Optimizing memory access design for a 32 bit FORTH
Processor

Andrew Read

June 2013

andrew81244@outlook.com

Abstract

This paper compares and contrasts two alternative approaches to designing system mem-
ory access for a 32 bit FORTH processor. One approach maximizes clock speed whilst the
other maximizes instruction throughput. Each approach is found to have advantages and dis-
advantages. The project’s conclusion is that a hybrid memory access design that considers the
differing needs of the CPU control unit and datapath is likely to be the optimum performance
strategy for a FORTH machine.

1 Introduction

The N.I.G.E. Machine is a complete computer system implemented on an FPGA development
board [1I]. It comprises a 32 bit softcore processor optimized for the FORTH language, a set of
peripheral hardware modules, and FORTH system software. The system is primarily designed to
support the rapid prototyping of experimental scientific apparatus. The N.I.G.E. Machine was
first presented in a paper at EuroFORTH 2012 [2]. In the conclusions of that paper a number of
avenues for further work were suggested. These included improving the bandwidth between the
CPU and system memory, implementing an SD-card interface with a FAT file system, and porting
the N.I.G.E. Machine to a higher performance FPGA development board.

As of the date of this paper an SD-card interface, native FAT file system, and FORTH File-
Access wordset have been successfully implemented and tested. This greatly simplifies the transfer
of program and data files between the N.I.G.E. Machine and a PC. The upgrade was relatively
straightforward and did not raise substantial new design issues. Porting the N.I.G.E. Machine to
a Digilent Atlys development board with a Spartan 6 FPGA is currently underway.

The goal of improving memory access bandwidth was set with the intention of redesigning the
connection between the system memory (i.e. FPGA Block RAM, “SRAM’EI) and the softcore
CPU. The CPU is a 32 bit processor, but the memory databus between the CPU and system
memory is only 8 bits wide in the original N.I.G.E. Machine design (fig. . Widening the databus
from 8 bits to 32 bits to match the width of the softcore processor might initially seem to be a
worthwhile and simple capacity increase at the cost of some further FPGA resources. However
upon closer examination this design change actually raises a number of interesting implications

'In this paper and the N.I.G.E. Machine documentation, Block RAM that is used for system memory is given
the term “SRAM”.

Hardware

registers | 8bit databus |
Interrupt (- 8 bit SRAM
controller . system memory

Parameter stack |/ 3C2Ptl)Jit (- D VGA
ieioeny L] RAM controller
Return stack Ll - DMA - PSDRAM
memory l—l 1—1 controller [/| system memory
RS232 System clocks 542 SPI controller

controller controller

Figure 1: N.I.G.E. Machine system diagram showing the principal components and CPU connec-
tions. This is the 8 bit databus configuration (highlighted), as presented at EuroFORTH 2012.

in terms of conflicting requirements for functionality. As a result, the final preference between
the 8 bit and 32 bit memory databus configurations requires deeper consideration of the intended
application and the specific hardware on which the N.I.G.E. Machine will be deployed.

Using the N.I.G.E. Machine as an example, this paper explains the background and challenges in
optimizing memory access for a 32 bit FORTH processor. The problems faced are not new and
would be recognizable to any processor designer. The paper seeks to advance the state of the
art in softcore FORTH systems by providing a systematic, evidence-based report with detailed
implementation information.

The structure of the paper is as follows. First of all the memory access requirements of a FORTH
processor are discussed on a qualitative level (section 2). This section also introduces the general
tradeoffs between an 8 bit and a 32 bit system memory databus. The 32 bit databus design that
was successfully implemented on the N.I.G.E. Machine is described next (section 3). Performance
benchmark comparisons between the 8 bit and 32 bit databus configurations of the N.I.G.E. Ma-
chine are presented (section 4). In the light of the performance benchmarking results there is
a discussion about the tradeoff decisions guiding which implementation should ultimately be pre-
ferred (section 5). The conclusion attempts to synthesize the experience with the N.I.G.E. Machine
into lessons for FORTH processors in general and suggests avenues for further work (section 6).

All of the N.I.G.E. Machine design files and software are available open source [I1].

2 Memory access requirements of a FORTH processor

2.1 Review of prior work

A number of softcores have been designed specifically to execute FORTH [3], [, [5] [6], [7], [§]. Several
aspects of the J1 [3] directly inspired the design of the N.I.G.E. Machine. In most of these examples
the focus of the design work has been the CPU itself while memory access requirements have been
less of a consideration. There have been some notable exceptions. For example the RTX 2000

includes an on-chip memory page controller that considerably enhances memory access [10], and
Klaus Schleisiek’s microcore [4] features pre-incrementing and post-incrementing data memory
operations (++!, I4++, +4+@, @+4+) that are directly supported by hardware. Another approach
to improving memory access efficiency is to pack more instructions per unit of data. For example
Bernd Paysan’s b16 processor[5] packs 3 instructions into a 16 bit word.

Philip Koopman [10], in discussing the characteristics of 16 bit stack machines, makes the point
that the fit between the width of the CPU datapath and the FORTH programming model is a key
design factor. Koopman observes that an 8 bit CPU is likely be unsatisfactory from a performance
standpoint because too much time would be required in synthesizing 16 bit operations, whilst at the
time of writing (1989), specifying a 32 bit CPU might be too expensive. The reasonable assumption
being made here is that wider datapaths can also access memory across wider databuses, thus
increasing processing bandwidth.

Koopman also discusses the limits of memory bandwidth. He makes the point that traditional,
register-based processors are very dependent on cache memory. This creates performance bottle-
necks that are subject to the hit ratios of various caches, and the organization of the code produced
by the compiler. He envisages stack machines offering an alternative approach to memory orga-
nization because of their very fast procedure calls. (Procedure calls are fast on stack machines
because there is no need to save a register set in system memory). In the stack machine approach,
frequently executed code can be stored in on-chip memory, avoiding the requirement for dynamic
memory management. The design of N.I.G.E. Machine follows the approach envisioned by Koop-
man in that code density is very high, and system memory comprises FPGA static RAM (Block
RAM) that can be accessed in a single clock cycle.

This paper builds on Koopman’s theme of efficient memory access to focus on the specific problem
of how best to design the connection between the CPU and system memory on a 32-bit FORTH
machine. The first question to answer is, what are the memory access requirements of a 32 bit
FORTH processor?

2.2 Impact of system design objectives on memory access requirements

A FORTH processor has some distinct advantages in real-time control applications [9] [10]. The
design objectives of the N.I.G.E. Machine reflect its intended role in the real time control of scientific
hardware. The principal objectives are listed below and are in turn the main influence on memory
access requirements.

Deterministic execution. Avoiding jitter in electronic interfaces is an essential real time re-
quirement for precise control and measurement. This necessitates that the softcore CPU is
designed so that any given instruction will alway execute in a certain number clock cycles,
including instructions that access system memory.

High instruction throughput. High instruction throughput translates directly into higher pro-
cessing performance and shorter interrupt response times. This is especially important on
FPGA softcore processors that operate at lower clock rates than comparable dedicated mi-
crocontrollers. Throughput of once instruction per clock cycle is the ideal target.

Maximum code density. The fastest memory resource available to a softcore CPU is FPGA
Block RAM. Block RAM also has the advantage over external memory of deterministic
access (i.e. guaranteed single clock cycle read/write). However Block RAM resources are
typically limited to several tens or hundreds of kilobytes. To maximize the use of Block
RAM as program memory, code density needs to be as high as possible. Ideally instructions
should be encoded in no more than a single byte.

Flexible memory access. With a 32 bit processor, optimizing the speed and flexibility of mem-
ory access requires that CPU instructions are available that read or write memory in byte,

16 bit, and 32 bit formats. Flexibility is further enhanced if even address alignment is not
required when accessing 16 bit or 32 bit data in system memory.

2.3 Advantages and limitations of an 8 bit wide databus

Block RAM can be configured in a variety of formats by specifying (with the FPGA design tools)
the width (i.e. data size: 8 bits, 16 bits, etc.) and depth (i.e. number of address lines) of the
required memory resource. The N.I.G.E. Machine’s softcore is a 32 bit CPU, but the system
presented at EuroFORTH 2012 incorporated system memory configured in an 8 bit wide format.
Coupling the 8 bit wide Block RAM to the CPU in this design is an 8 bit databus and an address
bus that references memory byte-by-byte (fig .

This configuration has some advantages: an 8 bit databus naturally facilitates the fetching of single
byte instructions, and a byte-by-byte address format avoids misaligned address boundaries. The
design of separate CPU instructions that read or write memory in byte, 16 bit, or 32 bit formats is
also easily facilitated in this configuration by arranging for the CPU control unit to read or write
byte data from/to consecutive memory locations in consecutive CPU clock cycles, as required by
the length of the data.

In conjunction with the N.I.G.E. Machine’s three stage pipeline [2], the 8 bit databus configuration
provides straightforward memory access and throughput of one instruction per clock cycle for
almost all instructions. The important exceptions are those instructions that require access to
more than a single byte of memory and which therefore require more than one cycle to execute.
These include all of the load literal instructions and the word and longword memory fetch and
store instructions.

This impact of this limitation becomes apparent when considering the relative frequency of in-
structions that comprise the FORTH system software (table . The most common instruction,
which occurs almost twice as frequently as any other, is LOAD.W (or “#.W”), the instruction to
load a 16 bit literal to the stack. The ubiquity of the LOAD.W instruction in the FORTH system
software reflects the load/store architecture of a stack machine CPU and the subroutine threaded
nature of FORTH (LOAD.W is the instruction used to load a subroutine address prior to a JSR
(jump to subroutine)). In the N.I.G.E. Machine instruction format, LOAD.W is a three byte in-
struction comprising an opcode byte followed by the high and low data bytes in big endian format.
It takes three CPU clock cycles to execute with an 8 bit databus configuration. On account of the
narrow instruction fetch, the most commonly executed instruction is therefore one of the minority
of instructions that have low throughput (less than one instruction per clock cycle). This is a
defeat of the optimization maxim, “make the common case fast”, and was the key motivation to
consider the design of a wide (32 bit) memory databus.

(Looking ahead, a 32 bit memory databus also allows the development of a new jump-to-subroutine
instruction (JSL) that takes a 24 bit immediate literal target.)

Instruction Frequency
LOAD.W 17.88%
JSR 9.17%
RTS and ,RTS 9.06%
LOAD.B 6.47%

Table 1: The most used CPU instructions in the FORTH system software in the 8 bit databus con-
figuration of the N.I.G.E. Machine that was presented at EuroFORTH 2012. The most frequently
used instruction, LOAD.W, is one of the minority of instructions that have low throughput (less
than one instruction per clock cycle).

Data bus

32 bits 8 bits

SRAM - 32 bit
configuration

low 2 bits

hi bits

Address bus

Figure 2: Illustrative scheme for reading individual bytes from 32 bit width RAM. There is no
equivalently simple, single step scheme for writing individual bytes to 32 bit width RAM.

2.4 Design complications resulting from a 32 bit wide databus

When Block RAM is configured in longword (32 bit) data format, each memory address references
a separate, complete longword. Consecutive memory addresses therefore step through memory
in units of 4 bytes at each increment. The first concern in designing a wider databus are the
mismatches that arise between the 4 byte wide data format and the width of each instruction (1
byte) and the smallest unit of memory access (also 1 byte). These mismatches have a number of
important design implications.

The first implication is that the address bus cannot directly reference memory at the level of
individual bytes or 16 bit words. This is at odds with the design requirement that the CPU should
be able to read or write to memory either longwords, words or bytes. For memory read instructions
this problem can be circumvented by creating a composite address bus whereby the high bits of
the composite address bus are matched directly with the Block RAM address bus, and the low 2
bits are used to multiplex individual bytes from within the relevant longword (fig .

For write instructions there is, however, no simple solution because when configured in longword
format, FPGA Block RAM writes complete longwords without the flexibility to specify only indi-
vidual words or bytes within them. (Note however that a full review of alternative FPGA device
families was not made and this limitation may not apply to higher-end or more recent devices.)

The second implication is the problem of address boundaries. Suppose that the CPU wishes to
read 4 consecutive bytes from memory. Two different situations arise (fig. . In the first case,
the address of the first byte happens to coincide with a longword address within memory. This
is aligned access and can be accomplished with a single read instruction to that memory address,
with a duration of one clock cycle. However in the second case, the desired 4 bytes may be spread
across two consecutive longword addresses in memory. This is non-aligned access and it requires
the CPU to execute two read instructions from the two consecutive memory addresses, thus taking
two clock cycles. Either that, or non-aligned access must be prohibited by the CPU specification.

Neither of these constraints are attractive. Prohibiting non-aligned memory access, especially at the
longword level, decreases the flexibility available to the programmer and the FORTH compiler, and

Memory address [0 1 |
Byte number [T 1 7 2 ' 3 4 15 6 1 7]
Aligned access ["1 7 2 T 3

Non-aligned access [3 74 75 7 6]

Figure 3: Aligned and non-aligned memory access operations require different treatment.

wastes space in memory. Requiring the CPU to switch between single cycle and two cycle memory
access modes depending on address alignment would mean that instruction execution would no
longer be deterministic, thus introducing jitter into signals being generated in real time. Fixing
the duration all memory read accesses at the worst case of two-cycles would solve the problem
of non-deterministic execution, but at the expense of halving the throughput of all load/store
instructions.

These issues are a particular concern for FORTH processors for the reasons mentioned earlier. The
real-time control applications of a FORTH processor mean that deterministic execution is often
sacrosanct. At the same time, FPGA based softcore processors are inevitably clocked a much
lower frequencies than general purpose CPU’s and so high instruction throughput is essential.
FPGA Block RAM is also usually limited to tens or hundreds of kilobytes and FORTH has a
natural advantage in the very small code size of its applications compared with other high level
languages. For memory efficiency reasons, byte level memory access and byte sized instruction
coding is therefore also highly desirable.

Fortunately by leveraging a particular capability of FPGA Block RAM it is possible to design a 32
bit wide memory architecture which circumvents almost all of these constraints. That FPGA Block
RAM feature is dual ported memory access. It is possible to configure FPGA Block RAM
with two independent address and data buses that read or write to separate memory locations in
the same clock cycle. (In the Xilinx Spartan 3 FPGA family dual ported Block RAM memory
access is a standard feature available at no additional cost, however a full review was not made
to determine if that also generally applies to other device families.) The 32 bit N.I.G.E. Machine
memory architecture leverages dual ported Block RAM to provide a 32 bit wide memory databus
whilst maintaining byte level memory access, deterministic execution and single cycle throughput
for most instructions.

3 Design for 32-bit wide system memory access

Figure [shows the N.I.G.E. Machine system diagram in 32 bit databus configuration. The design
is described in detail below.

3.1 SRAM memory controller

The key component in the N.I.G.E. Machine’s 32 bit memory datapath is the SRAM controller
that sits between the CPU and dual-ported SRAM, as shown in fig[5] It provides byte, word and
longword read /write access to system memory.

Hardware

registers \ 32 bit databus \
Interrupt /- SRAM '\ 32bit SRAM
controller) controller —/| system memory
Parameter stack | 3gpkzjt L\ character VGA

memory) - RAM controller
Return stack L L DMA L PSDRAM

memory] " controller [/| system memory

RS232 System clocks e SPI controller
controller controller

Figure 4: N.I.G.E. Machine system diagram showing the principal components and CPU connec-
tions. This is the 32 bit databus configuration, as highlighted.

SRAM
CPU Controller SRAM
Data (addr+1) Data A
-
< - Port A
-
Data bus Addr A
<
.
Data B
-
47 Port B
Address bus P
Addr B

Control lines *

Figure 5: Block diagram of the SRAM memory controller showing the connection to dual ported
Block RAM

Data out (to CPU)

Size > Length mux

A

Addr (lo bits) ——— P Offset mux

Byte number < N S 2 1.3 4§T62
Data out Data out
SRAM PORT A PORT B
Addr Addr

e (hi bit) A e 4

Figure 6: Details of the SRAM controller read functionality. The offset multiplexer select the
appropriate longword from the 8 bytes available from SRAM ports A and B. The length multiplexer
either passes through the longword or left pads a word or byte output with zero bits, according to
the selected size.

3.1.1 Read functionality

The functionality of the SRAM controller during a memory read is shown in fig. [f} The memory
address provided by the CPU points to an individual byte address in memory. The SRAM controller
splits this address into two parts: the lowest 2 address bits and the remaining (high) address bits.
The high address bits point to the longword address within which the selected byte address lies.
The lowest 2 address bit can be interpreted as the offset of the byte address from the zeroth byte
of the longword address. The SRAM controller passes the high address bits directly to SRAM
port A. It also adds 1 to the high bits address (equivalent to adding 4 to the byte level address)
and passes this address to SRAM port B. One clock cycle later, the SRAM read operations occur
on both ports simultaneously, and the SRAM controller will have a total of eight contiguous bytes
available to it from SRAM ports A and B combined. The offset multiplexer selects four contiguous
bytes out of these eight according to the lowest 2 bits of the address specified by the CPU. Finally,
the size multiplexer takes a 2 bit control signal from the CPU control unit and selects either a
single byte, a single word, or the full longword from the output of the offset multiplexer. In the
case of selecting a byte or a longword, the multiplexer shifts the relevant bits to the low end of the
output longword and pads the high end with zero.

Table 2] illustrates some worked examples of the SRAM controller read functionality.

3.1.2 Write functionality

The functionality of the SRAM controller during memory write mode is shown in fig. [} Essentially
a write to SRAM now takes place over two cycles, during which time the CPU must hold the address
and data constant on the memory bus. In the first cycle, the existing contents of SRAM memory
at the relevant addresses are read and multiplexed with the write data from the CPU. Multiplexing
takes into account both the memory address offset, and the size of the data being presented by the
CPU (longword, word, byte). The result is that the appropriate overlay of the CPU write data

CPU CPU size Port A Port B Offset Memory bytes

address request address address at output
A) 0 longword 0 1 0 [00] [01] [02] [03]
B) 0 word 0 1 0 [--1[--1[00] [01]
C) 7 longword 1 2 3 [07]1 [08] [09] [10]
D) 7 byte 1 2 3 [--1[--1C--1C07]

Table 2: Worked examples of SRAM controller read functionality. In case (A) the CPU is reading
a longword from memory address 0. The first four bytes in memory appear at the output, in big
endian format. In the case (B), the CPU is also reading from memory address zero, but a word.
In this case the size multiplexer has shifted the word at memory address zero to the low end of the
output databus and filled the high bits with zero (indicated [-] in the table). Cases (C) and (D)
illustrate a read from memory address 7. In these cases port A reads longword memory address 1
(byte memory address 4) and port B reads longword memory address 2 (byte memory address 8).
The offset of 3 selects a longword starting at third byte on port A.

onto the existing memory contents becomes available at the end of the first cycle. In the second
cycle the outputs of the multiplexers are written to SRAM.

As with SRAM read functionality both of the dual SRAM ports are active. The low two bits of
the address presented by the CPU form the address offset used by the multiplexers, while the high
address bits are used to access two consecutive longwords in SRAM. A single cycle delay on the
write enable signal from the CPU defers the SRAM write to the second cycle.

3.1.3 Dual data output

In addition to providing non-aligned (byte addressable) longword access for any given memory
address, the SRAM controller is also configured to output the memory contents at the next following
address. This databus is labeled “Data (addr + 1)” in fig. [5l The purpose of this data is to expedite
the execution of load literal CPU instructions. The format of a load literal instruction is a single
instruction byte followed by a longword, word, or byte of data. By making available to the CPU
the contents at the next memory address beyond the current instruction, the literal data can be
multiplexed directly into the datapath during single cycle execution of a load literal instruction.

3.2 Datapath

Minimal changes were required to the CPU datapath design to accommodate the 32 bit memory
databus since the datapath width is already 32 bits.

In the 8 bit databus configuration of the N.I.G.E. Machine, memory read data is made available to
the 32 bit datapath on a 32 bit accumulator register that is managed by the control unit finite state
machine. The register functions to accumulate the required data byte by byte over the required
number of memory read clock cycles. In the 32 bit databus design memory the accumulator is not
required because 32 bit data is available directly from the SRAM controller.

The datapath also has direct access to the Block RAM’s that hold the parameter and return stacks.
The stack databuses are always 32 bits wide. The memory holding the parameter and return stacks
is dual ported and is also available to the CPU over the system memory databus. When Block
RAM is configured with a 32 bit databus on one port (in this case for direct stack access) and
with an 8 bit databus on the other port (in this case for system memory access in 8 bit databus
format) the Xilinx memory layout is little endian by default. The N.I.G.E. Machine is big endian
format and hence the 4 bytes of the longword must be reversed when read over the stack databus.

Addr Size Data in (from CPU) Write enable

v ovv

. Mux A .. Mux B 1 cycle

\ delay
Addr (lo bits)

Data in out Data in out
SRAM PORT A PORT B
Addr Addr Write

enable
Addr (hi bits) +1

Figure 7: Details of SRAM controller write functionality. A write operation takes place over two
cycles. In the first cycle the existing memory contents are read and overlaid at the appropriate
position with the data from the CPU. In the second cycle the memory contents are updated.

This is a minor detail that does not affect performance, but the complexity is avoided in the 32
bit databus configuration.

3.3 Control unit

The control unit required a more considerable redesign to accommodate the 32 bit databus and
optimize instruction execution.

3.3.1 Program counter logic

The principal impact of the 32 bit memory datapath on the control unit is that the program
counter (“PC”) logic needs to be reconfigured to process variable length instructions that execute
in a single cycle. In the N.I.G.E. Machine instruction set instructions longer than a single byte
only occur when literal data is provided in the second and subsequent bytes (the instruction itself
is always fully specified by the initial byte). These include the load literal and branch instructions.

In the 8 bit databus configuration, variable length instructions are executed over several cycles
with each successive instruction byte being read from memory in successive cycles. The program
counter is therefore hardwired to step in units of a single byte in all circumstances except when
a branch or jump occurs. This considerably simplifies the program counter control logic. In the
32 bit datapath format, instructions that are longer than one byte and which include literal data
also need to be executed in a single cycle. Therefore the program counter logic must decode the
length of each instruction and advance by the relevant number of bytes during a single cycle. This
process for PC update is as follows (fig .

Firstly the program counter logic must determine the location of the next instruction (i.e. the
instruction that will be executed after the currently executing instruction). The control unit is
configured so that the currently executing instruction is always found as the byte at the lowest
memory address on the 32 bit datapath. (This is the highest order byte of the whole longword on a

10

A) ‘ #.B | 255 | xx | XX

Offset = @

B) ‘ pp | #.B | 255 | XX
Offset = 1
Q) ‘ #.B | 128 | #.B | 255
* Offset = 2
D) ‘ #.. | 128 | 128 | 128

Offset = n/a

>

Figure 8: Identification of the next instruction byte on the databus by the program counter logic.
In case (A) there is no currently executing instruction and the offset to the next instruction is
zero. The next instruction is a load literal byte instruction of length 2. In case (B) the currently
executing instruction is one byte in length and the offset to the next instruction is one byte. In case
(C) the currently executing instruction is a load literal byte instruction of length 2 bytes, and this
is also the offset to the next instruction. Case (D) illustrates that when the currently executing
instruction is load literal longword of length 5 the next instruction lies beyond the width of the 4
byte databus and the offset cannot be calculated.

11

Component / clock cycle Cycle Cycle Cycle Cycle Cycle
#0 #1 #2 #3 #4

Program counter 0 0 2

Offset 0

Next instruction byte 53

Length of next instruction 2

Instruction byte 53

Opcode 53

Microcode 1191

Datapath combinatorial logic 255

Datapath synchronous logic register 255

Figure 9: Illustration of the execution pipeline for the CPU instruction to load a literal byte with
value 255. Executing variable length instructions in a single cycle requires an extra stage in the
pipeline (clock cycle #1 in this illustration).

big endian machine such as the N.I.G.E. Machine.) The size of the currently executing instruction
is also always known to the control unit finite state machine and made available as an output
(labeled as the “offset”, fig . The program counter logic refers to the offset to identify which byte
of the longword corresponds to the next instruction. For example, the majority of instructions are
encoded as single bytes and so the next instruction is the next byte. The load literal byte and
word instructions are two or three bytes in length respectively and so the next instruction is two
or three bytes ahead respectively. Offsets are not calculated for branch or jump instructions since
these require that the PC be diverted rather than incremented.

Once the instruction byte of the next instruction has been identified, that instruction byte is
multiplexed to the second stage of the PC logic which determines the instruction length. Finally,
in the third stage of the PC logic, the length of the next instruction is added to the current value
of the PC, so the the PC will be appropriately updated in the next cycle.

3.3.2 Four stage pipeline

Implementation of the program counter logic is made more complex by the fact that the N.I.G.E.
Machine CPU is a pipelined design. As a result the program counter needs to decode the instruction
length before, and independently of, the rest of the instruction execution logic. This requires an
extra stage at the beginning of the pipeline, which is now 4 stages long as illustrated in fig. [} The
pipeline stages are:

1. “READ INSTRUCTION SIZE”. In the example of fig. [0] the pipeline is being started afresh
(following a jump, branch or reboot) and there is no currently executing instruction. The
“offset” is therefore zero. During clock cycle #1 the PC logic identifies the next instruction
byte according to the scheme described above. In this case 53, corresponding to the load
literal byte instruction which is 2 bytes long.

2. “FETCH OPCODE”. On the rising edge of clock cycle #2, SRAM system memory reads the
instruction byte at the current PC address and extracts its opcode. A “new” PC address is
determined by adding to the PC the instruction size increment calculated in the previous
cycle, in this case 2 bytes.

3. “DECODE AND COMPUTE". On the rising edge of clock cycle #3, SRAM microcode mem-
ory within the control unit takes the opcode as a lookup address and returns the corre-
sponding microcode value (1191). During the same clock cycle the combinatorial logic in

12

Instruction Mnemonic Cycle Cycle
count count
(8 bit (32 bit
databus) databus)
Load literal byte LOAD.B (or #.B) 2 1
Load literal word LOAD.W (or #.W) 3 1
Load literal longword* LOAD.L (or #.L) 5 2
Branch (conditional or unconditional)* BEQ / BRA 3 3
Jump to subroutine (address on stack)* JSR 2 3
Jump to subroutine (literal address)* JSL n/a 3
Return from subroutine* RTS 2 3
Fetch/store byte in SRAM* FETCH.B / STORE.B 2 3
Fetch/store word in SRAM* FETCH.W / STORE.W 3 3
Fetch /store longword in SRAM* FETCH.L / STORE.L 5 3
Fetch /store in PSDRAM FETCH.[] / STORE.[| variable variable
Multiply (signed/unsigned) MULTS / MULTU 6 6
Divide (signed/unsigned) DIVS / DIVU 43/42 43/42
?dup IFDUP 2 2
All other instructions 1 1

Table 3: Clock cycles per instruction in the N.I.G.E. Machine softcore CPU in both 8 bit and 32
bit databus configurations. Instructions marked * require a restart of the pipeline following their
execution. Most, but not all, instructions are faster in the 32 bit configuration.

the datapath is configured according to the microcode value through its control signals. The
value of the datapath computation becomes available as the combinatorial output, in this
example the literal value loaded is 255.

4. “SAVE”. On the rising edge of clock cycle #4, the output of the datapath in combinatorial
logic (i.e. the result of the computation in the previous pipeline stage) is written into the
synchronous logic register that holds the value of the top of stack.

3.3.3 Instruction throughput

The number of clock cycles required to execute each instruction in both the 8 bit and 32 bit
databus configurations of the N.I.G.E. Machine is scheduled in table 3} The differences in through-
put between the two configurations results from two opposing factors. (i) The 32 bit databus
configuration reduces the number of clock cycle required to execute instructions that load, fetch,
or save access word and longword data in SRAM system memory because of the greater bandwidth.
However, (ii) the additional pipeline stage adds an extra cycle to all instructions that require the
restart of the pipeline.

The following analysis of instruction throughput speaks from the perspective of the 32 bit datapath
configuration and the changes made from the 8 bit format.

e The load literal byte and load literal word instructions now execute in a single cycle. However
the load literal longword instruction actually requires two cycles to execute. This is because
the length of that instruction (5 bytes) means that whilst it is being executed, the next
instruction byte is not visible on the datapath to the PC update logic (fig , and hence an
extra cycle must be added with no instruction to restart the pipeline.

13

e Branches also require a restart of the pipeline because of the change to the PC. However the
extra cycle this entails is offset by the fact that the whole two byte instruction can be read
and decoded in a single cycle. As a result the total execution cycle count is unchanged at 3
cycles.

e The JSR instruction is now one cycle longer due to extra cycle to restart the pipeline. This
might imply a considerable performance penalty in executing FORTH code, which is heavily
subroutine dependent. However the 32 bit databus configuration permits the inclusion of
a new instruction, JSL, that provides a considerable efficiency. This instruction is a “jump
to subroutine” with the subroutine address specified as a 24 bit literal value. Previously,
the typical FORTH code to execute a subroutine branch comprised (i) #.W, to load the
subroutine address onto the stack, followed by (ii) JSR. This combination requires a total
of 5 cycles. The JSL instruction accomplishes the same result in 3 cycles. However the
advantage of 2 cycles on a subroutine call is offset by the fact that an RTS instruction is also
one cycle longer due to the lengthened pipeline. The net difference is that subroutine calls
are now one cycle faster overall. (As a side note, the introduction of the JSL instruction did
not necessitate significant rewriting of the N.I.G.E. Machine system software. The system
software is written in assembly language, and the macro assembler implements either style
of subroutine call with a macro, “CALL”, appropriate to whichever version of the hardware
is being compiled for.)

e Fetches and stores to SRAM system memory of all datasizes now execute in three cycles,
compared with two, three, and five cycles for byte, word and longword data previously. In
FORTH terms, CQ and C! are slower than before, W@ and W! are unchanged, and @ and !
are faster than before.

e Other instructions that do not access SRAM system memory and do not restart the pipeline
are unchanged. Fetch and store to the external pseudo-static dynamic RAM (“PSDRAM”)
takes place through the PSDRAM controller and timing depends on the arbitration of the
bus with other users of PSDRAM memory such as the VGA controller.

In summary, whilst for most instructions the softcore CPU throughput has been increased in the
32 bit datapath design, it is clear that there have been tradeoffs in certain cases. To assess whether
the 32 bit datapath configuration should be expected to lead to higher performance overall, it is
also necessary to examine the frequency of instruction usage. Table [l schedule the most frequently
used instructions in the N.I.G.E. Machine system software (i.e. the FORTH operating system).
Despite the fact that some instructions are slower in the 32 bit datapath configuration, taking into
account which instructions are most common, the data suggest that average instruction throughput
should be improved in this configuration.

4 Results

4.1 Hardware implementation

Implementation of the 32 bit datapath format on the Nexys 2 FPGA development board proved
more challenging than anticipated. Whilst synthesis was satisfactory in the electronic simulator,
the new design was not able to complete place and route to meet the timing constraints of a 50MHz
clock speed. This was in spite of considerable optimization work with the FPGA design tools. The
reason for the slower timing in the 32 bit bus configuration was revealed by analyzing the place
and route results and identifying the longest signal path. This signal path is the logic required
to operate the variable instruction length program counter logic in the control unit. The steps
involved are shown schematically in fig As described in the section discussing the control unit,

14

Instruction Frequency Clock cycle

difference
JSL 10.2% -2
#. W 9.8% -2
RTS and ,RTS 8.7% +1
BRA and BEQ 8.7% 0
#.B 7.3% -1
DUP 4.8% 0
DROP 4.1% 0
FETCH.L 3.5% -2
FALSE 3.3% 0
SWAP 3.3% 0
OVER 3.2% 0
STORE.L 3.1% -2
R> 2.6% 0
+ 2.6% 0
FETCH.B 2.6% +1
>R 2.1% 0
STORE.B 1.9% -1

Table 4: Relative instruction frequency for the 80% most common instructions in the N.I.G.E.
Machine system software (counted by code frequency rather than execution frequency). The clock
cycle difference values are the instruction duration difference in moving from the 8 bit to 32 bit
databus configuration. Negative values indicate that the 32 bit configuration is faster. The most
used instruction, JSL, is 2 cycles faster in the 32 bit databus configuration than the previous
equivalent.

15

N.I.G.E. Machine N.I.G.E. Machine

(8 bit databus) (32 bit databus)
Best achievable timing (ns) 18.22 22.97
Equivalent clock frequency (MHz) 54.89 44.84

Table 5: Best achievable synthesis and place and route timing for the N.I.G.E. Machine on the
Nexys 2 development board with a Xilinx XC3S1200E FPGA. The 32 bit databus configuration
fails to make timing for a 50MHz clock speed.

N\ AN N\ N\ AN
.| SRAM | Next ~| Instruction \ \
SYSRAM controller | instruction | length v LR S ya CLEILT (A8 //>

N

Figure 10: Schematic of the longest signal path in the N.I.G.E. Machine 32 bit databus configura-
tion that is responsible for limiting the best achievable timing to more than 20ns

these steps are necessary if the N.I.G.E. Machine is to execute variable length instructions in a
single clock cycle.

Table 5] summarizes the best achievable timing of the N.I.G.E. Machine in both 8 bit and 32 bit
databus formats. The best achievable clock frequency in 32 bit format was 44MHz. However it is
not possible to operate the N.I.G.E. Machine at arbitrary clock frequencies (say 40MHz), because
there are also timing constraints imposed by the peripheral components. In particular the VGA
controller should operate at 25MHz or 50MHz on account of to the VGA signal specification, and
the system clock needs to be synchronized at a multiple of the VGA clock frequency. (Note that
this limitation is a consequence of the design of the VGA controller in the N.I.G.E. Machine rather
than a limitation of the Xilinx Spartan 3 FPGA device family or the VGA specification in general.)

For the purpose of comparative benchmarking, the 32 bit databus configuration N.I.G.E. Machine
was successfully implemented at 50MHz by reducing the depth of SRAM memory to 4K only. (By
reducing memory depth, the number of Block RAM multiplexers is reduced and therefore also the
signal time for an SRAM read. The saving was enough to compensate). However this workaround
has limited scope, since whist the benchmarks can be run in under 4K of memory, this restriction
in memory size is too severe for a general purpose microcomputer.

4.2 Performance benchmarks

A series of benchmarks were run to compare the performance of the N.I.G.E. Machine in both the
8 bit and 32 bit databus configurations at 50MHz. The benchmarks were based on a number of
standard FORTH tests [12], minimally adapted to run in an embedded environment. As a baseline
comparison, the benchmarks were also run on a Intel i7 desktop PC at 2.8GHz using VFX FORTH.
Tables [6] and [0 show the results.

The N.I.G.E. Machine in 32 bit databus format is on average 14% faster in primitive operations
and 20% faster in applications than in 8 bit databus format. However the speed increase varies
according to the application. Eratosthenes’s sieve is only 4% faster while the eight queens problem
is 29% faster. This is because not all instructions are faster in the 32 bit datapath format and so
the instruction mix of an application is also important.

The N.I.G.E. Machine in 32 bit databus configuration is approximately 150x slower on average than
an Intel i7 PC running VFX FORTH, but again the range varies from 120x for random numbers to

16

Benchmark Iterations N.I.G.E. N.I.G.E. PC i7

Machine Machine VFX
(8 bit bus) (32 bit bus) FORTH
Primitives ms ms ms
DO LOOP 1,000,000 260 260 -
+ 1,000,000 340 300 -
* 1,000,000 440 420 -

/ 1,000,000 1,240 1,200
/MOD 1,000,000 1,240 1,200 16
*/ 1,000,000 1,420 1,400 -
Array fill (1000 items) 1,000,000 9,008 7,207 15
13,948 11,987 31

Applications

Eratosthenes sieve 3000 19,680 18,884 110
Fibonacci recursion 1 44,272 37,947 265
Quick sort 1,000 10,924 9,171 31
Random numbers 1,000 48,795 35,643 296
Bubble sort 100 41,089 33,387 218
Eight queens 50 37,774 26,968 141
202,534 162,000 1,046

Table 6: Benchmark timing results for the N.I.G.E. Machine in 8 bit and 32 bit datapath configu-
rations, and the same tests run on an Intel i7 PC using VFX FORTH.

almost 300x for quicksort. However the N.I.G.E. Machine was clocked at 50MHz while the PC was
clocked at 2.8GHz, a difference of 56x. Allowing for the difference in clock speeds, the N.I.G.E.
Machine was only 3x slower on average than the PC.

5 Discussion

At the outset it was expected that the main challenge in widening the memory datapath from 8
to 32 bits would be to design appropriate logic to maintain deterministic execution, instruction
throughput, byte-sized instruction format, and flexible memory access. Two major components
had to be developed to accomplish these objectives. Firstly, an SRAM controller that leveraged
the dual ported Block RAM available on the FPGA. Secondly, an adaption to the control unit to
facilitate the execution of variable length instructions in a single clock cycle.

However these components were included at the expense of additional logic levels and a longer
signal path. This reduced the maximum achievable clock frequency. Whilst the 32 bit memory
databus configuration completes benchmarking tests in approximately 20% less clock cycles than
the 8 bit configuration, the maximum clock frequency that can be achieved at implementation is
also roughly 20% less (740 MHz c.f. 750 MHz)

Perhaps in retrospect this tradeoff should have been anticipated. It is similar to the tradeoff
between the RISC (reduced instruction set computing) and CISC (complex instruction set com-
puting) approaches to CPU design, and occurs for similar reasons. RISC designs utilize less logic
but can operate at a higher clock speed compared to CISC designs that have more sophisticated
instruction set functionality.

17

Benchmark N.I.G.E. N.I.G.E.
Machine (32 bit) Machine (32 bit)

/ (8 bit) / PCiT

% multiple

Eratosthenes sieve 96% 172
Fibonacci recursion 86% 143
Quick sort 84% 296
Random numbers 73% 120
Bubble sort 81% 153
Eight queens 1% 191
Total 80% 155

Table 7: Relative benchmark timing results for the 32 bit datapath format N.I.G.E. Machine
compared to the 8 bit datapath format N.I.G.E. Machine and a PC i7 running VFX FORTH . The
32 bit datapath configuration is on average ~20% faster than the 8 bit configuration.

One avenue for further consideration might be to review alternative device families to determine
whether FPGA’s that incorporate Block RAM with a byte select feature are available, given the
utility that would have with a 32 bit databus. However, an overarching aim of the N.I.G.E. Machine
is to use only low-cost, ubiquitous hardware and consequently the design preference in general is
to work around inherent limitations rather than “up-spec”.

The question is then, which approach is more appropriate for a FORTH softcore such as the
N.I.G.E. Machine? A “CISC like”, 32 bit databus with the ability to execute variable length
instructions in a single cycle, resulting in instruction execution that completes in few clock cycles.
Or a “RISC like”, 8 bit databus matched to the instruction size with fewer layers of logic, resulting
in a higher implementable clock frequency?

The answer to this dilemma may be to look more carefully within the CPU at the differing needs
of the control unit and the datapath. The datapath within the N.I.G.E. Machine’s softcore CPU
is 32 bits wide. Matching the 32 bit datapath to a 32 bit memory databus optimizes execution
speed by maximizing data transfer bandwidth. On the other hand, the control unit can operate
at a higher clock speed when there is no need to execute variable length instructions in a single
cycle. A hybrid design can be envisaged that maintains the 32 bit memory databus matched to
the 32 bit datapath, but reverts to a control unit that processes instructions on a byte-by-byte
basis. Such a hybrid design might have the following characteristics:

e Maximum clock speed no slower then the 8 bit databus configuration (i.e. 50MHz)

Fetch /store instructions execute approximately as fast as with the pure 32 bit databus con-
figuration

The fast JSL (jump to subroutine literal address) instruction is included

The pipeline could revert to 3 stages, eliminating the extra clock cycle restart penalty of the
4 stage pipeline

Load literal instructions would have a throughput of less than one instruction per clock cycle

Based on the results discussed above, such a hybrid design is likely to prove a better performer
than either the pure 8 bit or 32 bit databus configurations. Development along these lines is an
attractive avenue for further work on the N.I.G.E. Machine.

18

6 Conclusion

This project set out to widen the N.I.G.E. Machine’s memory databus from 8 bits to 32 bits. In
doing so it was found that neither configuration is absolutely better than the other. The tradeoffs
between them concern maximizing clock speed versus maximizing instruction throughput. This
result parallels the differences between the RISC and CISC approaches to CPU design. In the case
of the N.I.G.E. Machine, a hybrid memory databus that addresses the differing needs of the CPU
control unit and datapath is likely to be the optimum performance strategy. Further work will be
undertaken on the N.I.G.E. Machine to implement such an approach.

Whilst it is recognized that differing processor designs have differing design tradeoffs at a detailed
level, some general conclusions about the strategy for optimizing memory access design for a 32
bit FORTH processor can be drawn from these project results. A FORTH processor is likely to
be optimized for the efficient execution of a basic set of stack and memory operations, subject to
embedded control objectives such as deterministic execution and high code density. Maximum clock
speed is achieved with simple control unit logic. Given these considerations, it is likely desirable to
match the width of the memory databus to the control unit to the width of a single instruction (8
bits on the N.I.G.E. Machine). On the other hand, a FORTH processor is a fetch/store architecture
and so data bandwidth will be maximized by matching the width of the memory databus to the
width of the CPU datapath (32 bits on the N.I.G.E. Machine). The best overall approach is
therefore likely to adopt a hybrid databus design, whereby the needs of the CPU control unit and
datapath are separately identified and addressed.

The author would like to thank the anonymous academic reviewers for their comments and sug-
gestion, all of which have helped to improve the paper.

References

[1] The author, http://www.youtube.com/watch?v=0v-HuVLRoUc

[2] The author, “The N.I.G.E. Machine: an FPGA based micro-computer system for prototyping
experimental scientific hardware”, in EuroForth, 2012

[3] James Bowman , “J1: a small Forth CPU Core for FPGAs” in EuroForth, 2010
[4] K. Schleisiek, “MicroCore,” in EuroForth, 2001.
[5] B. Paysan, “b16-small — Less is More,” in EuroForth, 2004.

[6] E. Hjrtland and L. Chen, “EP32 - a 32-bit Forth Microprocessor,” in Canadian Conference on
Electrical and Computer Engineering, pp. 518-521, 2007.

[7] E. Jennings, “The Novix NC4000 Project,” Computer Language, vol. 2, no. 10, pp. 3746,
1985.

[8] Rible, John, "QS2: RISCing it all," Proceedings of the 1991 FORML Conference, Forth
Interest Group, Oakland, CA (1991), pp. 156-159.

[9] Stephen Pelc, “Programming FORTH”, MPE, 2011
[10] P. J. Koopman, Jr., “Stack computers: the new wave”, Halsted Press, 1989
[11] The author, Github open source repository https://github.com/Anding /N.I.G.E.-Machine

[12] MPE benchmark suite for 32 bit Forth systems, http://www.mpeforth.com/arena/benchmrk.fth

19

http://www.youtube.com/watch?v=0v-HuVLRoUc
https://github.com/Anding/N.I.G.E.-Machine
http://www.mpeforth.com/arena/benchmrk.fth

	Introduction
	Memory access requirements of a FORTH processor
	Review of prior work
	Impact of system design objectives on memory access requirements
	Advantages and limitations of an 8 bit wide databus
	Design complications resulting from a 32 bit wide databus

	Design for 32-bit wide system memory access
	SRAM memory controller
	Read functionality
	Write functionality
	Dual data output

	Datapath
	Control unit
	Program counter logic
	Four stage pipeline
	Instruction throughput

	Results
	Hardware implementation
	Performance benchmarks

	Discussion
	Conclusion

