
VFX Forth for ARM Linux EuroForth 2014

VFX Forth for ARM Linux
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England
t: +44 (0)23 8631 441
f: +44 (0)23 8033 9691
e: sfp@mpeforth.com
w: www.mpeforth.com

Abstract
All VFX Forth versions have been built from the same source tree. However, VFX Forth for
ARM Linux is the first ARM port since 1999. This paper looks at how well the original VFX
Forth source tree has stood up to the changes of the last 15 years.

Introduction
There is now a large number of ARM-based systems running Linux. These range from
expensive to very low cost, e.g. Raspberry Pi (around EU 40) and Beaglebone Black. These
devices are so cheap that many traditional embedded systems can be replaced at lower cost by
these off-the-shelf systems.

These low-end ARM systems use CPUs that range from 450 MHz ARM11s to 1GHz Cortex-
A8s. The CPUs all support the original ARM 32 bit instruction set. The systems provide
several different flavours of Linux.

The project was thus to port VFX Forth for Linux from the x86 implementation to an ARM
with minimal changes to the overall VFX Forth source tree. The source tree is implemented
for a multiple stage build. Here we are concerned with the first two stages:

1. Production of the Forth kernel with a primitive interface to the operating system, but
with a full assembler, disassembler and code generator,

2. Self-compilation by the kernel of the Linux O/S interface and development tools.

The first stage build is performed by the existing Forth cross compiler for the ARM. This only
required a few minor changes to match creeping changes to internal data structures in the
target Forth.

Operating System startup and coded definitions
The startup code is contained in a single file which covers the ELF headers, Forth startup
from the operating system, primitive access to shared library access routines, and the callback
interface. Most of this code is written in assembler, and is the largest assembler component of
the whole VFX Forth system. Once the cross assembler, disassembler and code generator are
working, this is one of the most critical files in the system.

Barring one or two, all the other code definitions are in a small file that contains words that
are best coded. For example, the base ARM32 instruction set does not include a divide
instruction. A version of CMOVE is available that provides four times the performance of a
byte-by-byte CMOVE but is over 900 bytes in size. These routines were taken from the
existing embedded ARM target for the cross compiler.

VFX Forth for ARM Linux EuroForth 2014

Other files contains the operating system specific routines required for the first-stage build,
the default console (unchanged from x86 Linux) and the binary save utility (virtually
unchanged from x86 Linux).s

Assembler, disassembler, and VFX code generator
The assembler is cross-compiled because it used by the code generator. The disassembler is
cross-compiled because you need it to debug the code generator. The code generator is cross-
compiled so that all the code in the system is optimised.

The code is taken from the cross-compiler's code tree. Changes are required for defining
words. The notation used is from the ANS draft cross-compiler proposal. It's not pretty but it
works. Changes are also needed because the MPE cross compilers and VFX Forth use
different notations for connecting compilation semantics to word names. This could be
improved. Additional minor changes were required because the cross compilers are focused
on embedded systems with separate Flash and RAM, whereas hosted systems mainly have a
single address space in RAM.

Library linkage
Linking the Forth to shared libraries is a fundamental part of making a Forth for a hosted
system. The MPE Extern: notation emphasises being able to copy and paste a C prototype
from the Linux documentation. The following example is taken from the GTK interface.

Extern: gboolean "C" g_file_set_contents(
 const gchar * filename,
 const gchar * contents, gsize length,
 GError ** error
);

This is, in many ways, the most critical file in the port. It is affected by the startup code and
the interface into dlopen() and friends. Although MPE has VFX Forth for 32-bit x86 Linux,
ARM Linux uses a rather different calling convention with the first four integer parameters
passed in registers. Several other O/S interfaces use a similar convention. The choice of how
to pass floating point values to Linux affects the floating point package and the parameter
passing mechanisms may affect Forth stack layout.

The floating point options are such that we do not yet know how many ABIs must be
supported! There are two main ones, for the VFP hardware and for floating point emulation.
In many ARM9 implementations, there is no FP hardware and software FP is used. Software
FP may well use a library API that passes FP numbers in the integer registers and/or the C
stack. Hardware FP may either use the same API as the software FP or may use a faster API
that uses the VFP registers. The choice of API is probably defined by the choice of Linux.
There is no guarantee that two Linux implementations for the same hardware will use the
same FP API.

Once all the choices have been made for the shared library interface, the same choices have to
be implemented for the callback interface.

VFX Forth for ARM Linux EuroForth 2014

GTK
MPE uses GTK for cross-platform GUIs across Windows, Linux and even Mac OS X. For
Linux, GTK is also our primary GUI environment. It has been extended with a simple
graphics extension that works in a similar manner to the old Borland BGI interface from long
ago.

Apart from the different shared library names on different operating systems, the GTK
interface and the demo shown above uses the same source code unchanged.

Similarly the majority of the Forth examples and library interfaces compile unchanged.

GPIO
Using a Raspberry Pi as a base system, the speed of GPIO access varies hugely according to
how it is done. The following link has the gory details:
 http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Depending on language and implementation technique, you can expect to see GPIO access in
the range 40 kHz (Python) to 20 MHz (optimised C). In VFX Forth we expect a generalised
routine to achieve about 7 MHz, while specific access should exceed 15 MHz. To achieve
such speeds, the Forth application must be run with root permissions.

Conclusions
Once code generation is good enough, the vast majority of a Forth system can be written in
high level Forth. The hard parts of the remainder are involved in the operating system
interface. A very few routines are still best written in assembler, for example a high
performance version of CMOVE.

Given that the last 15 years of VFX Forth development have all been for the Intel IA32
instruction set, the addition of ARM and allowance for multiple instruction sets has caused
very few changes to existing files. At least for a Linux operating system, there have been no
changes to the second stage build except to automate (by conditional compilation) the
selection of shared library file names.

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

VFX Forth for ARM Linux EuroForth 2014

As the cost of hardware designed to run ARM Linux has plummeted, e.g. Raspberry Pi,
Beaglebone Black and Olimex OlinuXino all fall in the EU 30 to EU60 range, Linux boards
are becoming cheaper than conventional embedded hardware. We can expect to see many
traditional embedded applications migrate to Linux boards. In particular, we already see the
Raspberry Pi (2 million sold), being modified in the B+ form to be significantly more suitable
for industrial use – more I/O, better mounting holes, more USB.

Where hard real-time is still important there's always a trade-off, but we are already seeing
some migration to FPGA+ARM solutions, e.g. Xilinx Zynq, where the FPGA portion handles
the heavy-lifting of the hard real-time requirements. The Zynq incorporates a dual-core
Cortex-A9, all the standard peripherals including Gigabit Ethernet, plus an FPGA. Such
devices will, in the long term, make the traditional embedded system an extremely niche
product.

Acknowledgements
Our thanks to Vic Watson, Juergen Pintaske and several others for encouraging us to generate
VFX Forth for ARM Linux.

	Introduction
	Operating System startup and coded definitions
	Assembler, disassembler, and VFX code generator
	Library linkage
	GTK
	GPIO
	Conclusions
	Acknowledgements

