
�,��������!����
����

����!�!����
���
�������
�������
�����������
�����'
�12�����

 ���
/����
��!!��
���������
��
�����

52

����������	
������������	
������������	

�
��
�

���

���!!�����+�
�	
�����	
�������	

���

�������
+�
��������������������
����

:
���	�
��
�
��������

!�������
�������
���
�������
�����
��������
�������
��
�������������
�����������
����
��'���������
����	��������
�
�����
��������������
�
����������!�
�

��� ��"��%�� ���#���	�	�
������	
��#�	
��
�" ���

��
��������
�����������
�����
!�������������
�����������	���
�����������3��������
�������������;���
<�
�����
��
�
���������
�����!���
�
��
��
�
�������������
�
����!����
���
��������
����
�������
����������
�!��
������
�
�������
�����������	���������������������������!������

��������
�
������������'
�����
�����
����������
���
!�
�������

)�������������
�����
��������
������
�
������	���'
�����
������
����	��
������������������
��������������
�

/
���
!�����������������
��
����	�
��
&	�������	
������
�" ���������#��������"���� ��#����
��	
��	
�����
����� ������"���'�(��
��%�(����$)$�

 ���
/����
��!!��
�����!����
���
�����������
��
�����
�����������	
�������������	
�������������	
��
��

���

���!!�����+��
�	
������	
���������	
�����

�������
��!!�����+�
���������������������������

&����
���
������������

)�� ����������������
�����������
�����'
����!�����
������
����	������!����
���
�������������
�
����!����
�
��
�������� ������

������ �������
�
������
����	�!���7�8������!����
���
�!����
���
������������������
�
�����!
�
��
�!�
�����
 ������
�����������
������ �������'
���!������
�!����������������������
������������-!
�����.��������������
��
����� �������������!��!�	��	��������������������
������������������
���������	
#��������"����	
�	�����
��� ���#���	�	�
������	
��#�	
��	
#���$
*/����
�+
���
�
��������
+�����,�2*=���2>*61��6,,�*
!����
��������
+����,�2*=���2>*61���6,,�*�

&����
���
�������������+

4������
!����'
����#����
�������#��	�������!�����������*%$+���
�����������?���������
!��������
�
��/���������������������
�!�
����

*/����
�+
���������

�+���,�2*=���
:
����+� ������,2���*@
���������

�+���,�2*=���
:
����+�& �����,2������������*@

��
����	�

4��
�!�/�4����������
�����
� �����������������
6���������!��
�����������
�������
���	����������
���
������
��!����������������
�����������	���!��
����
�!
!����!������!����
���
��������

4��
�!�/�(���������
������ ��������!���������������
����������!��
�������
�������
���
'
�� ����������!����
�
�����������?��������
���������
���!����������
�����)���

!���������������	(��
�������,����������
�A

53

,##�
�	-�,

;��������������������
����������!���������!����������������
�����������	���������
�
���!�
!����
���
������+

:
���	�+
$.��)�������������
�
����������!����
���
��������������
�������������
�������������������
�����������	��������
������!
���
!���� ���������
$$.���
������
������
�!
���
!��������!��!����
�������� :�"9&�

 �:�B������
����� ������
�����	
���
�
���!�!����
���
������

 �:�B������
���������������
�����	
���
�
���
������

 �:�B������
���������������
�����	
!����
���
������

 ���������
��
���

�����	 ��������

�����	�� ��������

������	 ��������

������	�� ��������

������	 ��������

������	�� ��������

����
� ��������

����
� ��������

������ ��������

�����
� ��������

�����
� ��������

������� ��������

�����
� ��������

�����
� ��������

������� ��������

&
����������

���	�
�	
 "�
�;�9��49������
�! "�
��;�9��49������
�!

��������� "�
�C4:)4(5*�����
�! "�
��C4:)4(5*�����
�!

���
���� "�
�5)�*:45�����
�! "�
��5)�*:45�����
�!

�������	
 ��������

������ ��������

#
��������
��

�� 	���
������
�

�� 	����������
�

��� 	����
������
�

��� 	�����������
�

��
������������

����� ���������������

����	� �������
��
������

54

�
��	� �������
��
������

�� ��������

��������	 ��������

��
���������	 ��������

����	���
��������

����
� 	��������������
�

����� 	�������������
� 	��������������
�

���� 	����	�������
� 	�����	�������
�

����� 	�������������
� 	��������������
�

���
 	������������
� 	�������������
�

����� 	��� !"�������
� 	���� !"�������
�

9��
������������

� �

�� ��

�� �� �� �!"

 ���������'
�����

#����
 #����

�#� �#� ��#�!"

�#� �#�

�#� �#� �#���!"

�#� �#�

�#���!" ��#��!"

����!��!�������
�������������

�	���
� �	���
� ��	���
��!"

�� �� ����!"

�� �� ����!"

�! �! ��!�!"

�$ �$ ��$�!"

���� ���� ������!"

;���������

�%�	 �%�	 ��%�	�!"

�%�& �%�& ��%�&�!"

�'(�'(��'(�!"

�') �') ��')�!"

�(�(��(�!"

*/�
�!
!����������

���	 ���	 ����	�!"

55

��&� ��&� ���&��!"

*+,� *+,� *+,� �!"

,##�
�	-�.

 ��������
������������������������
����������!��
�����������������
�����������	���������
�
�
��
������

 ��������
�����������
����!�� 9*�4�*�� D�� 6�� $�� %���E �� E�������
�������
���
'
�������

*/����������+
4�����
��
!���
�����������!
���
!�������
����

�������
���������
!�7 F8�-��
��.��������
�����
����
�
������
���+
���G���
�+��������G�������'
����G��

���'
�

��G�
/���
��+���
�
!�
/���
��������������
���������
!����������
!�
/���
���-
�G�
��H�= .�
��G���������+���
����������������
��������!��������0
!���
����G��������
�����������
�������!��
����)***�-���
�
���
��������,���������!
.�
!��G����
�
����

������
��-,���������!
.�

********** floating kernel for 32 bit processor ****************

**

\ ---- conversion auxiliaries ----------------------------------

: FX>F (m e s -- f)

[HEX] \ --

 80000000 AND >R \ sign

 7F + >R \ exponent

 DUP 0= IF R> DROP 0 >R THEN \ test 0 mantissa

 R@ 1 <

 IF \ denormalized ?

 R> 1- >R BEGIN U2/ R> 1+ DUP >R 0= UNTIL \ adjust exponent

 THEN \

 R@ FE > IF R> DROP FF >R DROP 0 THEN \ adjust infinity

 007FFFFF AND \ clear hidden bit

 R> 17 SHIFTL OR \ add exponent

 R> OR \ add sign

; DECIMAL

: F>FX (f -> m e s)

[HEX] \ --

 DUP 80000000 AND >R \ sign

 DUP 7F800000 AND 17 SHIFTR 7F - >R \ exponent

 7FFFFF AND \ mantissa

 R@ -7F > \ not denormalized ?

 IF 800000 OR \ add hidden bit

 ELSE DUP 0= NOT \ else check for zero and normal.

 IF 2* BEGIN DUP 800000 AND 0= WHILE 2* R> 1- >R REPEAT THEN

 THEN \

 R> R> \ add exponent and sign

; DECIMAL

\ ---- fixpoint <-> floating point conversion --------------------

: S>F (d -- f)

\ --

 DUP 0= \ zero ?

 IF

 -127 0 \ e = -127, s = 0

 ELSE

 DUP [HEX] 80000000 [DECIMAL] AND >R \ sign

 DUP 0< IF NEGATE THEN

 31 >R BEGIN DUP 0< NOT WHILE 2* R> 1- >R REPEAT \ normleft

56

 8 SHIFTR R> \ mantissa, exponent

 R> \ sign

 THEN \ m e s = fx

 FX>F \ convert to f

;

: F>S (f -- d)

\ --

 F>FX \ m e s

 >R \ sign

 23 - DUP 7 > \ exponent, 8-1 because of sign bit

 IF \ infinit)

 DROP DROP R> [HEX] IF 80000000 ELSE 7FFFFFFF THEN

 [DECIMAL]

 ELSE

 DUP 0>

 IF SHIFTL ELSE NEGATE SHIFTR THEN

 R> IF NEGATE THEN

THEN ;

\ ---- floating point arithmetic -------------------------------

: FNEGATE (f -- fneg)

[HEX] \ --

 80000000 XOR \ toggle sign bit

; DECIMAL

: F+ (f1 f2 -- fsum)

[HEX] \ ---

 >R F>FX R> F>FX \ convert operands to fx

 >R 2 ROLL >R \ save signs,

 2 ROLL OVER OVER MAX >R SWAP - DUP >R 0< \ exponent, exp-diff

 IF SWAP R> NEGATE SHIFTR SWAP \ normalize m1 if necess

 ELSE R> SHIFTR \ normalize m2 if necess

 THEN

 R> R> SWAP >R IF SWAP NEGATE SWAP THEN \ negate m1 if necess

 R> R> SWAP >R IF NEGATE THEN \ negate m2 if necess

 DUP 80000000 AND DUP R> SWAP >R >R \ add m1 and m2, sign

 IF NEGATE THEN \ negate mantissa if necess

 DUP 0= NOT

 IF \ mantissa not zero ?

 DUP 00FFFFFF. U>

 IF

 U2/ R> 1+ >R

 ELSE \ normalize

 BEGIN DUP 800000 AND 0= WHILE 2* R> 1- >R REPEAT

 THEN

 THEN

 R> R> \ add exponent and sign

 FX>F \ convert to f

; DECIMAL

: F- (f1 f2 -- fdiff)

\ --

 FNEGATE F+

;

: F* (f1 f2 -- fprod)

[HEX] \ ---

 >R F>FX R> F>FX \ convert operands to fx

 3 ROLL XOR >R \ sign

 2 ROLL + >R \ exponent

 UM* \ mantissa 64 bits

 FFFF AND WSWAP SWAP FFFF0000 AND WSWAP OR \ reduce to 32 bits

57

 DUP DUP 80 AND IF 100 + THEN \ round

 DUP 0<

 IF SWAP DROP R> 1+ >R \ normalize

 ELSE DROP 2* DUP 80 AND IF 100 + THEN

 THEN \ normalize and round

 8 SHIFTR \ normalize to 24 bits

 R> R> \ add exponent and sign

 FX>F \ convert to f

; DECIMAL

: F/ (f1 f2 -- fquot)

[HEX] \ --

 >R F>FX R> F>FX \ convert operands to fx

 3 ROLL XOR >R \ sign

 OVER 0= IF DROP DROP 800000 -96 THEN \ check for zero

 ROT SWAP - >R \ exponent

 >R 0 SWAP R> UM/MOD2 \ mantissa division

 0> IF U2/ 80000000 OR ELSE R> 1- >R THEN \ normalize

 8 SHIFTR \ normalize to 24 bits

 SWAP DROP \ drop remainder

 R> R> \ add exponent and sign

 FX->F \ convert to f

; DECIMAL

4�/����������������������
!������
����'
����
����

-��%$%����.�/0�/1�/�2�34/�50�51�"�6�789:;8*/�/*<:/*�=:+1�/47>0*�574+:*8+�?*970+
�#��'�����%$%����#������#���%$%����#�@

-�������.�='-=��2�=�-='�"�6�9=AB�4B*?A8/�1A0B19�
�������������
��������������
����@�

58

Fo
rt

h
 L

it
er

at
e

P
ro

gr
am

m
in

g
w

it
h

IP
yt

h
o
n
 n

o
te

b
o
o
k

U
lr

ic
h
 H

o
ff
m

an
 <

u
h
@

fh
-w

ed
el

.d
e>

O
ve

rv
ie

w

•
L
it
er

at
e

P
ro

gr
am

m
in

g

•
IP

yt
h
o
n
 a

n
d
 I
P
yt

h
o
n
 n

o
te

b
o
o
k

•
C

o
n
n
ec

ti
n
g

Fo
rt

h
 t

o
 I
P
yt

h
o
n
 n

o
te

b
o
o
k

•
D

em
o

•
n
ex

t

L
it
er

at
e

P
ro

gr
am

m
in

g

•
M

ix
 p

ro
se

 t
ex

t
an

d
 p

ro
gr

am
 f
ra

gm
en

ts

•
E
x
p
la

in
, w

hy
 y

o
u
 a

re
 d

o
in

g
th

in
gs

 i
n
 y

o
u
r

p
ro

gr
am

s

•
P
re

se
n
t

in
 a

n
 e

d
u
ca

ti
o
n
al

 o
rd

er

IP
yt

h
o
n
 &

 I
P
yt

h
o
n

N
o
te

b
o
o
k

•
A

u
th

o
ri

n
g

sy
st

em
 b

as
ed

 o
n
 c
e
lls

•
M

ar
kd

o
w

n
 T

ex
t

•
P
yt

h
o
n
 p

ro
gr

am
 f
ra

gm
en

ts

59

60

C
o
n
n
ec

t
Fo

rt
h
 t

o

IP
yt

h
o
n
 n

o
te

b
o
o
k

•
W

el
l,

a
Fo

rt
h
 s

ys
te

m
 i
s

al
so

 j
u
st

 a
 p

ro
gr

am
...

61

D
em

o

n
ex

t

•
U

se
 I
P
yt

h
o
n
 a

s
a

L
it
er

al
 T

er
m

in
al

 f
o
r

L
au

n
ch

p
ad

...

•
D

ir
ec

tl
y

co
n
n
ec

t
th

e
IP

yt
h
o
n
 c

lie
n
t

to
 F

o
rt

h

62

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

F
o
rt
h
to

.N
E
T
B
ri
d
g
e

G
er
al
d
W
o
d
n
i

E
u
ro
F
or
th

2
0
1
3

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

S
ta
ck
s

N
u
m
b
er

n
an
d
d

F
lo
at

B
o
o
l

S
tr
in
g

T
yp

e
al
lo
w

ca
st
in
g
,
t
”
S
ys
te
m
.W

in
d
ow

s.
F
or
m
s.
F
or
m
”

O
b
je
ct

“
d
at
a”

st
ac
k,

n
o
m
ea
n
in
g
fu
ll
o
p
er
at
io
n
s

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

F
o
rt
h
-S
ys
te
m

in
.N
E
T

•
in
te
rp
re
ta
ti
o
n
m
o
d
e
o
n
ly

•
si
m
p
le

ty
p
e
co
n
ve
rs
io
n
:
>
o
o
>
s

•
pr
im

it
iv
es

by
re
fl
ec
ti
o
n
o
f
cl
as
se
s:

c
la
ss

m
at
h
{
p
u
b
lic

in
t
ad
d
(
in
t
a,

in
t
b
)
{
re
tu
rn

a+
b
;
}
}

•
lo
ad

as
se
m
b
lie
s
at

ru
n
ti
m
e

•
in
sp
ec
t
ty
p
es

an
d
ac
ti
va
e
(i
n
st
an
ce
)
th
em

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

P
ro
to
co
l

•
2
T
C
P
-c
o
n
n
ec
ti
o
n
s
p
er

th
re
ad

(o
k+

ex
ce
p
ti
o
n
s,
ev
en
ts
)

•
N
et
st
ri
n
g
b
as
ed

2
:s
”
,5
:h
el
lo
;

•
S
ta
ck

in
te
rf
ac
e

>
in
t,
in
t>

,
>
st
ri
n
g
,
st
ri
n
g
>

63

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

C
a
ll
in
g
a
fu
n
ct
io
n

ca
ll
pr
ox
y
m
et
h
o
d

>
in
t
>
in
t

s
”
ad
d
”
id

ca
ll

p
u
sh

p
ar
am

et
er
s

fi
n
d
m
et
h
o
d

p
o
p
p
ar
am

et
er
s

in
vo
ke

p
u
sh

re
tu
rn
s

o
k
/
th
ro
w

i
n
t>

so
ck
et

so
ck
et

so
ck
et

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

In
st
a
n
ce

C
la
ss

n
ew

pr
ox
y
cl
as
s

>
st
ri
n
g

s
”
S
ys
te
m
.S
tr
in
g
”

s
”
D
em

o
.W

in
d
ow

”
ca
ll

fi
n
d
co
n
st
ru
ct
or

p
o
p
p
ar
am

et
er
s

in
vo
ke

st
or
e,

p
u
sh

id
i
n
t>

id
!

so
ck
et

so
ck
et

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

O
ve
rl
o
a
d
in
g

c
l
a
s
s

m
a
t
h

{

p
u
b
l
i
c

i
n
t

a
d
d
(

i
n
t

a
,

i
n
t

b
)

{

r
e
t
u
r
n

a
+
b
;

} p
u
b
l
i
c

f
l
o
a
t

a
d
d
(

f
l
o
a
t

a
,

f
l
o
a
t

b
,

f
l
o
a
t

c
)

{

r
e
t
u
r
n

a
+
b
+
c
;

}

}

•
D
is
ti
n
g
u
is
h
b
et
w
ee
n
si
g
n
at
u
re
s

•
a
d
d
:n
-n

•
a
d
d
:r
-r
-r

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

O
ve
rl
o
a
d
in
g

c
l
a
s
s

m
a
t
h

{

p
u
b
l
i
c

i
n
t

a
d
d
(
p
a
r
a
m
s

i
n
t
[
]

n
u
m
b
e
r
s

)
{

i
n
t

s
u
m

=
0
;

f
o
r
e
a
c
h
(

i
n
t

n
u
m
b
e
r

i
n

n
u
m
b
e
r
s

)

s
u
m

+
=

n
u
m
b
e
r
;

r
e
t
u
r
n

s
u
m
;

}

}

•
D
is
ti
n
g
u
is
h
b
et
w
ee
n
si
g
n
at
u
re
s

•
a
d
d
:o

64

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

D
em

o

A
rc
h
it
e
c
tu
re

B
ri
d
g
e

D
e
m
o

F
u
tu
re

w
o
rk

F
u
tu
re

W
o
rk

•
C
o
n
st
ru
ct

C
la
ss
es

o
n
th
e
fl
y
in

.N
E
T

•
co
ex
is
ta
n
ce

o
f
C
O
M

an
d
.N
E
T
:

•
sw

it
ch

ca
lli
n
g
co
n
ve
n
ti
o
n

•
w
ra
p
C
O
M

in
to

.N
E
T

cl
as
s

65

R
e
g
io
n
-b

a
se

d
M

e
m
o
ry

A
ll
o
c
a
ti
o
n

M
.
A
n
to

n
E
rt
l

T
U

W
ie
n

P
ro

b
le
m
:
M

e
m
o
ry

m
a
n
a
g
e
m
e
n
t

H
o
w

to
re
c
la
im

n
o

lo
n
g
e
r
n
e
e
d
e
d

m
e
m
o
ry
?

a
l
l
o
t

•
c
a
n

o
n
ly

re
c
la
im

in
L
IF

O
m
a
n
n
e
r

a
l
l
o
c
a
t
e
/
f
r
e
e

•
f
r
e
e
a
ft
e
r
th

e
la
st

re
fe
re
n
c
e
is

c
o
n
su

m
e
d

•
e
rr
o
r
p
ro

n
e
:

d
a
n
g
li
n
g

re
fe
re
n
c
e
(f
r
e
e
to

o
e
a
rl
y
)

m
e
m
o
ry

le
a
k
s
(f
o
rg

o
t
to

f
r
e
e
)

•
v
a
ri
o
u
s
w
o
rk
a
ro

u
n
d
s

re
st
ri
c
t
p
ro

g
ra

m
m
in
g

m
a
y
c
o
st

p
e
rf
o
rm

a
n
c
e
(e

.g
.
e
x
tr
a
c
o
p
ie
s)

66

G
a
rb

a
g
e
c
o
ll
e
c
ti
o
n

•
C
o
n
v
e
n
ie
n
t,

b
u
t

•
C
o
m
p
le
x
,
p
a
rt
ic
u
la
rl
y
w
it
h
:

R
e
a
l-
ti
m
e
re
q
u
ir
e
m
e
n
ts

m
u
lt
ic
o
re
s

li
tt
le

ty
p
e
in
fo
rm

a
ti
o
n

(F
o
rt
h
)

•
F
o
rt
h

g
a
rb

a
g
e
c
o
ll
e
c
ti
o
n

li
b
ra
ry

si
n
c
e
1
9
9
9

R
e
fe
re
n
c
e
c
o
u
n
ti
n
g

•
C
y
c
li
c
d
a
ta

st
ru

c
tu

re
s

•
sl
o
w

•
S
p
e
c
ia
l
d
u
p
,
d
r
o
p
,
!
e
tc

.
fo
r
a
d
d
re
ss
e
s

R
e
g
io
n
-b

a
se

d
m
e
m
o
ry

a
ll
o
c
a
ti
o
n

n
e
w
-
r
e
g
i
o
n

(
-
-
r
e
g
i
o
n
-
i
d
)

r
e
g
i
o
n
-
a
l
l
o
c
(

u
r
e
g
i
o
n
-
i
d
-
-
a
d
d
r
)

f
r
e
e
-
r
e
g
i
o
n

(
r
e
g
i
o
n
-
i
d
-
-
)

U
se

s

•
S
e
p
a
ra

te
re
g
io
n
s
fo
r
th

in
g
s
th

a
t
d
ie

a
t
th

e
sa

m
e
ti
m
e

•
E
.g
.,

in
c
o
m
p
il
e
r:

re
g
io
n

fo
r
th

e
b
lo
c
k

re
g
io
n

fo
r
th

e
d
e
fi
n
it
io
n

•
In

w
e
b

se
rv
ic
e
:
R
e
g
io
n

fo
r
th

e
H
T
T
P

re
q
u
e
st

67

U
si
n
g

re
g
io
n
s

•
P
ro

g
ra

m
m
e
r
c
o
n
tr
o
l:

•
F
e
w
e
r
re
g
io
n
s:

m
o
re

c
o
n
v
e
n
ie
n
t

•
M

o
re

re
g
io
n
s:

le
ss

d
e
a
d

w
o
o
d

•
S
ta

rt
o
u
t
w
it
h

fe
w
,
a
d
d

m
o
re

if
n
e
c
e
ss
a
ry

Im
p
le
m
e
n
ta

ti
o
n

b
lo

c
k
-r

e
g

io
n

d
e

fi
n

it
io

n
-r

e
g

io
n

S
p
a
c
e
-e
ffi

c
ie
n
t
a
n
d

ti
m
e
-e
ffi

c
ie
n
t
fo
r
sm

a
ll
o
b
je
c
ts

A
lt
e
rn

a
ti
v
e
in
te

rf
a
c
e

n
e
w
-
r
e
g
i
o
n

(
-
-
r
e
g
i
o
n
-
i
d
)

f
r
e
e
-
r
e
g
i
o
n

(
r
e
g
i
o
n
-
i
d
-
-
)

d
o
-
r
e
g
i
o
n

(
x
t
-
-

)
\

x
t
(

r
e
g
i
o
n
-
-
)

w
i
t
h
-
r
e
g
i
o
n

(
r
e
g
i
o
n
-
i
d
x
t
-
-

)
\

x
t
(

-
-
)

a
l
l
o
c
a
t
e

(
u

-
-
a
d
d
r
i
o
r
)

f
r
e
e

(
a
d
d
r
-
-
i
o
r

)
\

d
o
e
s
n
o
t
h
i
n
g

[
:
[
’
]
w
o
r
d
-
u
s
i
n
g
-
a
l
l
o
c
a
t
e
w
i
t
h
-
r
e
g
i
o
n
u
s
e
-
r
e
s
u
l
t
;
]
d
o
-
r
e
g
i
o
n

L
ib
ra
ry

w
o
rd

s
u
si
n
g
a
l
l
o
c
a
t
e
a
re

u
sa

b
le

w
it
h

re
g
io
n
s

C
o
n
c
lu
si
o
n

•
M

o
re

c
o
n
v
e
n
ie
n
t
th

a
n
f
r
e
e

•
C
o
m
p
a
ti
b
le

w
it
h

m
u
lt
ic
o
re
s
a
n
d

re
a
l-
ti
m
e

•
W

h
y
h
a
v
e
re
g
io
n
s
n
o
t
ta

k
e
n

o
v
e
r
th

e
w
o
rl
d
?

F
o
rt
h
:
in
te

rf
a
c
e
is
su

e
s

o
th

e
r
la
n
g
u
a
g
e
s:

g
a
rb

a
g
e
c
o
ll
e
c
ti
o
n

w
o
n

68

69

70

