30th EuroForth Conference

September 26-28, 2014

Hotel Amic Horizonte
Palma de Mallorca
Spain

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 30th Euro-
Forth finds us in Palma de Mallorca for the first time. The two previous Eu-
roForths were held in in Oxford, England (2012) and in Hamburg, Germany
(2013). Information on earlier conferences can be found at the EuroForth
home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there was one submission to the refereed track, and one was accepted (100%
acceptance rate). For more meaningful statistics, I include the numbers
since 2006: 17 submissions, 10 accepts, 59% acceptance rate. The paper was
sent to three program committee members for review, and they all produced
reviews. The reviews of all papers are anonymous to the authors. I thank
the authors for their papers and the reviewers and program committee for
their service.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings.

These online proceedings (http://www.euroforth.org/ef14/papers/)
also contain papers and presentations that were too late to be included in
the printed proceedings. Also, some of the papers included in the printed
proceedings were updated for these online proceedings.

Workshops and social events complement the program.

This year’s EuroForth is organized by Janet and Nick Nelson.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)

Peter Knaggs

Phil Koopman, Carnegie Mellon University

Jaanus Poial, Estonian Information Technology College, Tallinn
Bradford Rodriguez, T-Recursive Technology

Bill Stoddart

Reuben Thomas, Adsensus Ltd.

Contents

Refereed papers

Andrew Read: Concept and implementation of an extended return stack to
enhance subroutine and exception handling in FORTH 5

Non-refereed papers

Stephen Pelc: Compiling to Flash 23
Stephen Pelc: VFX Forth for ARM Linux 26
Paul E. Bennet: High Integrity Systems — CODE 30
Bill Stoddart: HiTex — IXTEX gets a helping hand from Forth 35
M. Anton Ertl: Region-Based Memory Allocation in Forth 45

Late non-refereed papers

Klaus Schleisiek: Doing C-style structs on cell addressed uCore 50
Gerald Wodni: Forth — The Next Generation 52
Presentations

Ulrich Hoffmann: Saturation Arithmetic 54
Bernd Paysan: net2o: Command Language b7
Paul Bennet: Forth in Education — Spreading the word 61
Anton Ertl: How to get rid of C 63

Concept and implementation of an extended return stack to
enhance subroutine and exception handling in FORTH

Andrew Read

June 2014

andrew81244@outlook.com

Abstract

A conceptual generalization of the FORTH return stack is obtained by complementing it
with one or more additional stacks that are tightly synchronized in operation according to some
precise logical rules. With additional stacks specifically deployed to support subroutine and
exception handling, a model is obtained whereby CATCH and THROW can be implemented
as single machine language instructions and a number of other features emerge that enhance
the flexibility, speed, and robustness of subroutine and exception handling in FORTH. The
extended return stack model has been successfully implemented on the N.I.G.E. Machine.

1 Introduction

This paper discusses the concept and implementation of an extended return stack in FORTH. The
traditional stack data structure comprises an array of cells in memory with a movable stack pointer.
Push and pop operations are defined for placing data onto the stack or removing data from the
stack. Typical FORTH implementations utilize two stacks: the parameter stack (generally used
for program data) and the return stack (generally used for flow control and holding a subroutine
return address). This paper describes a conceptual generalization to the return stack and its
implementation on the N.I.G.E. Machine.

The key conceptual idea is that additional stacks can be linked to return stack in a structured
arrangement. These additional stacks can be leveraged to support enhanced flexibility, speed, and
robustness of subroutine and exception handling in FORTH.

The N.I.G.E. Machine is a complete computer system implemented on an FPGA development
board [1]. It comprises a 32 bit softcore processor optimized for the FORTH language, a set of
peripheral hardware modules, and FORTH system software. The N.I.G.E. Machine was presented
at EuroFORTH in 2012 and 2013 [2, 3] and is available open source [4]. It follows in the footsteps
of a number of significant FORTH processors [5, 6, 7, 8, 9, 10].

2 Review of prior work

Flexibility, speed and robustness are critical in all aspects of computer science. Much prior work
has been done to apply these topics to subroutine and exception handling in FORTH.

Klaus Schleisiek conducted some of the first research into error trapping in FORTH and noted that
“everything to do with a subroutine belongs on the return stack” [27, 28]. Klaus’s comment inspired
the author’s thinking on the topic and is the intellectual germ of this project. Brad Rodriguez was
also one of the pioneers of FORTH exception handling in the era before CATCH and THROW,
including applying stack frames to FORTH [29, 30]. The development of the standard words,
CATCH and THROW has been explained by Michael Milendorf who also provides a reference
implementation [16].

Many authors have discussed ways to enhance the reliability of FORTH software. The ideas
presented in this paper build off several:

Jaanus Pdéial studied stack effects at a conceptual level and developed an algebraic formalism for
validating FORTH code [21, 22].

Paul Bennett and Malcolm Bulger discussed the certification of high integrity software and ex-
plained that in order to be able to fully certify an application, then it is first required to certify the
programming surface. They made the point that this would only need certifying once, and then
could be used as the platform for many products [12]. This is especially relevant if the programming
surface can be built into the base hardware.

Anton Ertl introduced a construct that guarantees that the cleanup code associated with resource
usage is always completed, and demonstrated a more efficient implementation approach for cleanup
code than using a full exception frame [13].

Nick Nelson contrasted approaches in the search for reliability of a large and complex FORTH
system, including the idea of developing system which tries to struggle on despite programming
errors [17].

Bill Stoddart and Peter Knaggs have contributed significantly to making FORTH robust [23, 24,
25, 26].

Considering the topic of subroutine local variables, Bailey, Sotudeh and Ould-Khaoua identified
that local variable management and its efficient support in hardware is a prime concern in devel-
oping efficient stack based computation [11]. Anton Ertl stressed that the appropriate use of local
variables has the potential to significantly unburden the data stack [14].

The use of a third stack for local variable storage is not new. Philip Koopman pointed out that
this idea has often been proposed, but he suggests a better solution to support local variables may
be a frame pointer into a software-managed program memory stack [19].

Lastly, regarding flexibility in subroutine handling, Glassanenko discussed programming techniques
using return stack manipulations such as the implementation of new control structures and back-
tracking [15].

3 Two linked stacks as a conceptual model of subroutine and
exception handling behavior

The motivation for starting with a conceptual scheme (rather than with a design specification for
some desired output) was to find a straightforward logical model of the behaviors that occur in
subroutine and exception handling as an intellectual goal in itself. The approach taken to finding
a suitable model was an iterative series of thought experiments and pen and paper investigations.
(The author accepts that this approach has the weakness of missing a formal proof. Therefore, as
with the N.I.G.E. Machine overall, structured and extensive testing is a prerequisite to use in any
critical system.)

This section presents the key features of the logical model that was found to represent subroutine
and exception handling (the extended return stack) at a purely conceptual level. The section

Additional stack Original stack

Return
St.ack Memory mapped cells Value st.ack St.ack Value
pointer pointer pointer
copy
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 1 20
2 0 0 0 0 0 4 2 12
3 Q 0 0 0 0 7 3 7F
4 0 0 0 0 0 0 4 14
5 0 0 0 0 0 0 5 26
6 0 0 0 0 0 0 6 FA
7 0 0 0 0 0 0 7 22
8 0 0 0 0 0 0 8 0
9 0 0 0 0 0 0 9 0

Figure 1: Illustration of basic conceptual scheme of the extended return stack. The current position
of the stack pointer is highlighted in gray.

following will explain exactly how this conceptual scheme has a direct relationship with subroutine
and exception handling in FORTH.

Consider a simple, traditional stack that has been extended by making available an additional
stack and creating certain logical connections between the two. In this paper the diagrammatic
convention will be that the original stack is shown on the right and the additional stack on the
left. The additional stack is structured as follows (figure 1):

The additional stack is at least two cells wide. Each cell can be read independently. The data con-
tents of all cells change simultaneously when the stack pointer moves. The first cell (by convention
shown as the rightmost cell in this paper) of the additional stack holds a copy of the stack pointer
to the original stack. This stack pointer copy is read and written on certain events as described
below. The second cell of the additional stack is the conventional part of the stack; it is where
data that is PUSHed to the stack will be placed. The remaining cells of the additional stack are
mapped to registers at fixed locations in system memory. This is configured in such a way that
regardless of the position of the stack pointer, the top of stack values are always found at the same
physical addresses in system memory.

The rules for interaction between the original stack and the additional stack are as follows (illus-
trated in figures 2, 3, 4, 5, 6):

1. Push and pop operations are separately available for each stack. (Looking ahead, it is the
mapping of these push and pop operations on separate stacks to an appropriate set of machine
language instructions that makes for efficient support of subroutine and exception handling).

2. When the original stack is pushed then there is no impact on the additional stack.

3. When the original stack is popped then there is no impact on the additional stack unless the
value of the original stack pointer after the pop would be less than the copy value held on
the additional stack. In this case the additional stack is simultaneously also popped.

4. When the additional stack is pushed then two additional operations occur simultaneously:
firstly the current value of the original stack’s stack pointer is pushed to the first (rightmost)

[Additional stack | | oOriginalstack |

Return
St.ack Memory mapped cells Value St_aCk St.ack Value
pointer pointer pointer

copy

0 0] 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0] 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 0

Instruction executed: PUSH on return stack

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 99

Figure 2: Illustrating the rule that when the original stack is pushed then there is no impact on
the additional stack. The “before” state of the stacks is shown above and the “after” below.

cell on the additional stack and secondly the original stack is a pushed with the same value
as was pushed to the additional stack.

5. When the additional stack is popped then the original stack’s stack pointer is reset to the
copy value held on the additional stack before the pop.

The conceptual scheme may be extended with multiple additional stacks as follows:

Each new additional stack is added on the “left”, so that it has the same relationship with the current
“leftmost” additional stack as the first additional stack has with the original stack according to the
rules above. When an additional stack is pushed, all of the stacks on its right are simultaneously
pushed with the same value. When an additional stack is popped, the reset of stack pointers flows
to each stack on its right in a chain sequence until the reset of the stack pointer of the original
stack. When a stack is popped to such a position that it causes a pop of the additional stack on
its “left”, then it is not necessary to propagate that behavior further to the left.

4 High level application to the FORTH programming lan-
guage

To apply this conceptual model to the FORTH programming language the following arrangement
is made. The FORTH return stack is the “original stack” in the terminology of the previous section
and two additional stack are added (figure 7). The first additional stack is termed the subroutine
stack and the second additional stack is termed the exception stack. PUSH and POP operations on
each of the three stacks are mapped to FORTH primitives as follows: >R and R> operate on the
return stack. EXECUTE and EXIT operate on the subroutine stack and CATCH and THROW
operate on the exception stack (table 1).

The first cell on the subroutine stack holds a copy of the return stack’s stack pointer. The second
cell on the subroutine stack is reserved for storing the return address of a subroutine call. There
are at least an additional 16 cells on the subroutine stack that are memory-mapped to the system

Additional stack | | originalstack |

Return
St.ack Memory mapped cells Value st.ack St.ack Value
pointer pointer pointer

copy

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 0

Instruction executed: POP on return stack

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 99

Figure 3: Illustrating the rule that when the original stack is popped then there is no impact on
the additional stack provided that the value of the original stack pointer after the pop is not less
than the copy value held on the additional stack.

[Additional stack | | Original stack |

Return
St.ack Memory mapped cells Value st.ack St.ack Value
pointer pointer pointer

copy

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 o] 0 0 0 0 0 4 0

Instruction executed: POP on return stack

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 99

Figure 4: Illustrating the rule that when the original stack is popped then the additional stack is
also popped if the value of the original stack pointer after the pop is less than the copy value held
on the additional stack.

[Additional stack | | Original stack |

Return
St.ack Memory mapped cells Value st.ack St.ack Value
pointer pointer pointer

copy

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 0

Instruction executed: PUSH on additional stack |

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 Q 0 0 0 23 8 3 7F

4 0 0 0 0 0 0 4 23

Figure 5: Illustrating the rule that when the additional stack is pushed then two additional op-
erations occur: firstly the current value of the original stack’s stack pointer is copied to the first
(rightmost) cell on the additional stack and secondly the original stack is also pushed with the
same value as was pushed to the additional stack.

| Additional stack | Original stack |

Return
St.ack Memory mapped cells Value st.ack St.ack Value
pointer pointer pointer

copy

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 0

Instruction executed: POP on additional stack

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 FF

2 0 0 0 0 0 2 2 30

3 0 0 0 0 0 0 3 7F

4 0 0 0 0 0 0 4 99

Figure 6: Illustrating the rule that when the additional stack is popped then the original stack’s
stack pointer is reset to the copy value held on the additional stack.

10

Exception stack | | Subroutine stack | | Return stack
Subr'tine Return

Memory

Stack Return stack Stack Return stack Stack
R mapped .) Memory mapped cells i) Value
pointer cells address pointer pointer address pointer pointer
copy copy
0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 FF
2 0 0 0 0 2 2 30
3 0 0 0 0 0 3 7F
4 0 0 0 0 0 4 0

Figure 7: Application of the extended return stack model to FORTH with an exception, subroutine
and return stack. The additional memory-mapped cells on the subroutine and exception stacks
are shown narrower for clarity of the diagram only.

address space via registers in such a way that the top-of-stack values are always visible at fixed
addresses regardless of the position of the stack pointer. These cells are used to hold subroutine
local variables. Because of the way the subroutine stack operates with EXECUTE and EXIT, the
correct set of local variables will always be available at the relevant memory addresses. (The choice
of 16 cells for local variables is made to comply with the minimum ANSI FORTH requirement,
but in the case of the N.I.G.E. Machine sufficient FPGA BLOCK RAM is available to allow for
more cells if desired, table 2.)

The first cell on the exception stack holds a copy of the subroutine stack’s stack pointer. The
second cell on the exception stack holds a copy of the exception return address. The exception
stack also has a number of additional cells that are memory-mapped to fixed addresses. Just as
with subroutine local variables on the subroutine stack, these memory mapped cells are used to
hold local variables that have scope within a single exception.

Instruction Exception stack Subroutine stack Return stack
PUSH CATCH EXECUTE >R
POP THROW EXIT R>

Table 1: Mapping of PUSH and POP operations on the exception stack, subroutine stack and
return stack to FORTH primitives

The operation of the extended return stack as concerns execution flow control will be discussed in
relation to the following code example (reordered to match the flow of the text). The stack effects
are also illustrated in figure 8.

11

mainloop
> innerloop CATCH

if .”” Error code’” . then
5

innerloop

subl

\ code omitted
subl
sub2

255 THROW
\ code omitted

b

sub2

10 >R
Within the FORTH word mainloop the first action is to call the word innerloop by way of a
CATCH statement. CATCH is mapped to a PUSH instruction on the exception stack. The effect
of the CATCH is to increment the exception stack pointer. Because the exception stack is the
“leftmost” additional stack, a PUSH to this stack also increments the subroutine stack pointer
and the return stack pointer. The first cell of the exception stack is pushed with the value of the
subroutine stack pointer as it is before being incremented. The second cell of the exception stack
is pushed with the return address for this CATCH statement. Since a PUSH operation has also
been applied to the subroutine stack, the first cell of the subroutine stack is pushed with the value
of the return stack pointer as it is before being incremented. The second cell of the subroutine
stack is pushed with the return address for this CATCH statement. The return address for this
CATCH is also pushed onto the return stack. At this point control has been passed to the word
innerloop.

The first action of the word innerloop is to call the word subl with an implied EXECUTE
statement. EXECUTE is mapped to a PUSH instruction on the subroutine stack. The effect of
the EXECUTE is to increment the subroutine stack pointer and, since the subroutine stack is “left”
of the return stack, to also increment the return stack pointer. The first cell of the subroutine stack
is pushed with the value of the return stack pointer as it is before being incremented. The second
cell of the subroutine stack is pushed with the subroutine return address. The subroutine return
address is also placed onto the return stack. The exception stack is not affected by a subroutine
call, consistent with the conceptual scheme as outlined. At this point control has been passed
to the word subl. The first action of the word subl is to call the word sub2. The mechanism
involved is the same again with the result that both the subroutine and return stack pointers are
incremented a second time.

The word sub2 places the value 10 on the return stack above the current return address before
calling the implied EXIT. In a typical FORTH implementation exiting a subroutine after placing
an arbitrary value on the top of the return stack could result in an unstable condition because
the arbitrary value could be taken as the subroutine return address. However in the extended
return stack arrangement as described here the EXIT statement is mapped to a POP instruction
on the subroutine stack. The effect of the POP on the subroutine stack is to return execution to
the return address as read from the subroutine stack (the second cell position), reset the return
stack’s stack pointer to the value as read from the subroutine stack (the first cell position) and
then decrement the subroutine stack pointer. As a result EXIT will return the flow of execution
to subl and the return stack pointer will return to the position that it was in when the subroutine
call to sub2 was originally made.

The following action is to call the word THROW with the value 255 on the top of the parameter

12

stack. THROW with a non-zero parameter is mapped to a POP operation on the exception stack.
The effect of THROW at this point is to return the flow of control to the exception return address
that was copied on to the exception stack when the corresponding CATCH was called. In addition,
the subroutine stack is reset to the position that it was in when CATCH was called since the copy of
the subroutine stack pointer that was copied to the exception stack at that time is now written back
to the subroutine stack pointer. Following this, the return stack is also reset to the position that
it was in when CATCH was called as the copy of the return stack pointer on the reset subroutine
stack is written back to the return stack.

5 Additional FORTH requirements for subroutine and excep-
tion handling

The conceptual scheme for additional return stacks as described in the previous two sections pro-
vides almost all of the functionality that is needed to implement exception handling in FORTH.
However to implement fully all of the required ANSI FORTH functionality in CATCH and THROW,
some further mechanisms are required in addition to the additional stacks as described in the pre-
vious section.

Subroutine calls and exception handling could be operated by the additional stacks without any
need for the return address of a subroutine call to be placed on the top of return stack. This
is because as described, both the subroutine stack and the exception stack hold return addresses
for subroutine and exception calls. However for comparability with existing FORTH code a copy
of the subroutine return address should be placed on the return stack. There is a further point
here. FORTH subroutines may remove the subroutine return address from the top of the return
stack so that when an EXIT instruction is subsequently encountered, flow control is returned to
the caller of the caller of that subroutine. This behavior, known as backtracking, may be used in
implementations of CREATE DOES> and in other applications [15]. Since the conceptual scheme
for the additional stacks already requires that if a stack is popped above the level of the copy
of its stack pointer held by the additional stack to its right, traditional FORTH code that takes
advantage of backtracking can run without alteration in the extended return stack scheme. (Note
that backtracking in this form is environmentally dependent.)

Another issue that needs to be dealt is that EXIT (including an implied exit at the end of a FORTH
word definition) needs to place a value of zero on the parameter stack if the subroutine was called
with CATCH, but does not place any value on the parameter stack if the subroutine was called with
EXECUTE (including an implied execute when a FORTH word is complied inside a definition).
The conceptual scheme as discussed in the previous sections maps EXIT to a POP operation on
the subroutine stack with flow control passing to the return address held on the subroutine stack.
The difficulty is that subroutine stack doesn’t “know” whether the current FORTH word was called
with EXECUTE or CATCH.

A solution is achieved by having the return address that is stored on the exception stack to be
one instruction ahead of the return address that is stored on the subroutine stack and arranging
that a CATCH machine language instruction will always be followed by a ZERO machine language
instruction (i.e. the instruction that places ZERO on the top of the parameter stack). As a result
EXIT will direct execution flow, via the subroutine return address, to the ZERO instruction in a
subroutine that was called by CATCH. On the other hand THROW, when called with a non-zero
parameter, will direct execution flow via the exception return address and to the next following
instruction and therefore skip the ZERO instruction. This is illustrated in the machine language
excerpt below:

13

Exception stack Subroutine stack Return stack

Subr'tine Return
Stack Return stack Stack Return stack Stack
. . . .) Value
pointer address pointer pointer address pointer pointer
copy copy
0 0 0 0 0 0 0 0
1 0 Q 1 0 0 0 0
2 0 0 2 0 0 0 0
3 0 0 3 0 0 0 0
4 0 0 4 0 0 0 0
[FORTH code executed: ' innerlocp catch |
¢ 0 0 ¢ 0 0 0 0
1 101 0 1 100 0 1 100
2 0 Q 2 0 0 2 0
3 0 0 3 0 0 3 0
4 0 0 4 0 [¢) 4 0
|FORTH code executed: subl |
0 0 0 0 0 0 0 0
1 101 0 1 100 Q 1 100
2 0 Q 2 120 1 2 120
3 0 0 3 0 Q 3 0
4 0 Q 4 0 0 4 0
|FORTH code executed: sub2 |
¢ 0 0 ¢ 0 0 0 0
1 101 0 1 100 Q 1 100
2 0 0 2 120 1 2 120
3 0 0 3 130 2 3 130
4 0 0 4 0 0 4 0
|FORTH code executed: 19 >R |
¢ 0 Q ¢ 0 0 0 0
1 101 0 1 100 Q0 1 100
2 0 0 2 120 1 2 120
3 0 0 3 130 2 3 130
4 0 0 4 0 Q0 4 10
[FORTH code executed: f |
¢ 0 0 ¢ 0 0 0 0
1 101 0 1 100 0 1 100
2 0 0 2 120 1 2 120
3 0 Q 3 130 2 3 130
4 0 0 4 0 Q 4 10
|FORTH code executed: 255 throw |
0 0 0 0 0 0 0 0
1 101 0 1 100 Q0 1 100
2 0 0 2 120 1 2 120
3 0 Q 3 130 2 3 130
4 0 0 4 0 0 4 10

Figure 8: Tllustration of the effect of some FORTH code on the exception, subroutine and return
stacks. The current position of each stack pointer is show in grey. For clarity the memory-mapped
cells for local variable storage on the subroutine and exception stacks have been omitted from the
diagram.

10

14

PC address Instruction Comment

100 #.1 <sub addr> ; load the subroutine address on stack
105 CATCH

106 ZERD ; 106 is the return address for EXIT
107 <next> ; 107 is the return address for THROW

Although the first two cells on the subroutine and control stack are used for control purposes, both
of the stacks are multiple cells wide and the remaining cells are intended to be used for variable
storage. As previously mentioned, the conceptual scheme and its implementation is such that the
contents of the cells at the top of the subroutine and exception stacks are always available at fixed
memory locations regardless of the value of the return stack pointer.

The remaining available cells on the subroutine stack are used to hold variables that are local to a
subroutine call. As the subroutine stack is pushed down with EXECUTE or CATCH instructions,
new variable storage is exposed. As the subroutine stack is popped up with EXIT or THROW
instructions, the set of local variables reverts to those applicable to the appropriate subroutine
level. In order to take best advantage of the cells on the subroutine stack that provide storage for
locals it may be arranged that each time the subroutine stack is pushed, these cells will be written
with a default value of zero.

The remaining available cells on the exception stack are used to hold variables that have scope
within a particular exception. Suitable candidates for variables to hold on the exception stack are
discussed in section 7.1. It should be arranged that each time the exception stack is pushed, these
cells will be written with a copy of the cells immediately above them on the exception stack. In
this way exception level variables will persist through subsequent CATCH statements unless they
are explicitly changed.

The ANSI FORTH standard requires that THROW (with a non-zero parameter) also restore the
parameter stack pointer to the value that it held at the time of the relevant CATCH statement.
To accommodate this behavior one cell on the exception stack should hold a copy of the parameter
stack pointer and automatically be updated at the time of a CATCH statement. Additional logic
should reset the parameter stack pointer to the value as held on the exception stack at the time
of a non-zero THROW. In this way CATCH and THROW can produce all of the required ANSI
FORTH functionality simply by operation of the additional stacks without the need for supporting
FORTH code. This is how the additional return stacks have been implemented on the N.I.G.E.
Machine.

6 Implementation on the N.I.G.E. Machine

A number of design enhancements have been made to the N.I.G.E. Machine since it was demon-
strated at EuroFORTH 2013. These are briefly summarized here for context. Firstly the overall
design was ported from a Xilinx Spartan 3E FPGA on the Diligent Nexys 2 development board
to a Xilinx Artix 7 FPGA on a Digilent Nexys 4 development board. In the process of porting
the design the direct memory access (DMA) controller that mediates access to the off-chip 16 M
byte pseudo-static dynamic RAM (PSDRAM) chip was completely re-written to conform to the
AXI-4 protocol, the system clock speed was increased from 50MHz to 100MHz, and the program
memory space was increased from 48K bytes to 128K bytes. (16M bytes of data memory is addi-
tionally available in PSDRAM). The native FAT file system software was also upgraded to support
SD cards formatted with partition tables (as is common with higher capacity micro-SD cards).
Finally a new video mode was added with 1024*768 resolution. A revised user manual has been
produced that includes a quick start guide and documentation of the system features.

The subroutine and exception stacks described in section 4 and the further FORTH functionality
described in section 5 were successfully implemented on the Nexys 4 version of the N.I.G.E. Ma-
chine. Three new machine language instructions were created: CATCH, THROW and RESETSP.

11

15

CATCH completes execution in 2 clock cycles (table 3). THROW completes execution in 3 cy-
cles for a non-zero parameter and in 1 cycle if the parameter is zero. RESETSP resets all of the
parameter stack pointer, the return stack pointer, the subroutine stack pointer and the exception
stack pointer to zero. It completes execution in 1 clock cycle. The intended use of RESETSP is
to return the machine to a known configuration upon reset. Three machine language instructions
were removed from the instruction set, partly so that their opcodes could be reused in the three
new instructions and partly because their use would interfere with the proper operation of the ex-
tended return stack. The removed instructions were: RSP@, RSP!, PSP! which respectively read
and wrote the return stack pointer and wrote the parameter stack pointer. The original instruction
PSP@ remains in the instruction set and is used within the implementation of the FORTH word
PICK.

The subroutine and exception stacks were implemented as FPGA BLOCK RAM. The subroutine
stack is 17 cells wide (544 bits) and 512 cells deep. The first 32 bit cell is subdivided into a 9
bit cell that holds a copy of the return stack pointer and a 23 bit cell that holds the subroutine
return address. There are 16 cells available for the storage of subroutine local variables. 36 K
bytes of BLOCK RAM are allocated to the subroutine stack. The exception stack is 9.5 cells wide
(304 bits) and 512 cells deep. The first 32 bit cell is also subdivided into a 9 bit cell that holds
a copy of the subroutine stack pointer and a 23 bit cell that holds the exception return address.
There is next a 16 bit wide cell that holds a copy of the parameter stack pointer. There are 8
cells available for the storage of exception variables. (The value of 8 cells was chosen somewhat
arability with the expectation that it can easily be adjusted depending on future needs). 19 K
bytes of BLOCK RAM are allocated to the exceptions stack, so that the total BLOCK RAM used
for both additional stacks is 55 K bytes.

The N.I.G.E. Machine uses microcode to control the datapath. In this scheme the lowest 5 bits of
each machine language opcode are interpreted as an address and access a BLOCK RAM element.
The data value returned from the BLOCK RAM element at that address are the control lines used
to configure the multiplexers in the datapath . To accommodate the extended return stack the
number of control lines was extended from 14 to 21. For example, 3 bits are used to control the
subroutine stack pointer. Of the allowed 8 possible configurations available in 3 bits, 5 configu-
rations are used: no change, decrement, increment, reset to the copy value held on the exception
stack, reset to zero. The exception stack pointer and return stack pointer are similarly controlled
by microcode. An additional configuration was added to the control of the parameter stack pointer:
reset to the copy held on the exception stack. This configuration is used by THROW.

12

16

Softcore CPU

Subroutine stack
FPGA BLOCK RAM

Memory-mapped

CPU datapath stack cells

Exception stack
FPGA BLOCK RAM

System memory

Microcod
crococe bus (32 bit)

control lines

CPU control
unit

Figure 9: System diagram of the extended return stack implementation on the N.I.G.E. Machine

In order to make the subroutine and exception stacks available within the system memory space
VDHL modules were created that interface the system memory space address lines with the BLOCK
RAM elements holding the stacks. In each case the interface operated so that regardless of the
position of the subroutine and exception stack pointers, the top of stack values are found at
fixed memory locations. (The interface does not allow any other access from the system memory
space into the subroutine and exception stacks, except to the at top of the stack values). These
modules are also responsible for setting the newly exposed cells on the subroutine stack to zero
and for “copying down” the values on the exception stack when a PUSH occurs, as described in
the previous section.

Lastly, THROW was configured so that it would also signal the CPU to cancel any current interrupt
condition. Thus if a non-zero THROW occurs within interrupt code the interrupt condition will
be canceled when flow control is returned to the exception address. This is important since in the
N.I.G.E. Machine an interrupt condition blocks further interrupts from occurring.

Making CATCH and THROW machine language instructions comes at the expense of implementing
the subroutine and exception stacks in hardware. With the Artix 7 FPGA (device XC7TA100T),
the additional resources consumed are quite modest (table 2).

13

17

Version of N.I.G.E. Machine BLOCK RAM FPGA fabric logic
With extended return stack 32% 8.7%
Without extended return stack 22% 7.0%

Table 2: Artix 7 FPGA resource consumption comparing versions of the N.I.G.E. Machine with
and without the extended return stack.

All of the required functionality was therefore achieved by adding BLOCK RAM elements to serve
as the additional stacks, by extending the microcode used to control the datapath, by adding
the required multiplexers to control the stacks within the datapath, and by making the top of
stack values on the subroutine and exception stacks available in the system memory space. There
was no need to resort to any unstructured “glue logic” to complete the design. Consequently the
timing performance of the N.I.G.E. Machine was not affected and the design can be comfortably
implemented at a clock speed of 100MHz.

The syntax for local variables implemented in the N.I.G.E. Machine system software follows VFX
FORTH [20] and is documented in more detail in the N.I.G.E. Machine user reference manual [4].
The compiler utilizes a recognizer to identify local variable names ahead of searching the main
dictionary, and is aware of the fixed memory addresses where local variables are stored on the
subroutine stack.

7 Discussion

This section will examine the advantages and limitations of the extended return stack as compared
with traditional approaches to subroutine and exception handling.

7.1 Flexibility

Using the exception stack to hold variables that have scope within a single CATCH statement
ensures that if a THROW occurs all of these variables are guaranteed to be restored to their values
prior to the CATCH. This restoration happens as an atomic operation inside a single machine
language instruction. The feature can be leveraged for considerable utility as is illustrated by the
following example. Anton Ertl has shown several models for a word hex. that prints a number in
hexadecimal without changing BASE [13]. A new model that can be adopted with the extended
return stack is as follows:

hex.-helper

hex \ the variable BASE is located on the exception stack

u.
hex.

[’] hex.-helper catch throw \ no exception frame needed with extended

return stack. CATCH is as fast at EXECUTE

The word hex. calls hex.-helper using CATCH, thus pushing the exception stack. Within
hex.-helper the word hex stores the value of 16 to the variable BASE, which is located on the
exception stack. Regardless of how hex.-helper exits, either at the implicit EXIT statement or

due to a THROW during u., the exception stack will be popped at that time and the value of
BASE will be restored to the value that it held prior to the call to hex.-helper.

This model can be extended to a more general case with a word debug. that prints a number

to the RS232 port in hexadecimal without changing BASE or redirecting output. The point is

14

18

that any variables that have scope within a single exception will be automatically restores to their
former values upon EXIT or THROW.

debug.-helper

hex \ the variable BASE is located on the exception stack
>remote \ the character output vector is updated
u.
H
debug.

[’] debug.-helper catch throw

Anton Ertl has developed various models for region based memory allocation [18]. This system
could likely be used to support region based memory allocation if the critical references are held
on the exception stack. A complete model for region based memory allocation using the extended
return stack is a topic for further research.

An additional point of flexibility concerns local variables. FORTH implementations typically favor
VALUE flavored locals because these can be implemented using index offset load /store instructions.
VARIABLE flavored locals may be less suitable for typical FORTH implementations because they
require a memory address to be explicitly calculated on each reference. By contrast, the extended
return stack makes it straightforward and efficient to implement VARIABLE flavored locals because
the memory addresses of the local variables are fixed. The relocation of local variables onto the
subroutine stack also removes the possibility of interference with DO LOOP operations that may
occur when the return stack is used for local storage.

However the extended return stack approach to local variables has its constraints. Firstly the
number of local variables available is limited to the cells provided in hardware on the subroutine
stack. In the current implementation of the N.I.G.E. Machine there are 16 cells available for local
variables on the subroutine stack and 8 on the exception stack and this could be extended relatively
easily. Secondly, since most FORTH subroutines do not use local variables the approach of keeping
them on the subroutine stack may seem wasteful of memory resources. However this is more of a
trade-off decision, since the prize obtained by adopting this approach is the ability to implement
CATCH and THROW as single machine language instructions. Depending on the chosen FPGA,
this trade-off may not be a significant concern (table 2).

In the N.I.G.E. Machine system software, the variable BASE, and vectors for redirecting keyboard
and screen input/output to the RS232 port are held on the exception stack.

7.2 Speed of code execution

Fast subroutine execution is important in FORTH because of the highly factored nature of FORTH
code. The speed of subroutine execution on the N.I.G.E. Machine is unchanged by the implemen-
tation of the extended return stack. Fast exception handling may also be important. Although
CATCH and THROW were not implemented on the N.I.G.E. Machine prior to the extended return
stack, considering the reference implementation of CATCH and THROW it is likely that executing
CATCH in 2 clock cycles and THROW in 3 clock cycles will be an order of magnitude faster than
implementing these constructs in software (table 3).

15

19

Version of N.I.G.E. Machine EXECUTE EXIT CATCH THROW
With extended return stack 2 2 2 3
Without extended return stack 2 2 n/a n/a

Table 3: Speed of subroutine and exception execution measured in clock cycles the N.I.G.E. Ma-
chine with and without the extended return stack implemented. CATCH and THROW were not
implemented on the original N.I.G.E. Machine

Speed of local variable access is also important: arguably local variables are expected by program-
mers to be the fastest-to-access storage available. This will be the case if local variables are held in
CPU registers rather than system memory, as is likely to be the case with implementations of the C
programming language or with certain native FORTH implementations. However if local variables
are held in registers then there will be a time penalty on subroutine entry and exit due to the
need to save and restore the register set. Alternatively, holding local variables in system memory
dispenses with this penalty, but access to system memory will likely be significantly slower than
access to registers. The extended return stack offers the best of both worlds. Specifically allocated
local variable storage on the subroutine stack means that there is no requirement to save or restore
a register set. At the same time access to local variables is directly mediated by FPGA fabric logic.
Oun the N.I.G.E. Machine all load/store operations to local variables complete execution in 2 clock
cycles (as is the case with access to the N.I.G.E. Machine’s BLOCK RAM in general).

7.3 Robustness / fault tolerance

Four arguments are made why the extended return stack concept, implemented in hardware, offers
significant benefits for robustness and fault tolerance for FORTH programmes:

The hardware based extended return stack provides an absolute guarantee that variables held
on the exception stack will be returned to their former (prior to CATCH) values upon EXIT or
THROW. This occurs as an atomic operation within a single machine language instruction. This
guarantee means that no further software problem solving is needed to ensure the safe handling
of these variables in the event of an exception. This is valuable in high integrity software both as
a feature in its own right and because, as Paul Bennett and Malcolm Bugler explain [12], once a
programming surface is certified then it serves as a extensible platform for further applications.

A subroutine EXIT will execute correctly even if the subroutine has left spurious values on the top
of the return stack (for example by leaving a DO LOOP without UNLOOP). This was demonstrated
in section 4. Whilst it might raise a concern for the moral hazard of programmer complacency
in managing the return stack, in critical situations the avoidance of the serious error that would
have occurred otherwise may be a significant benefit. As Nick Nelson points out, a system that
struggles on despite programming errors is a valid strategy for avoiding failures [17].

Although the literature does not suggest that exception processing is currently a bottleneck for
FORTH programs[13], the extended return stack offers very fast exception processing in hardware
(i.e. as fast as an ordinary subroutine call and return). This assurance on performance may
encourage programmers to increase their use of CATCH and THROW, this improving software
integrity.

As a final point, since the exception stack does not rely on a global variable to anchor its execution,
the possibility that this variable could be corrupted, with catastrophic consequences for subsequent
exception flow control, is avoided.

However on a practical level, and as also noted in section 3, before the N.I.G.E. Machine could be
used in any critical systems an extensive program of structured testing (or some other approach)
would be needed to certify the integrity of the N.I.G.E. Machine itself.

16

20

8 Conclusion

The extended return stack starts with a conceptual scheme for additional stacks that is not depen-
dent on any particular hardware or FORTH implementation. The straightforward way in which
this structure is able to handle exception and subroutine processing, and the one-to-one correspon-
dence of the CATCH, THROW, EXECUTE, EXIT, >R, and R> FORTH primitives with PUSH
and POP operations on the exception, subroutine and return stacks suggests that the conceptual
stack scheme has a natural correspondence to the underlying logic structure of exceptions and
subroutines in FORTH. The additional tweaks to this conceptual scheme that are needed to fully
implement the requirements of ANSI FORTH are not extensive.

Implementation on the N.I.G.E. Machine was straightforward because the N.I.G.E. Machine’s
softcore is microcode based. The additional functionality is obtained by extending the number of
control lines set by microcode and adding appropriate multiplexers to the datapath. The FPGA
resource requirements for the extended return stack are minimal on an Artix 7.

The availability of variables on the exception stack that are guaranteed to be restored to their
pre-CATCH value upon EXIT or THROW may be a genuine innovation. In addition, the im-
plementation of CATCH and THROW as single machine language instructions makes exception
processing very fast. Overall this paper has argued that the extended return stack offers signifi-
cantly enhanced flexibility, speed, and robustness of subroutine and exception handling in FORTH.

Further work is intended in three areas:

e preparing additional verifications that the additional return stack design works correctly for
subroutine and exception handling in all corner cases

e developing applications for variable storage on the exception stack, for example complement-
ing with Anton Ertl’s models for region based memory allocation [18]

e seeking further ways in which the extended return stack could drive further improvements in
robustness and fault tolerance of FORTH software

The author sincerely wishes to thank the anonymous academic reviewers for their time and effort in
providing feedback. Their comments on content and calibration have been very helpful in clarifying
the author’s thinking and improving the presentation of the paper.

References

[1] The author, video demonstrations https://www.youtube.com/channel/UCz_ LqP{KTOr2rEID7 Av-

Chw

[2] The author, “The N.I.G.E. Machine: an FPGA based micro-computer system for prototyping
experimental scientific hardware”, in FuroF ORTH, 2012

[3] The author, “Optimizing memory access design for a 32 bit FORTH processor”, in Euro-
FORTH, 2013

[4] The author, Github open source repository https://github.com/Anding/N.I.G.E.-Machine
[5] James Bowman , “J1: a small Forth CPU Core for FPGAs” in FuroF ORTH, 2010
[6] K. Schleisiek, “MicroCore,” in EuroFORTH, 2001.

[7] B. Paysan, “b16-small — Less is More,” in FuroFORTH, 2004.

17

21

[8] E. Hjrtland and L. Chen, “EP32 - a 32-bit Forth Microprocessor,” in Canadian Conference on
Electrical and Computer Engineering, pp. 518-521, 2007.

[9] E. Jennings, “The Novix NC4000 Project,” Computer Language, vol. 2, no. 10, pp. 3746,
1985.

[10] Rible, John, "QS2: RISCing it all," Proceedings of the 1991 FORML Conference, Forth
Interest Group, Oakland, CA (1991), pp. 156-159.

[11] C. Bailey, R. Sotudeh, and M. Ould-Khaoua, “The Effects Of Local Variable Optimisation In
A C-Based Stack Processor Environment.”, in FuroFORTH, 1994

[12] Paul E. Bennett, Malcolm Bugler, “Certification of High Integrity Software”, in EuroFORTH,
1998

[13] M. Anton Ertl, “Cleaning up after yourself”, in FuroFORTH, 2008
[14] M. Anton Ertl, “Ways to Reduce the Stack Depth”, in FuroFORTH, 2011

[15] M.L.Gassanenko, “Open Interpreter: Portability of Return Stack Manipulations”, in Furo-
FORTH, 1998

[16] Michael Milendorf, “CATCH and THROW?”, in FuroFORTH, 1998

[17] N.J. Nelson, “Crash Never”, in EuroFORTH, 2011

[18] M. Anton. Ertl, “Region-based Memory Allocation”, in EuroFORTH, 2013

[19] P. J. Koopman, Jr., “Stack computers: the new wave”, Halsted Press, 1989

[20] Stephen Pelc, “VFX FORTH for Windows”, MPE, 2011

[21] Jaanus Poéial, “The algebraic specifications of stack effects for Forth programs”, FORML, 1990
[22] Jaanus Péial, “Multiple stack effects of Forth programs”, EuroFORML, 1991

[23] Bill Stoddart and Peter Knaggs, “The Cell Type”, Proc. 1991 Rochester Forth Conf.

[24] Bill Stoddart and Peter Knaggs, “Formal Forth”, Proc. 1991 Rochester Forth Conf.

[25] Bill Stoddart and Peter Knaggs, “The Event Calculus: Formal Specification of Real Time
Systems by means of Diagrams and Z Schemas”, 5th International Conference on putting
into practice method and tools for information system design, 1992, Institute Universitaire de
Technologies, Nantes, France

[26] Bill Stoddart and Peter Knaggs, “Type inference in Stack Based Languages”, Formal Aspects
of Computing 5(4):289-98, Springer International

[27] Klaus Schleisiek, "ERROR TRAPPING: a Mechanism for Resuming Execution at a Higher
Level.", 1983 FORML Conference Proceedings, pp. 151-154, San Jose, CA: FORTH Interest
Group, 1984

[28] Klaus Schleisiek, "Error Trapping and Local Variables", 1984 FORML Conference Proceed-
ings, CA: FORTH Interest Group, 1985

[29] Brad Rodriguez, "A Forth Exception Handler", SIGForth Newsletter Vol. 1 No. 2 (Summer
1989)

[30] Brad Rodriguez, "Stack Frames in Forth", SIGForth Newsletter Vol. 1 No. 4 (Winter 1989)

18

22

Compiling to Flash EuroForth 2014

Compiling to Flash

Stephen Pelc
MicroProcessor Engineering
133 Hill Lane

Southampton SO15 SAF
England

t: +44 (0)23 8631 441

f: +44 (0)23 8033 9691

¢: sfp@mpeforth.com

w: www.mpeforth.com

Abstract

In the last two or three years, a number of embedded Forth systems have emerged that are
self~hosted and compile directly to Flash. This paper explores some of the issues found at
MPE when we implemented such a kernel for the MPE Lite edition cross-compilers. Issues
Jor the TI MSP430 family and several ARM implementations are discussed.

Introduction

With the vast quantity of extremely low-cost hardware provided by semiconductor
manufacturers comes an attitude that there should be software at an equivalent price. For a
third-party toolmaker such as MPE, there's no money in this. The race to the bottom is
asymptotic to zero.

Why on earth should any compiler vendor give tools away? The only answer is to expose
students, hobbyists and evaluators to good-quality tools. There's a huge number of free (of
cost) Forth systems available, but to professional eyes the vast majority of them are poorly
implemented and woefully documented. Overall such Forth systems damage rather than
enhance the reputation of Forth.

Schools in the UK have ridiculously small budgets for electronics and technology projects, so
the Lite compilers are also part of our contribution to school science and technology
education.

In designing the free-of-charge Lite Forth for our cross compilers, we had to be careful not to
damage our own market. This achieved in several ways:
1. The Lite Forth kernel is not compatible with the standard MPE PowerForth kernel.
The Lite Forth kernel compiles directly to Flash and is subject to change.
2. The Lite Forth kernel is not ANS or Forth200x compliant. It has changes to meet the
requirements of compilation to Flash.
3. The Lite Forth target code supports a restricted range of CPUs and target hardware.
4. The Lite Forth cross compiler is limited to producing no more than a certain amount
of code, 16 kb for an MSP430 and 64 Kb for a Cortex MO.
5. The Lite Forth compiler may not be used for commercial purposes.

The Lite compilers are available for the MSP430 and the ARM Cortex-Mx CPUs. The
MSP430 is ideal for school and low-power use, but the low-power advantage over a Cortex-
Mx is much less than may be anticipated. The Cortex-Mx CPUs are the current CPU of
choice — they cost no more than 8 bit CPUs, and the ease of programming 32 bit CPUs
reduces time to market.

23

Compiling to Flash EuroForth 2014

The nature of Flash

There is wide variation among Flash devices in terms of how they are programmed. What is
common is that they erase to all bits set to 'l', and you can only program a 'l' bit to a '0'. In
order to set a '0' bit back to a 'l', you have to erase a range of memory known as a page or
sector, which range in size from 128 bytes to 64 kbytes. In some chips, there are sectors of
varying size.

In simple chips such as the MSP430 CPUs, you perform a simple operation to permit writing
and then write byte by byte to an erased sector. At a later time, you can rewrite a byte if you
just change 'l' bits to '0' bits. In others, such as many ST devices, Flash programming is
performed through a Flash controller peripheral which has additional requirements, e.g. that
bytes to be programmed are set to OxFF, all bits set.

The important thing about all of this is that you can only program a Flash location once
without encountering restrictions. These restrictions have an impact on the Forth dictionary
structure and Forth notation.

Direct compilation to Flash

When we did Forth Lite for the MSP430, we were using a simple Flash system that could
rewrite '1' bits to ‘0" bits. The major issues in writing a Forth that compiles directly to Flash
are the dictionary header layout and compilation of forward branches.

Dictionary header layout

In a traditional Forth, there are two flag bits that are changed during compilation or even after
compilation. These are the dictionary visibility bit (“smudge” bit) and the IMMEDIATE bit.
The dictionary visibility bit turns out to be problematic, as some code, ¢.g. the common words
HIDE and REVEAL, imply that this bit can be changed twice, which contradicts our rule that
we can only change a 'l' bit to a '0' bit. The solution to this was to remove the visibility bit
completely, and only to link the word into the dictionary thread when we were satisfied that
the word was correct. Hence the link field is initialised to all ones.

We can deal with the IMMEDIATE bit by inverting it so that a '1' bit indicates non-immediate
and a '0' bit indicates that the word is immediate. Another change makes the implementation
even simpler. The traditional phrase

foo .. ; immediate
is replaced by
imm : foo .. ;

which means that the IMMEDIATE bit is known when the header 1s constructed.

Forward branches

We can deal with forward branches by setting the branch target offsets to all '1' bits so that a
typical branch looks like $opc111, $11111111.

Ah, but ...

This all worked fine on an MSP430 which has what might be called a classical Flash
controller. However, the whole plan fell apart on a couple of ARM Cortex parts. For one
family, you can only program the flash in minimum units of 16 bytes on a 16 byte boundary.
For another, you can only modify bytes that have all bits set.

It was time for a rethink and to understand what we were really trying to achieve with this
Forth kernel. The main requirement is to be able to cross-compile the kernel itself, and then to
be able to compile as much code as is wanted using the target hardware. In our world, the
cross compiler generates highly optimised code, but we are not really concerned with the

24

Compiling to Flash EuroForth 2014

quality of the code created by the target. After all, you can always upgrade the Lite compiler.
A secondary initial aim was to use a common code base for the MSP430 and Cortex devices.
We also asked ourselves if we actually wanted to increase the range of Lite compilers beyond
MSP430 and ARM Cortex, and we decided that we do not.

By not using a common code base, we could simplify the 16 bit target for the MSP430. We
also freed up what we could do with the 32 bit targets. A typical low cost 10 Euro board for an
ARM Cortex-MO has 128 kb Flash and 16 kb RAM. Thus we continued with the “classical”
Flash assumption for the MSP430, and permitted ourselves to use a more complex approach
for the 32 bit targets.

Compilation to a RAM buffer

After examining a variety of approaches such as generating a linked list of partially compiled
bytes and rewriting them, we concluded that this would lead to having to special-case each
ARM part with a different peculiarity in its Flash controller. Instead, we would take the
simple approach of compiling the code to a temporary RAM buffer and then copying it to
Flash when complete. We use special versions (C!C W!C and !C) of the store operations
which take the Flash address but actually store the data in a buffer in RAM. Words that finish
compilation such as ; flush the buffer to Flash. This approach has the advantage of requiring
almost no change to on-chip compilation and requires the least sacrifice of Flash.

Conclusions

Direct compilation to Flash is tedious because it can be affected by the minutiae of specific
chips. However, there is sufficient commonality that it can be done using a small number of
techniques — a single technique is not enough.

We are often reminded in Forth that we should only solve the problem at hand; we should not
over-generalise. Compilation to Flash is one such class of problem. In particular, our desire to
use a common code base for 16 and 32 bit systems conflicted with reality. Now we use
separate code bases.

Acknowledgements

Dirk Bruehl persuaded me that an educational Forth is important. Michael Kalus provided
editorial comments for the Lite compilers. Juergen Pintaske stubbornly prodded me to do
more and reminded me what can be achieved with a solderless breadboard.

25

VFX Forth for ARM Linux EuroForth 2014

VFX Forth for ARM Linux

Stephen Pelc
MicroProcessor Engineering
133 Hill Lane

Southampton SO15 SAF
England

t: +44 (0)23 8631 441

f: +44 (0)23 8033 9691

¢: sfp@mpeforth.com

w: www.mpeforth.com

Abstract

All VFX Forth versions have been built from the same source tree. However, VFX Forth for
ARM Linux is the first ARM port since 1999. This paper looks at how well the original VFX
Forth source tree has stood up to the changes of the last 15 years.

Introduction

There is now a large number of ARM-based systems running Linux. These range from
expensive to very low cost, e.g. Raspberry Pi (around EU 40) and Beaglebone Black. These
devices are so cheap that many traditional embedded systems can be replaced at lower cost by
these off-the-shelf systems.

These low-end ARM systems use CPUs that range from 450 MHz ARM11s to 1GHz Cortex-
A8s. The CPUs all support the original ARM 32 bit instruction set. The systems provide
several different flavours of Linux.

The project was thus to port VFX Forth for Linux from the x86 implementation to an ARM
with minimal changes to the overall VFX Forth source tree. The source tree is implemented
for a multiple stage build. Here we are concerned with the first two stages:
1. Production of the Forth kernel with a primitive interface to the operating system, but
with a full assembler, disassembler and code generator,
2. Self-compilation by the kernel of the Linux O/S interface and development tools.

The first stage build is performed by the existing Forth cross compiler for the ARM. This only
required a few minor changes to match creeping changes to internal data structures in the
target Forth.

Operating System startup and coded definitions

The startup code is contained in a single file which covers the ELF headers, Forth startup
from the operating system, primitive access to shared library access routines, and the callback
interface. Most of this code is written in assembler, and is the largest assembler component of
the whole VFX Forth system. Once the cross assembler, disassembler and code generator are
working, this is one of the most critical files in the system.

Barring one or two, all the other code definitions are in a small file that contains words that
are best coded. For example, the base ARM32 instruction set does not include a divide
instruction. A version of CMOVE is available that provides four times the performance of a
byte-by-byte CMOVE but is over 900 bytes in size. These routines were taken from the
existing embedded ARM target for the cross compiler.

26

VFX Forth for ARM Linux EuroForth 2014

Other files contains the operating system specific routines required for the first-stage build,
the default console (unchanged from x86 Linux) and the binary save utility (virtually
unchanged from x86 Linux).s

Assembler, disassembler, and VFX code generator

The assembler is cross-compiled because it used by the code generator. The disassembler is
cross-compiled because you need it to debug the code generator. The code generator is cross-
compiled so that all the code in the system is optimised.

The code is taken from the cross-compiler's code tree. Changes are required for defining
words. The notation used is from the ANS draft cross-compiler proposal. It's not pretty but it
works. Changes are also needed because the MPE cross compilers and VFX Forth use
different notations for connecting compilation semantics to word names. This could be
improved. Additional minor changes were required because the cross compilers are focused
on embedded systems with separate Flash and RAM, whereas hosted systems mainly have a
single address space in RAM.

Library linkage
Linking the Forth to shared libraries is a fundamental part of making a Forth for a hosted

system. The MPE Extern: notation emphasises being able to copy and paste a C prototype
from the Linux documentation. The following example is taken from the GTK interface.

Extern: gboolean "C" g_file_ set_contents(
const gchar * filename,
const gchar * contents, gsize length,
GError ** error

)i

This is, in many ways, the most critical file in the port. It is affected by the startup code and
the interface into dlopen() and friends. Although MPE has VFX Forth for 32-bit x86 Linux,
ARM Linux uses a rather different calling convention with the first four integer parameters
passed in registers. Several other O/S interfaces use a similar convention. The choice of how
to pass floating point values to Linux affects the floating point package and the parameter
passing mechanisms may affect Forth stack layout.

The floating point options are such that we do not yet know how many ABIs must be
supported! There are two main ones, for the VFP hardware and for floating point emulation.
In many ARM9 implementations, there is no FP hardware and software FP is used. Software
FP may well use a library API that passes FP numbers in the integer registers and/or the C
stack. Hardware FP may either use the same API as the software FP or may use a faster API
that uses the VFP registers. The choice of API is probably defined by the choice of Linux.
There is no guarantee that two Linux implementations for the same hardware will use the
same FP APL.

Once all the choices have been made for the shared library interface, the same choices have to
be implemented for the callback interface.

27

VFX Forth for ARM Linux EuroForth 2014

GTK

MPE uses GTK for cross-platform GUIs across Windows, Linux and even Mac OS X. For
Linux, GTK is also our primary GUI environment. It has been extended with a simple
graphics extension that works in a similar manner to the old Borland BGI interface from long
ago.

About GTK/GDK demo - x

GTK/GDK demo 1.0

\WFX Forth Glade Test Program
{c] 2008, 2011 MicroProcessor Engineering
MPE Website

Credits Licence - Close

Apart from the different shared library names on different operating systems, the GTK
interface and the demo shown above uses the same source code unchanged.

Similarly the majority of the Forth examples and library interfaces compile unchanged.

GPIO

Using a Raspberry Pi as a base system, the speed of GPIO access varies hugely according to
how it is done. The following link has the gory details:

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed

Depending on language and implementation technique, you can expect to see GPIO access in
the range 40 kHz (Python) to 20 MHz (optimised C). In VFX Forth we expect a generalised
routine to achieve about 7 MHz, while specific access should exceed 15 MHz. To achieve
such speeds, the Forth application must be run with root permissions.

Conclusions

Once code generation is good enough, the vast majority of a Forth system can be written in
high level Forth. The hard parts of the remainder are involved in the operating system
interface. A very few routines are still best written in assembler, for example a high
performance version of CMOVE.

Given that the last 15 years of VFX Forth development have all been for the Intel TA32
instruction set, the addition of ARM and allowance for multiple instruction sets has caused
very few changes to existing files. At least for a Linux operating system, there have been no
changes to the second stage build except to automate (by conditional compilation) the
selection of shared library file names.

28

VFX Forth for ARM Linux EuroForth 2014

As the cost of hardware designed to run ARM Linux has plummeted, e.g. Raspberry Pi,
Beaglebone Black and Olimex OlinuXino all fall in the EU 30 to EU60 range, Linux boards
are becoming cheaper than conventional embedded hardware. We can expect to see many
traditional embedded applications migrate to Linux boards. In particular, we already see the
Raspberry Pi (2 million sold), being modified in the B+ form to be significantly more suitable
for industrial use — more 1/0, better mounting holes, more USB.

Where hard real-time is still important there's always a trade-off, but we are already seeing
some migration to FPGA+ARM solutions, e.g. Xilinx Zyngq, where the FPGA portion handles
the heavy-lifting of the hard real-time requirements. The Zynq incorporates a dual-core
Cortex-A9, all the standard peripherals including Gigabit Ethernet, plus an FPGA. Such
devices will, in the long term, make the traditional embedded system an extremely niche
product.

Acknowledgements

Our thanks to Vic Watson, Juergen Pintaske and several others for encouraging us to generate
VFX Forth for ARM Linux.

29

High Integrity Systems
CODE

by Paul E. Bennett IEng MIET, HIDECS Consultancy

Abstract:-

In Phil Koopman's paper “The Grand Challenge of Embedded System Dependability” he sets out
four challenges.

“Four significant challenges in embedded system dependability are:
* embedded-specific security approaches,
* unifying security with safety,
* dealing with composable emergent properties,
* and enabling domain experts to use advanced dependability techniques.”
[Koopman1]

This paper will describe the benefits of developing software as components of a system, following
on from their interface specification, review/examination, functional testing and limitations testing.
It will continue to explain why Forth is one such suitable Component Oriented Development
Environment. We will cover the development process (including organisational requirements) and
the production of well specified and correctly behaving (according to its specification) software.

Mechanics

Early Engineering was entirely mechanical in nature. The invention of the wheel and axle, the ramp,
the Archimedes Screw, Nut and bolt etc. The early days saw some failures but the engineers of the
time learnt how to make the components better and stronger within the constraints they were forced
to deal with. They also gained the wisdom to know when to state that the constraints were too
restrictive and not workable. For installations where safety was a major concern, the notion of using
certified components became widespread. Such components had to be certified as meeting
specifications and being compliant with standards in materials inspection and testing. Our
mechanical engineering counterarts have had a very extensive head-start. An example of an early
standard was the one for screw threads.

Electrical & Electronics

Slightly newer than the mechanical engineering industry sector, the electrical and electronics
industry has managed to assist in the simplification of many machines and systems. Integrating with
the mechanics, the electrical and electronic systems also became the subject of closer examination
and thus eventual Certification of Conformity (CofC) also became compulsory for Safety Related
and High Reliability Systems. Then machines and electronics began to become programmable,
leading to the creation of seemingly quite clever machines. Thus was born software. However, some
early programmable machines led to the occurrence of disasters.

30

Software

When software came along, the early implementers were highly skilled mathematicians. However,
the number of people creating software grew rapidly and some of the new software writers were
neither mathematicians nor engineers. This led to some sloppy code and systems that would fail
regularly. Only recently have some software engineers become interested in creating software that
truly is delivered by robust engineering methods. Component Oriented Software is one such
engineering methodology.

However, systems are not just software. Everything that makes up that system, including the
statement of requirements, the design documents, the operating manuals as well as all the nuts, bolts
and logic components are a part of the overall system. Rather than different methods for developing
the hardware and software a unified development approach that all involved in the process
understand fully becomes the basis for managing a “Component Oriented System Devlopment”.

Development Process

If you want your systems to have real integrity it is necessary to be very adept in the early
development of accurate requirements, that are testable for compliance with the clients real needs,
before you launch into writing the design specification. Also, remember that prototyping is only
meant to be a tool for exploring the detailed requirements space in order to hone the thinking at that
level. The two best models of development still tend to be either the "V" model or Barry Boehm's
Spiral Model (applied properly and with the early spins being directed solely at the elicitation of the
full and correct requirements). The V model has to be applied as a two-prong approach to initially
developing requirements and the System Acceptance Test Cases that prove the requirements have
been fully met. Thus you will be developing the final acceptance test clauses in parallel with
determining what your system needs to do. It is therefore imperative to finding the right descriptive
language in which to express the requirements and allow the test cases to be written (even to the
extent of handling the un-expected conditions). Tests have to not only cover the acceptance of the
component unit but build to the acceptance of the overall system.

Naturally, to have a robust development process, properly followed such that it meets at least the
SEI CMM level 3 [SEI], is paramount to providing systems with certification that will be believed.
The organisation needs to properly support the development process through assignment of
appropriate roles and responsibilities to suitably qualified and experienced personnel. This means
that all the management chain has bought in to such development processes and its proper
operation. There needs to be enough discipline in the process to succeed and the application of the
process needs to provide sufficient data of its correct application. Thus robust configuration
management will be required to form the basis of this development process [Kelly].

Finally, for this section, the documentation you produce has to be fit for the purpose of describing
the components and the system to which they will belong. There is a world of difference between
good and bad documentation [Montforton]. You don't want too much or too little documentation,
but sufficient [Koopman2].

Wernher von Braun once said "Research is what I am doing when I do not know what I am doing".
So, to say you are involved in R&D must mean that you are on a voyage to discover what your

31

client truly needs in a way that he can sign his full agreement with your proposals. You might spend
more than 60% of project time getting to the stage that the requirements become complete and
testable, but, in the long run it is often much faster and yields better quality of product than to leave
testing as an afterthought. However, once you have discovered all the aspects of the system and can
complete the full requirements specification, including the safety, security, environmental and
aesthetic aspects, then the easier it becomes to establish the best components to utilise within the
system.

C.O.D.E

As stated above, the hardware world has managed to accomplish designs with some of the highest
integrity, engendering a high level of trust in such systems. We need such in the software world and
some attempts were made at the network level with schemes like .NET and CORBA. These are
quite large and complex components in general that have to be built to be host system agnostic.
However, in control systems, such a networking level is too high a consideration in resource
constrained small controllers prevalent in industrial controls (eg. field sensors and devices).

A Component Oriented Development Environment allows developers to independently create and
test individual components. In software the author proposes Forth is such an ideal software
Component Oriented Development Environment (C.0O.D.E) that it becomes easy to develop a
library of software components that can be created, tested and fully certified to similar standards as
individual components in the hardware world. A Certificate of Conformity for each and every Forth
word that has almost mathematical certainty about its behaviour.

Why Forth?

This question has been asked very often and a number of very varied responses have been offered in
answer. Why certification works with Forth, though, is down to the underlying Virtual Machine
Model (VMM) that is the central embodiment of Forth. Despite, over the years, many Forth
language standards being created, the basic underlying VMM is the same as that created by Charles
Moore. With this VMM, the foundation on which we build Forth software components has been
stable since its creation and provides a very good platform on which to build, no matter the
underlying processor architecture, register provision or memory space available. The Forth Virtual
Machine is compact and easily implemented in incredibly small spaces (~512 bytes to 8kbytes),
either fully on the target processor or as an interactive umbilical connection (not an option available
with many other environments). With this VM as the basis it becomes almost trivial, on a word by
word basis, to conduct compliance testing on each and every Forth word you use and create to
support your application.

Most Functional Safety Standards require Certified Compilers and, in other languages, these
become very expensive, hard to wield and the outcome is not fully certain despite the claims.
However, the key is that it is a results based confirmation with a tough inspection and testing
regime applied is just as valid and allowed by IEC61508 for Assembler Code. With Forth being,
probably, the best macro assembler in the world, it becomes easy to see the way in which to
progress. Using Forth alone does not guarantee that a product will be safe. Its use has to be coupled
with a relevent and highly capable Design and Development Process that features full version
control and configuration management capabilities.

32

The Basis of Certification

Once you have determined your approach to constructing your system to meet the requirements,
you need to look at the practice of construction for a robust and certified system. You need a few
standards in place to accomplish the task. I have mentioned IEC61508 but that is the over-arching
Functional Safety Standard for Electrical, Electronic and Programmable Electronic Systems. It is
fairly agnostic about software implementation language. In addition to this you should have a
couple of other documents within your development organisation (probably better styled as guides).
Some years ago I published the Forth Coding Standard as a public domain document. From this
start I know that a few companies have adopted and adapted it to great benefit in making the Forth
Source Code more readable. It promotes a more literate style of presenting the source code.

Adopting and following such style guidelines should also help in automating some of the more
tedious tasks associated with providing a good quality documentation of the installed system. Tools
such as DocGen can help here. Additionally, we have the language standards, such as Forth200X,
that we can conform to in order to aid portability of code and/or programmers between Forth using
organisations. Standards also aid in wider collaborations.

In Forth Certification the elements of interest are:-

¢ The words name which is a reasonably good identifier
¢ The Glossary Text which becomes the words functional specification of performance.
¢ The Stack Comments which details the input and output parameters

¢ The Word Make-up which is the words that this word uses in order to perform its intended

function.

To certify that the word performs its allotted functionality and has no side effects we take the above
four items and perform the following:

e Static Inspection is a Fagan Style examination to ensure that the apparent intent of the
requirements as stated in the glossary text are implemented correctly. Such inspection will
also require that the words used in the make-up of this word have been applied correctly.
Earlier words should also have been certified in a similar manner.

¢ Functional Test to ensure the word actually compiles and performs as specified. Such

testing should explore all pathways of logic within the word.

¢ Limits Test to explore the unwanted side effects a word may have and to ensure that such
limitations have been properly documented (in the glossary text). This will ensure that only
the right amount of data is pulled from the stack, the stack does not underflow and all logic
paths have been exhaustively tested to ensure no adverse behaviours exist.

As most Forth systems are built bottom-up, the above becomes just an extension of the normal test
as created philosophy. However, for certification the coder should pass code, he is satisfied with, to
others to perform the above three processes. That, though, is just to maintain some independence
between the coding stage and the certification steps. Many of the safety standards demand such
independence.

33

Benefits of a Component Oriented Approach in Forth

Once the component has been coded and certified it may be submitted to a library repository so that
it is available for re-use in other projects. If the code is stored as a package along with its
certification documentation then the whole library could be considered as tried and tested code that
could be used anywhere else so long as its provisions matched the requirements of the new use.
Why should Certified Forth code not be as moveable and re-usable as say, an M25 nut fitting onto
any other M25 bolt. Such mobility and re-use of precoded components will ease the creation of
much larger certifiable systems in the future. The level of documentation for a certified component
is higher than for a non-certified component due to fully accounting for each components
limitations. This is, though, much like documenting the Maximum Permitted Voltages on an
electronic component.

“We have witnessed hosts of microprocessors and microcomputers marching from cradle to grave,
right before our eyes. Languages and operating systems come and go. Even in Forth, which I use to
code for a living and write about to entertain, we've seen good work done and disappear, come and
go. Have we seen the best yet?” [C.H.Ting]

1. I think we might be about to, and you could and should make that happen.
References & Notes:-

[Koopman1] “The Grand Challenge of Embedded System Dependability” by Koopman P. given in

a panel session at Dependable Systems and Networks 29" June 2011.
<http://users.ece.cmu.edu/~koopman/pubs/koopman11_embedded_dependability_challenges.pdf>

[Koopman2] “Better Embedded Software Systems” by Philip Koopman, ISBN 978-0-9844490-2
[Monforton] “Good vs. poor documentation: Don't be ‘that guy™ by Jeff Monforton 17" December 2013.
[SEI] “CMMI Distilled” by Dennis M. Ahern, Aaron Clouse & Richard Turner ISBN 0-321-18613-3
[Kelly] “Configuration Management: The changing Image” by Marion Kelly ISBN 0-07-70977-9

[C.H.Ting] “Footsteps in an Empty Valley” by C. H. Ting publishd by Offette Enterprises 1985.

34

HiTex
ITEX gets a helping hand from Forth

Bill Stoddart

September 17, 2014

Abstract

HiTeX is a simple LaTeX pre-processor that works through token
replacement. It provides improved readability of mathematical text
in a source document by allowing free use of Unicode characters and
eliminating any need for specific spacing and new line commands. Hi-
TeX gains considerable power from the ability to incorporate sections
of Forth text within a document. Output generated by Forth can be
directed to the output file, or can be used to define place-holders which,
when used within maths mode in a HiTeX document, will be replaced
by the result of the corresponding computation.

Keywords: LaTeX, Unicode, Computable Document, RVM-Forth

1 Introduction

LaTeX is a versatile type setting system that gives excellent results on both
mathematical and normal text. However, the mathematical markup is not
always easy to read as mathematics. The advent of Unicode should have
improved this, allowing us to write, for example, y/« instead of the standard
latex markup \sqrt\alpha. However, Unicode and its utf8 encoding have
only partially been adopted by the LaTeX community, with the promising
ucs package left unmaintained and unfinished. The projects XeLaTex and
LauTeX are complete reworkings of TeX and Latex which are based from the
outset on Unicode utf8 input. Our research group produced some papers in
XeLaTex, but it was not a happy experience. One problem is that journal

35

editors and submission portals may not accept documents written with these
tools. We also had a problem with Greek characters, due to the fact that a
font suitable for publishing an article written in Demotic Greek will not be
suitable for providing the Greek letters used in mathematics. Also, we felt
that the availability of Unicode should make the markup language sufficiently
compact that it would be possible to revise the LaTeX practice of ignoring
white space and requiring specific markups for additional space and new
lines. We wanted a markup language where spaces and newlines would, by
default, be taken into account in the final markup.

It also seemed to us to us that, rather than completely rewrite TeX and
LaTeX, which are absolutely brilliant as they are, it would be better to write
a simple pre-processor to translate a Unicode mathematical language into
classical LaTeX. The result is HiTex. The last page of this document gives
an example of HiteX markup and the resulting output.

HiTex is a hybrid of Forth and Latex which has its own variant of the LaTeX
mathematical markup language. A HiTeX document contains 3 types of text.
Initially, it is in pass-through mode, in which text is just streamed from the
input file to the output file. All the HiTeX interpreter is doing at this time
is checking for tokens that will take it either into a mathematical mode or
into Forth.

Within a mathematical mode, HiTeX performs token replacements, recognis-
ing tokens in the HiTeX source, and replacing them by a corresponding token
in the LaTeX output file. A token can be any sequence of characters. Some of
the tokens are Unicode characters, such as V, 4, dot etc, which are replaced
by their corresponding LaTeX markups, \forall, \exists, \bullet. How-
ever, a token can also be something like a new line character, a space, or a
sequence of spaces. Where one token is the prefix of another (for example
a token consisting of two spaces would be a prefix of a token consisting of
three spaces) the longer token is matched first. This ensures a correct match
for all tokens.

HiTeX is implemented in RVM-Forth and uses Frank Zeyda’a set package,
(see EuroForth 2002 proceedings), which supports arbitrary finite homoge-
neous sets. We use ascii zero format strings.

The corresponding pairs of tokens used by HiTeX are held in the set LaTeX-MARKUP.
Here is the beginning of its definition:

STRING STRING PAIR { " V" \forall" -,

" E|u " \exist " ,_)7

36

Text before the opening brace gives the type information required to con-
struct the set. The set consists of pairs of strings. The maplet operator
— combines two strings on the stack into an ordered pair of strings. The
following comma compiles this element into the set. The set construction is
terminated by a closing brace, at which point the set (i.e. a pointer to the
data structure which represents the set) is left on the stack

Within a Forth section a user can add new markups using set union U or
remove markups using domain subtraction <<|.

2 Including computation results in a document,
an integer maths example

A interesting case is where the token to be inserted in a document is produced
by a Forth computation. To define a token that captures an integer result,
we can use the defining word nf. Here is an example of its use.

1234 nt s

This defines a new dictionary entry s which, when executed, gives the address
of an asciiz string containing the text “1234”. We adopt a naming convention
that strings generated in this way that will subsequently be used as tokens
will be given a name that begins with 1. Words that create such tokens have
names that end in f.

We look at a simple example where we add the values of two constants and
display the original values and their sum in a document.

2.1 Source code of the supporting Forth section

In the following Forth section the definitions fa, 18 and ta+(will return
asciiz strings containing the text “107, “20” and “30” respectively. Let us
suppose that these are the numeric strings that are to be placed in the La-
TeX output in response to seeing fa, T4 or ta+ [respectively in the HiTeX
source document. The tokens are paired up in a set, which is combined
with LaTeX-MARKUP using set union. The updates are disseminated to the
requisite HiTeX data structures with the CONFIG command.

37

%FORTH
10 CONSTANT a 20 CONSTANT B

ant fa B nt 1t a P + nt Ta+P

STRING STRING PROD { " ta” ta »
"IB" B e, " o+ o4 e, }

LaTeX-MARKUP u to LaTeX-MARKUP CONFIG END

Here is how these tokens can be used in a HiTeX math environment, along
with the result.

HiTex markup Final output
sa=ta, PB=1B, oa+p=ta+B$ o =10, =20, a+3 =230

3 A floating point example

Floating point results are captured in a similar way, but using the defining
word f1 to define the output tokens. After the first line of Forth code the
definition f4/2 returns the address of an asciiz string representing /2 to 6
decimal places (our default output precision).

3.1 The supporting Forth section

%FORTH 2. FSQRT ft V2 3. 2. F/ FSQRT ft 1v(3/2)

STRING STRING PROD { " fv2" fv2 » ,
n T‘J(3/2)" Tv(3/2) -) n ‘JII n \Sqrt n -) }

LaTeX-MARKUP u to LaTeX-MARKUP CONFIG END

And here is an example of HiTeX markup and the resulting final output.

HiTex markup Final output
\[V2 = 1.41421
V2=1v2 \/3/2 =1.22474zx
V«3/2»=1v(3/2) /
\1]

4

38

4 Configuraton tasks

A Forth section can be used for general configuration tasks, both of the
HiTeX application and of the underlying Forth system.

In the example above, French «guillemets »were used as HiTex scope delim-
iters. These are preferred to the standard tex/latex delimiters { and }, as we
use the latter as set brackets, and consider them to be essential mathematical
symbols.

HiTeX holds its scope delimiters in the VALUEs {SCOPE and SCOPE} .

The following Forth section shows how we change these delimiters to Unicode
bold brackets.

We also change the precision of the floating point output, recalculate the
string produced by printing /3/2, update our markups, and reconfigure.

4.1 The supporting Forth section

%SFORTH " (" to {SCOPE ")" to SCOPE}

(Regenerate the result for V(3/2) at higher precision)
8 SET-PRECISION 3. 2. F/ FSQRT ft 1V(3/2)

(remove the previous entry for the placeholder " tv(3/2)")
STRING { " tV(3/2)" , } LaTeX-MARKUP <<|

(Add the new entry)
STRING STRING PROD { " tV(3/2)" tW(3/2) » , } u
to LaTeX-MARKUP CONFIG END

Now our markup for 1/3/2 and the corresponding output are as follows

HiTex markup Final output
\ [V(3/2) = T\/(3/2) \] \/3/_2 — 1.2247449
5

39

5 Implementation note 1

The defining words nt and £{ have a lot in common, and both are defined in
terms of a more primitive word P2t as follows:

P2t (? xt "<spaces><name>"-- ; exec: -- az, Creates <name>.
On execution <name> will return the address of an az string
consisting of the text output by the execution of xt)

CREATE 'EMIT @ PUSH T['] C, 'EMIT !

EXECUTE 0 EMIT

POP 'EMIT ! ;

nt ['] . P21 ; : fT ['] F. P21

P27 takes an execution token fromthe stack, plus whatever extra parameters
are required for the token’s execution. It CREATEs a new dictionary entry and
vectors EMIT to compile its output into the dictionary. It executes xt, and
restores EMIT

6 A more general example

We provide for an arbitrary section of Forth source code to produce output,
which we assume will be in the HiTeX markup format, rather than in Latex.
This output must therefore be processed by the HiTeX maths pre-processor
before being inserted in the LaTeX document. This is done with the pair of
words [: ... :]. For example, suppose A .SET gives the output {1,2,3}
This is not suitable to be immediately passed into the output document,
since LaTeX will not see the braces as set delimiters, but as scope delimiters,
and they will not appear on the final output. The phrase [: A .SET :] fA
creates the Forth word TA which returns the address of the string obtained by
passing the text output by the Forth between [: and :] through the HiTeX
math pre-processor. Thus this defines {A as the string " \{1,2,3\}", which
is the correct LaTeX markup for the value of set A.

40

6.1 The supporting Forth section

%FORTH
INT {1, 2, 3, } CONSTANT A INT {2, 3, 4 , } CONSTANT B

[: A .SET :] TA

[: B .SET :] 1B

[: ABuU .SET :] tAuB
[: ABn .SET :] tAnB

[: AB\ .SET :] tA\B

STRING STRING PROD { " tA" tA » , " tB" tB » , " tAUB" fAUB » ,
" tAnB" fANB » , " tA\B" fA\B » , }

LaTeX-MARKUP u to LaTeX-MARKUP CONFIG END

HiTeX markup Final output

\[A ={1,2,3}

A = tA B = {2,3,4}

B = 1B _

AUB = tAUB AUB = {1,2,3,4}
AnB = tAnB ANB = {2,3}
A\B = TA\B \] A\ B = {1}

7 Implementation note 2

HiTeX reads a source file into an input buffer, and places its LaTeX output
in an output buffer. An asciiz string computed within a Forth section, and
whose address is on the top of the stack, can be sent directly to the output
buffer with the phrase:

DUP AZLENGTH TO-OUTBUFF

The outermost HiTeX interpreter passes text from the input buffer to the
output buffer until it encounters a token that causes it to enter either Math
mode, or Forth. The mathmode interpreter checks at each point in the
input buffer whether the following characters match one its tokens. These
tokens are those from the domain of LaTeX-MARKUP plus other tokens that
require special action. If the token is from the domain of LaTeX-MARKUP the

7

41

corresponding token from the range of LaTeX-MARKUP is added to the output
buffer. Other tokens are special cases which require additional action. For
example, a new line character in the input buffere requires a line count to be
incremented, and the new line itself plus the LaTeX markup for a newline
must be passed to the output buffer.

The input and output buffers are managed by a collection of VALUEs holding
buffer start addresses, pointers to the current position in each buffer, etc.
When text generated within a Forth section is to be processed by the HiTeX
maths pre-processor, e.g. when using a [: . :]. structure, these buffer
management values are saved, and the pointers etc are set to work from
temporary buffers. After the text is processed, the resulting LaTeX markup
is compiled into the dictionary and the temporary buffers are free for future
use.

We return to the point of distinguishing between tokens such as {A and A+B.
The first of these tokens matches the start of the second, i.e. the first token
is a prefix of the second. How do we ensure that tA+B won’t be mistaken for
TA?

We do this by searching for tokens in the same order as they occur in a
sequence. We place our tokens in a sequence in such a way that any token
that has prefixes that are also tokens will occur before its prefixes in the
sequence. Reverse lexical order will achieve this.

The properties of our set implementation and the reversible features of RV M-
Forth make this simple to implement. Every set is held as an ordered set, and
the CHOICE operator selects the maximal element of each set, or if invoked
after backtracking will select the maximal element not yet chosen.

For strings the ordering is lexical. Thus “7A” comes before “{A+B’’

We can create a sequence in which tokens in the domain of LaTeX-MARKUP
occur in reverse lexical order using the following code:

LaTeX-MARKUP DOM SET2SEQ
Where the definition of SET2SEQ is:

: SET2SEQ (x:P(X) -- y:seq(X), ran(y)=x) (: set :)
set [<RUN set CHOICE RUN>] ;

In this code the square brackets enclose a sequence construction. (They are
not the Forth Standard square brackets). The set before the open square

42

bracket provides type information. The code bracketed by <RUN ... RUN>
chooses an element of set and compiles it as the next element sequence.
Execution then reverses back to CHOICE, which makes a different choice if
one is available, and this is then added to the sequence. This is repeated
until no further choices are available, at which point execution continues
beyond 1 The result is a sequence of strings held in reverse lexical order.
This code is based on the premise that our sets are ordered; we know how
but we can’t control how. But the order of elements in a sequence is entirely
under programmer control.

8 Conclusions and Future Work

HiTeX has been very valuable to us for writing dense mathematical docu-
ments. Its main limitation is that it does not support a verbatim mode which
accepts Unicode - that’s why we have used screen shots for the most of the
Forth source code and HiTeX markup examples in this document.

43

Appendices

A HiTeX markup example

{plpEEAN
Ux'.(x"' € choice([s][™v(p)) =
{p" | p E{pe(x={x"} I} A
X]™v(p @ ¢ X - {x'} p) € choice([t]"v(p))

F= A}
)
}
n
{pl pEEN

Ux'.(x"' € choice([t]"v(p)) =
{p' | p"E{po®{x~{x'} P} A
[X]"v(p @ ¢ x » {x'} ») < choice([s]"v(p))
F= A}
)
}

{plpeén

V' (z' € choice([s]"(p)) =
{1 refpd(z~ {z})}A
[2]"(p & (z ~ {z'})) C choice([t]"(p))
b # A}

)

}

N
{plpeén
V' (2 € choice([t]"(p)) =
{10 efpd(z~ {2})}A
[2]"(p & (z ~ {2'})) C choice([s]"(p))
F# {3
)
}

10

44

Region-based Memory Allocation in Forth

M. Anton Ertl*
TU Wien

Abstract

Memory management has a pervasive effect on the
way we program. In region-based memory alloca-
tion, objects with roughly the same life expectancy
are allocated in one region, and in the end the whole
region is freed at once. This avoids the need to keep
track of the individual objects for free. Regions are
simple to implement and compatible with real-time
requirements and multi-threading, and seem to be
ideal for Forth, except for one thing: The region id
has to be passed to the allocation word, increasing
the stack load. We propose using context wrappers
to avoid that problem. This even allows to use ex-
isting allocate-based libraries with regions, but we
then have to decide what free and resize inside
these libraries do.

1 Introduction

The way that memory is allocated and deallocated
has far-ranging consequences on program design.

For example, consider a string concatenation
word. If you can allocate memory at will, and don’t
have to worry about deallocation (e.g., because you
work on a garbage-collected system), you might use
an interface like

astr+ (c-addrl ul c-addr2 u2
-- c-addr3 u3)

By contrast, if memory is allocated once and for
all (“static allocation”), you might go for an inter-
face like

bstr+ (c-addrl ul c-addr2 u2 c-addr3 u3
-- c-addr3 u4 n)

(inspired by the Forth-2012 word substitute).
Bstr+ writes the resulting string in the buffer
c-addr3 u3, with the length of the resulting string
in u4, and n indicating whether the operation was
successful (had enough buffer space).

If you need to free explicitly, you can use either
interface, but if you use astr+, you have to keep
track of c-addr3 and free it when you are done.

*Correspondence Address: Institut fiir Computer-
sprachen, Technische Universitdt Wien, Argentinierstrafie 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

The usage of these words varies depending
on how memory is allocated. E.g., consider
wanting to build a file path from a direc-
tory name dir (-- c-addr u) and a file name
file (-- c-addr u) and then using that file
path for opening a file:

\ astr+ with garbage collection
dir s" /" astr+ file astr+ r/o open-file throw

\ astr+ with allocate/free
dir s" /" file astr+ over >r astr+ r> free throw
over >r r/o open-file throw r> free throw

\ bstr+ with preallocated buffers:

create bufl 200 chars allot

create buf2 200 chars allot

dir s" /" bufl 200 bstr+ 0< abort" bufl short"
file buf2 200 bstr+ 0< abort" buf2 short"

r/o open-file throw

Garbage collection makes such things easy, and
may be the decisive feature for distinguishing high-
level languages from lower-level languages, but it
seems like it does not quite fit Forth: Its imple-
mentation is complex, in particular in combination
with lack of type information (a fundamental prop-
erty of Forth), real-time requirements (relevant in
significant numbers of Forth applications), and mul-
tiprocessing (becoming more and more important
with the spread of multi-core CPUs). Nevertheless,
there has been a garbage collection library for Forth
available since 1999'; however, this library does not
satisfy real-time requirements and is not designed
for multiprocessing.

The Forth standard supports allocate and free
(and resize) in the memory allocation wordset
since Forth-94 (heap allocation). Unfortunately,
this interface is cumbersome and error-prone:

e If you free too early, the system may allocate
the memory for some other use and if you then
try to access the (already-freed) object, you get
the wrong data or change data in the new, un-
related object (dangling reference).

e If you fail to keep track of all allocations, you
fail to free some, and you get a memory leak.?

Thttp://www.complang.tuwien.ac.at/forth/
garbage-collection.zip
2Note that freeing everything just before leaving the sys-

45

Ertl

There are various techniques to avoid these prob-
lems, but they tend to restrict the way you pro-
gram, and they may cost performance; e.g., in the
extreme you can make a new copy of the object ev-
ery time you copy the address, and then you can be
sure that you can free the object when you consume
that address (because every object has only one live
address) [Bak94], but all that allocating, copying,
and freeing costs performance; also, this technique
does not work for mutable objects.

This paper discusses region-based memory allo-
cation, a technique in between free and garbage
collection that might be a good fit for Forth. It
describes what region-based memory allocation is
(Section 2), presents Forth words for regions (Sec-
tion 3), discusses how allocate/free/resize code
can be used with regions (Section 4), outlines and
implementation (Section 5) and discusses related
work (Section 6).

2 Region-Based Memory Allo-
cation

With region-based memory allocation, you can have
several regions active at the same time. You allo-
cate memory from one of these regions. When you
no longer need any of the memory in a region, you
free the region.

The way regions are typically used is: As ap-
plication programmer you know that a bunch of
things are guaranteed not to be needed beyond a
certain point, so you introduce a region for these
things, and allocate memory for these things from
this region. In between, you can allocate things
from longer-lived or shorter-lived regions. Typical
examples for this kind of pattern are:

e A web server typically has a lot of things that
don’t survive the HTTP request. These things
could be allocated in a region that is freed when
servicing the request is completed.

e A compiler could have regions for the basic
block (straight-line code sequences), and the
definition. As soon as it is done with one ba-
sic block, it frees the basic block region and
starts a new basic block region for the next ba-
sic block. Likewise for definitions.

e A text formatting program could have regions
for a line, a paragraph, a page, a section, and
the whole document.

Regions give programmers a wide range of control
over memory management. FE.g., you could start

tem is counterproductive; it may page in stuff that would
just be freed (without paging) by the operating system as
part of terminating the process.

Regions

out with few regions (e.g., in the compiler only have
regions for definitions); when you notice that this
consumes more memory than you want, you can
introduce additional regions for more fine-grained
control (but with the potential for more bugs).

Regions are relatively easy to implement (about
the same difficulty as allocate/free), even in the
presence of real-time requirements and multipro-
cessing. So they appear to be a good fit for Forth.
Why have they not caught on?

3 Forth interface for regions

A straightforward region interface works with re-
gion IDs passed on the stack:

new-region (-- region-id)
region-alloc (usize region-id -- addr)
free-region (region-id --)

The disadvantage of this kind of interface is that
it requires passing the region-id around. E.g., for
our string concatenation example, we would have a
word

cstr+ (c-addrl ul c-addr2 u2 region-id
-- c-addr3 u3)

The region-id would have to be passed around on
the stack inside cstr+, and we would have to pass
the region-id to cstr+. For our file path example
this could look as follows:

new-region >r

dir s" /" r@ cstr+ file r@ cstr+
r/o open-file throw

r> free-region

This works passably in this case, but we con-
sumed the top-of-return-stack for the region-id, and
cannot use it for something else anymore. In any
case, this kind of region interface increases the stack
load by one item.

This has deterred me from using regions for a
long time, but recently I have thought about how to
use stack load reduction techniques [Ert11] to avoid
this problem. I settled for using context wrappers,
because this allows writing general-purpose words.
Region-alloc is split into:

ralloc (usize —-- addr)
with-region (. region-id xt -- ...)
\ xt: (... — ...)

So you pass the region-id to with-region, which
executes the xt, and while executing the xt, every
ralloc allocates from region-id (unless it is exe-
cuted in a nested with-region context).

Let’s look at our string concatenation example
again. We can now use the astr+ interface instead
fo cstr+:

46

Ertl

new-region dup
[: dir s" /" astr+ file astr+

r/o open-file throw ;] with-region
free-region

This example uses the syntax [: ;1 for
nestable unnamed definitions (quotations). The ex-
ample is not shorter than the cstr+ one, but the
return stack is now free for other uses (within the
quotation).

But there is still a stack item passed from
new-region to free-region. We can also have a
wrapper that replaces these two words:

do-region (Lxt - L)
\ xt stack effect: (

With that, our example looks as follows:

[: [: dir s" /" astr+ file astr+
r/o open-file throw
;] with-region
;] do-region

For cases like this example where do-region and
with-region work together, we can also have

do-with-region (... -= ...)
\ xt stack effect: (... —— ...)

which combines the effects, resulting in:

[: dir s" /" astr+ file astr+
r/o open-file throw ;] do-with-region

4 Allocate/free/resize

With the region passed implicitly, we can use an
interface that is compatible to the standard word

allocate (usize -- addr ior)

instead of ralloc. Indeed, we can even redefine
allocate to allocate from the current region when
called inside a with-region context. This allows
to use words or libraries written for the standard
memory-allocation wordset with regions.

To make this idea work, we also need to determine
what free and resize should do when called inside
a with-region context.

For free this is relatively straightforward: if
the memory has been allocted from a region, free
should not free anything (the memory will be freed
when the region is freed); if the memory has been
allocated from the heap, then free should perform
the standard free.

Resize is more complicated. One can see it as al-
locating memory from the current region, and free-
ing the original memory as described above. How-
ever, that would not always reflect the intent of the

. region-id -- ...)

Regions

programmer who wrote the resize, and may lead
to too-early freeing.

So how is resize used in practice? In my expe-
rience resize is used in two ways:

e To simulate statically allocated buffers of un-
limited size. The program first allocates a
small buffer (or stores 0 as buffer address), and
grows the buffer with resize when necessary.
These buffers are never freed.

e For temporary growing structures. These
structures are freed when the program no
longer needs them.

Given that, one approach for dealing with resize
is to always treat it as working on the heap. If
the memory was first allocated from a region, the
resize should be treated as allocating from the
heap. People who want to write code for regions
should not use resize.

One problem with these ideas is that it some-
times requires determining whether a piece of mem-
ory was allocated from the heap or from a region.
Determining this can require quite a bit of code
and can be slow (depending on the implementation
of regions and the heap).

The following assumptions would get rid of this
need:

e Resize only gets 0 or previously resized
memory as a-addrl parameter. With this
assumption resize does not need to see if
the memory was allocated from a region (it
wasn’t). Unfortunately, the standard does
not specify that resize works for a-addr1=0
(Gforth does), so this assumption will not hold
for standard programs that use resize.

An alternative, less restrictive assumption is
that the resized memory was allocated from
the heap, but that would restrict the usage of
with-region in combination with code that
uses resize for temporary growing structures.
To avoid programs that don’t get this right,
it would be useful to check this assumption,
but that again requires determining whether
memory was allocated from the heap or from a
region.

If this assumption is made, but does not hold
(i.e., region-allocated memory is resized), the
result is unpredictable and depends on the
heap implementation.

The other alternative is to assume that the
memory is either from a region or previously re-
sized. Then, if it is not previously resized, we
just heap-allocate new memory, copy the old
memory there, and do not free the old memory.
If the old memory was actually heap-allocated,
this will lead to a memory leak.

47

Ertl

Regions

region1 —N\\Y

region2w W

Figure 1: Implementation based on allocate

V)

regiont

region2

Figure 2: Implementation based on one big memory block

e Free within a region only refers to region-
allocated memory, except possibly resized
memory. With this assumption, free needs
to check only if memory is resized, which is
cheaper to check. Ideally resized memory is
always freed with a separate word, then we can
do with a placebo free inside a region. If this
assumption is made, but does not hold (i.e.,
heap-allocated memory should be freed in re-
gion context), there will be a memory leak.

It is unclear which of the various options in this
design space is best. So it is probably best to use
the simplest option at first, build in checking to
make users aware of the restrictions, and ask users
for feedback.

5 Implementation

This section sketches two implememtation ap-
proaches.

5.1 Based on allocate

Each region is represented by a linked list of blocks.
Each block has a standard size (e.g., 16KB) and is
allocated. Within each block, there is a pointer to
the first free byte, and a new allocation in the region
is made there. If the rest of the block is too small for
the allocation, a new block is started (see Fig. 1).
If an allocation is bigger than the standard block,
it gets its own private block of the appropriate size.

When a region is freed, the linked list is traversed
and all the blocks in the linked list are freed. For
real-time requirements, one could arrange to delay

the freeing, such that only one block is freed per
region allocation.

For checking whether an address is allocated with
resize, one could have a simple array of resize ad-
dresses. If there are only few resize addresses at
the same time, this is sufficient. A more scalable
data structure (inspired by a sparse set represen-
tation [BT93]) would have an extra cell before the
resized memory that points to the array; if this ad-
dress points within the bounds of the array, and the
place where it points to points back to the address
we are looking at, the address has actually been
allocated with resize.

For checking whether an address is allocated in
a region or on the heap, we would have to walk all
the blocks of all the heaps, and check whether the
address is contained there.

The benefits of this kind of implementation over
one that uses one allocate per region-alloc and
links all the allocations together is less memory
overhead for links, and less time overhead in allo-
cation and deallocation.

5.2 Based on one big memory block

In an embeded system with full control over mem-
ory we may prefer to reserve one big block of mem-
ory for regions. Similarly, if we are working on a
decent virtual memory system, we could mmap a
big chunk of address space for regions (say, as big
as the physical memory of the machine).

This implementation is based on buddy memory
allocation. The first region starts out at the bottom
of the big block. When starting another region,
the block is divided into two parts (see Fig. 2). If

48

Ertl

the part of one region runs out of space, one can
split the part of a region with more free space, and
continue there.

When freeing a region, all the parts it has are
freed, possibly regrowing parts of other regions.

Checking for resize addresses is the same as for
the other implementation.

Checking whether an address is allocated in a re-
gion or on the heap is very easy: If the address is
within the big block, it is in a region.

Overall this implementation approach is similar
to the other one, but you implement the base mem-
ory allocator yourself (as buddy allocator) instead
of using the system’s allocate. The benefits are
that you can use your knowledge of the base alloca-
tor’s implementation to simplify some of the opera-
tions of the region allocator (e.g., checking whether
something is in a region).

6 Related work

Region-based memory allocation is an old idea,
that has appeared under different names: regions
[GA98], arenas [Han90], pools (Apache), memory
contexts (PostgreSQL), obstacks (glibc). “Region”
is the name used in most recent papers and in
Wikipedia3.

Glibc’s obstacks extend the usual capabilities of
regions by allowing to grow allocations, and deal-
locate from an obstack in a stack-based way, i.e., a
very dictionary-like behaviour, except that you can
have several obstacks, and a growable object is not
addressable while it is still growable.

The regions implementation based on allocate
is the same as that described by Hanson [Han90],
and as described in the obstacks documentation of
glibc.

Gay and Aiken [GA98] evaluate regions empiri-
cally, and find that regions are either best or close
to the best alternative in both run-time and mem-
ory consumption. They also propose and evaluate
a safe version of this technique, based on reference
counting (references into a whole region).

Because regions and their implementation are so
simple, there is little academic literature on them
themselves, but rather on more complex ideas like
region inference, where the compiler tries to deter-
mine regions for allocations automatically.

Context wrappers are one of the techniques for
reducing the stack load [Ertll]. They were in-
spired by Jenny Brien, who proposed a wrapper for
dealing with the input stream on comp.lang.forth
<8s7mk1$4ql$1@news6.svr.pol.co.uk>.

Shttp://en.wikipedia.org/wiki/Region-based_
memory_management

Regions

7 Conclusion

Region-based memory allocation offers a more
convenient memory allocation model than
allocate/free, while avoiding the problems
of garbage collection: regions are much simpler
to implement, especially in combination with
multi-threading and real-time requirements.

So regions seem to be a good fit for Forth. How-
ever, they have not caught on yet, because they re-
quire passing the region id around, thus increasing
the load on the stack. By using context-wrappers
we can reduce this stack burden.

This opens up the possibility to use existing,
allocate-using code with regions, often avoiding
the need to keep track of each piece of allocated
memory for free. But one then has to do some-
thing about the frees and resizes in this code.
We have discussed this issue here, but are not sure
what the best approach is.

References

[Bak94] Henry Baker. Linear logic and permuta-
tion stacks — the Forth shall be first. ACM
Computer Architecture News, 22(1):34-43,
March 1994.

[BT93] Preston Briggs and Linda Torczon. An ef-
ficient representation for sparse sets. ACM
Letters on Programming Languages and

Systems, 2(1-4):59-69, 1993.

[Ert11] M. Anton Ertl. Ways to reduce the stack
depth. In 27th FEuroForth Conference,

pages 36-41, 2011.

[GA98] David Gay and Alex Aiken. Memory
management with explicit regions. In
SIGPLAN ’98 Conference on Program-
ming Language Design and Implementa-

tion, pages 313-323, 1998.

[Han90] David R. Hanson. Fast allocation and deal-
location of memory based on object life-
times. Software—Practice and Fxperience,

20(1):5-12, January 1990.

49

Doing C-style structs on cell addressed uCore
Klaus Schleisiek - kschleisiek @wauland.de

Last year, the technical high-school of Windisch (FHNW - Fachhochschule Nordwest-Schweiz)
realized a uCore back end for LCC (Little C-Compiler). LCC was enhanced by Markus Knecht to
become FCC (Forth C-Compiler) integrating advanced stack allocation techniques into the front
end. This substantially reduced the number of local variables on the return stack and turns uCores
dual stack architecture into a performant C engine.

Another problem with C is its fundamental byte orientation. I took this problem lightly for a long
time proposing to declare a byte to be any number of bits as long as it is more than eight.
Unfortunately, this way of looking at things does not help in the case of C at all: Unions may be
defined to access a quadruple of bytes as one 32-bit integer.

Therefore, bytes need to be accessible within larger memory cells - of which only even multiples of
eight make sense at all. So lets discuss a 32-bit word width architecture. Integer (32-bit i@, i!),
word (16-bit w@, w!), and byte (8-bit c@, ¢!) accesses within a 32-bit cell are needed.

For fetches this is easy. i@, w@ and ¢@ can be realized in a single cycle, perhaps followed by the
word signed that takes care of appropriate sign extension. Without signed, the most significant bits
will be zero filled. Stores are more complicated requiring an un-interruptible dual cycle read-
modify-write cycle. We fetch the appropriate 32-bit cell, modify the byte or word to be written and
write the result back to the cell.

This leaves us with two more problems: 1) how to do byte/word addressing and 2) what to do when
access happens to a "misaligned" address. The answer to 2) is classical: We raise an exception and
execute a call to the "misaligned address trap" address. More on this later.

1) is more tricky and there have been two approaches to addressing bytes on cell based machines. In
a 32-bit machine, we need two additional bits to locate a byte. We observe that this reduces the
address space of the word addressed machine by a factor of four, which is not a real limitation on a
32-bit machine, and if it is, upgrade to 64-bits.

This leaves the question: Where do we put the additional address bits? The most intuitive solution is
to shift the word address two times to the left and use the two new least significant bits for selecting
a byte within a 32-bit cell. Byte address arithmetic is trivial - normal 2scomplement arithmetic will
do. But unfortunately, under this approach a 32-bit integer address is a completely different number
than a 32-bit cell address accessing the same memory cell.

Therefore, another solution turns out to be more efficient over all: The two additional bits are placed
in the two most significant bits of a byte address. This way, i@ as well as @ operating on the same
numerical value will access the same memory cell as long as the two most significant bits are zero.
But how do we do byte address computation? All we need is just one operator byte+ (caddr n --
caddr') that adds n, a signed number of bytes, to the byte or cell address on the stack. All the pains
of doing weird arithmetic on a number whose least significant bits are kept in the two most
significant bit positions are encapsulated in the byte+ operator. On uCore, this is a single cycle
instruction.

Now the last problem to be solved is the behaviour of the "misaligned address trap". A call to this
trap temds to be the result of a software bug. Most of the time, we could just replaced the
misaligned address by the nearest properly aligned address and the software will work as expected.
Therefore, a basic misaligned trap handler should correct the address and re-execute the trapped
memory access instruction. On the side, it can do statistics so the programmer is able to learn about
his software bugs after the program executed.

50

These are the new words introduced:

i@ (caddr -- 32b)
fetches a 32-bit number from memory address caddr. If the two most significant bits of caddr are
non-zero, the misaligned address trap will be called.

w@ (caddr -- 16b)

fetches a 16-bit number from memory address caddr. The 16 most significant bits of 16b will be
zero. The most significant bit of caddr determines, which 16-bit section of the cell located at the
equivalent cell address of caddr will be selected. If the second but most significant bit of is non-
zero, the misaligned address trap will be called. As a side effect, the "word" status flag will be reset
to zero.

c@ (caddr -- 8b)

fetches an 8-bit number from memory address caddr. The 24 most significant bits of 8b will be zero.
The two most significant bits of caddr determine, which 8-bit section of the cell located at the
equivalent cell address of caddr will be selected. As a side effect, the "word" status flag will be set
to one.

signed (u--n)

Depending on the state of the "word" status flag, u will be sign extended. If the "word" status flag is
set, bit 7 of u will be copied into bits 8 to 31 of n. Otherwise, bit 15 of u will be copied into bits 16
to 31 of n.

i! (n caddr --)
stores n into the memory cell at caddr. If the two most significant bits of caddr are not zero, the
misaligned address trap will be called.

w! (16b caddr --)

stores 16b into the memory cell at caddr. This is an uninterruptible read-modify-write cycle,
because 16b has to be merged with the 32-bit content of the memory cell at caddr. If the most
significant bit of caddr is set, 16b will be stored into bits 16 to 31 of the memory cell at caddr. Bits
0 to 15 will not be affected. If the second but most significant bit of caddr bit is non-zero, the
misaligned address trap will be called.

c! (8b caddr --)

stores 8b into the memory cell at caddr. This is an uninterruptible read-modify-write cycle, because
8b has to be merged with the 32-bit content of the memory cell at caddr. The two most significant
bits of caddr determine, which 8 bit section of the memory cell at caddr will be modified; the
remaining bits will not be affected.

MSB setting destination for 8b

00 bits 0 to 7

01 bits 8 to 15
10 bits 16 to 23
11 bits 24 to 31.

byte+ (caddr n -- caddr')
performs byte address arithmetic on caddr. This is different from standard +, because the two least
significant bits of the byte address are located in the two most significant bits of caddr.

51

Forth - The Next Generation

Gerald Wodni

September 16, 2014

Abstract

To attract the next generation of Forth program-
mers, new tools are needed. The Forth Net should
serve as a single point of entry to get them started.

1 Introduction

The Forth Net[1] is in the process of being changed
to a meta-repository which can host an optional
git repository for each project, but can also link to
other repository websites like GitHub[2]. The main
features remain to provide a single point of entry
for Forth-related projects, declaring dependencies
between projects, and the ability to specify addi-
tional tags for each project to find similar ones or
specify groups.

To make the Forth Net attractive for new pro-
grammers I investigated the Node.js community.

2 Related Work

Node.js[3], a platform for running JavaScript out-
side the browser environment is one of the fastest
growing communities on the web. To find out what
the next generation of Forth programmers want and
need, I investigated the community to identify its
main pillars.

NPM, Node Packaged Modules[4] is the main
repository for sharing JavaScript source. It has a
small and easy to learn interface based on a simple
file in each project and the NPM program itself. To
use NPM for a new project one adds a package.json
file, which specifies the dependencies. This file also
contains project meta data like name and author,
making the project itself a valid NPM package.

GitHub has no fancy website for each project,
but just displays a README file different formats,
most prominent ones are MarkDown or plain text.
This makes the user interface required to setup a
project, description website even smaller.

3 Flink

Copying these features is not doing justice to Forth,
I wanted to emphasize Forth’s unique features like

the interactive compiler interface. An emulated
Forth System inside the browser is not of much use
for serious projects, so the system is laid-out as fol-
lows:

Server A web server capable of handling
WebSockets[5] used as a broker between
the other parties.

Flink An interactive browser IDE, build as respon-

sive website running on every major browser
which supports HTML5 and WebSockets.

Uplink A tiny implementation of the WebSocket
interface, which is only necessary until the
target Forth system understands the Flink-
WebSocket protocol. As the protocol is a work
in progress, please consult the repository for
the latest command set[6].

Flink consists of an interactive console[7] and an
editor[8] which can load and save source code to
the project’s repository. Once the programmer is
logged in, and has a target system attached via up-
link, the console behaves like a line-buffered Forth.
To compile the code from the editor window, it is
transfered a line at a time waiting for the Forth’s
“ok” or an error messages. If the Uplink is con-
nected directly to a system with no Internet access
(i.e. over a serial line), Flink enables this device to
a rich IDE and allows inclusion of other files and
even projects.

4 Further Steps

Package Format A simple format for the Forth
Net which provides similar functionality like
NPM'’s package.json . An alternative would be
to parse the forth source code for "finclude ...".

User Interface A HTML5 user interface which
simplifies API to the Forth System drastically
by having a full-blown GUI on the front end,
and a simple text interface to Forth.

M2M Communication As Flink is based on the
Websocket Protocol, it also works behind most
firewalls and allows for remote machine main-
tenance as well as indirect machine to machine
communication

References

[1] The Forth Net. URL http://theforth.net.
[2] GitHub. URL https://github. com.

[3] node.js. URL http://nodejs.org.

[4] NPM. URL https://wuw.npmjs.org.

[5] I. Fette and A. Melnikov. RFC6455 The Web-
Socket Protocol.

[6] Uplink. URL https://github.com/
GeraldWodni/uplink.
[7] jg-console. URL https://github.com/

replit/jq-console.

[8] Ace cloud 9 editor. URL http://ace.c9.io/.

Arithmetic properties
monotonicity

forallz € Z, a € Z,a > 0:
Saturation Arithmetic rta>a

Ulrich Hoffmann <uho@xlerb.de> r—a<zx

¢ Does not hold for circular arithmetic
EuroForth 2014 Palma de Mallorca
¢ Holds for saturation arithmetic (A)

Arithmetic properties

Overview .
assoaatmty

for all a,b,c € Z :

What is saturation arithmetic?

(a+b)+c=a+(b+c)
(a—b)+c=a—(b—2c)

How to implement it in Forth?
Demo
Discussion ® Holds for circular arithmetic

¢ Does not hold for saturation arithmetic (A)

Problems with Strategies
Circular Arithmetic

® A priori
® Overflows and Underflows
® Detect over/underflow before calculating
® undetected
® return min/max if detected else calculate
® detected and now what (closed loop control)

[16bit: 30000 30000 +. — -5536 | ® A posteriori

® calculate

[16bit: -10000 30000 -. — 25536 |

® return min/max if calculation had over/underflow

Saturation Arithmetic for

Saturation Arithmetic
Forth

® |dea:

® |et there be a maximum/minumum values

)) ® A set of saturation operators
o if the calculation overflows use the max

e if the calcualtion unterflows use the min
+s -s *s negate_s abs_s..

I6bit: 30000 30000 +s. — 32767

I6bit: -10000 30000 -s. — -32768

What about unsigned numbers?

What about unsigned numbers?

® Another set of unsigned saturating operators?

[16bit: 30000 30000 +us u. — 60000

|16bit: 40000 40000 +us u. — 65535 |

|16bit: 10000 30000 -usu. =0 |

Too many operators!

® Just two new words:

|sat (x--x|max) signed saturation |

|usat (x -- x| umax) unsigned saturation |

® let+ - * set (internally) enough
information so that sat and usat can work.

: 30000 30000 + sat. — 32767 |
: -10000 30000 - sat . — -32768|

: 30000 30000 + usat u. = 60000|
© 40000 40000 + usat u. = 65535
10000 30000 - usatu. = O |

Has saturation happened?

® usat and sat set a flag usatq when
saturation took place.

® Applications can check it to see if the results
are exact.

® Applications must explicitly reset usataq.
PP plicitly q

Implementation

® 4e-Forth

;C+ nl/ul n2/u2 -- n3/u3 add nl+n2

HEADER PLUS,1,'+,DOCODE
ADD @PSP+,TOS

MOV SR, &SRSAVE

BIS #1000h, &SRSAVE
NEXT

® |mplementation of — similar.

Implementation

® 4e-Forth

;SAT x-- X
HEADER SAT,3,'SAT',DOCODE

BIT #100h,&SRSAVE ;was overflow bit set?
JZ nosat
BIT #Ih,&SRSAVE ; check carry for over or underflow
JZ satovl
MOV #8000h, TOS
jmp satsetq

satovl: MOV #7FFFh,TOS

satsetq: MOV #-1,SATQ

nosat: NEXT

® |mplementation of usat similar.

Discussion

Fewer error handling code as you can just continue
to run.

What to do with division by zero?

Adding more tasks to + and - slows them down,
even if you don't need saturation but
Overall system-impact low

As a kernel option or code generator configuration
when saturation arithmetic is required

(Questions?

56

Command Language

A universal language for structured data and RPC

Bernd Paysan

September 26, EuroForth 2014, Palma de Mallorca

Overview &

Motivation
Object Oriented Forth Code as Data

A Few Examples

Forth-Style Communication &

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

= Extremely simple interpreter

= Extensible, but extensions must be allowed by the receiver

= Universal, i.e. only one interpreter to audit and verify

= Triviality makes it difficult to explain

57

Basics &

= Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte
array), IEEE double float, objects

= Instructions and data encoding derived from Protobuf (7 bits per byte,
MSB=1 means “data continues”, most significant part first)

= Four stacks: integer, float, objects, strings
» endwith and endcmd for ending object message blocks and commands

= oswap to transfer the current object to the object stack, to be inserted in
the outer object

= words for reflection (words are listed with token number, identifier and
stack effect to make automatic bindigs possible)

Why binary encoding? A

= Faster and simpler to parse (simpler means smaller attack vector)

= Ability to enter commands on the fly in text form through a frontend
interpreter still exists

= Debugging with a de—tokenizer is also very easy

= Object—oriented approach makes writing application—specific logic extremely
simple

Why a programming language as data? &

Lemma: every glue logic will become Turing complete

= Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

= Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

= Net20 idea (derived from ONF): Keep the entire object synchronized by
sending only the changes to it — these changes are simple messages
(setters)

= This allows multi-message passing, and reduces latency

58

Security &

Lemma: every sufficiently complex format can be exploited
Therefore stick to a very simple format, i.e.: simplify and factor the code

: cmd@ (-- u)
buf-state 2@ over + >r p@+ r> over - buf-state 2! 64>n ;
: n>cmd (n -- addr) cells >r
o IF token-table ELSE setup-table THEN
$@ r@ u<= IF net2o-crash THEN 1> + ;
: cmd-dispatch (addr u -- addr' u') buf-state 2!
cmd@ n>cmd @ ?dup IF execute ELSE net2o-crash THEN
buf-state 2@ ;
: cmd-loop (addr u --)
BEGIN cmd-dispatch dup O0<= UNTIL 2drop ;

Reading Files &

reading three files

0 lit, file-id "net2o0.fs" $, 0 lit,

open-file <req-file get-size get-stat req> endwith

1 1lit, file-id "data/2011-05-13_11-26-57-small.jpg" $, O 1lit,
open-file <req-file get-size get-stat req> endwith

2 lit, file-id "data/2011-05-20_17-01-12-small.jpg" $, 0 lit,
open-file <req-file get-size get-stat req> endwith

Reading Files: Reply &

reading three files: replies

0 1lit, file-id 12B9A 1lit, set-size

138D607CB83DOF06 1it, 1A4 1lit, set-stat endwith
1 1it, file-id 9C65C 1lit, set-size

13849CAE1F3B6EA8 1it, 1A4 1lit, set-stat endwith
2 1lit, file-id 9D240 1lit, set-size

13849CAE2643FDCC 1it, 1A4 1it, set-stat endwith

59

Messages &

messages

msg 13977C927BF7F1AA 1lit, msg-at "Hi Bob!" §, msg-text
85" Z(&3*>qx1*bWM*DUCA-MfIN~u;<ddcWOC<XR) ezh?=jmn7zq4RFdule=a
$, msg-sig endwith
85" e}&3%Kep3Im T37tIU=8fs>4=(C Uic<rhs{(J k&c5k8{H27 0%} rVO(F3e"
$, push-$ push' nest 0 1lit, ok?

Structured Text a la HTML &

HTML-like structured text

body
p "Some text with " text
bold "bold" text oswap add
" markup" text
oswap add
1li
ul "a bullet point" text oswap add
ul "another bullet point" text oswap add
oswap add
oswap add

Literature& Links &

[BERND PAYSAN

http://fossil.net20.de/net20/

60

Some 3D Printing

Forth in Education

Spreading the word

http://www.hidecs.co.uk/
Email: Paul_E.Bennett@topmail.co.uk

22 February 2013 Paul E. Bennett [Eng MIET 1 22 February 2013 Paul E. Bennett I[Eng MIET 5
HIDECS Consultancy HIDECS Consultancy

Aims

» To get Forth known in every school and college

» To Enable students to explore more involved
areas of science and technology

* To unleash imagination

22 February 2013 Paul E. Bennett I[Eng MIET 2 22 February 2013 Paul E. Bennett I[Eng MIET 6
HIDECS Consultancy HIDECS Consultancy

Some tools Some Electronic Assembly
p— - I p— =

MSP430-Min 24 Pin DIL board with MPE's MSP430VfX-Lite installed.

22 February 2013 Paul E. Bennett [Eng MIET 3 22 February 2013 Paul E. Bennett I[Eng MIET 7
HIDECS Consultancy HIDECS Consultancy

...and about 50 lines of Forth later

Some CAD we have a Walking Robot

22 February 2013 Paul E. Bennett I[Eng MIET 4 22 February 2013 Paul E. Bennett I[Eng MIET 8
HIDECS Consultancy HIDECS Consultancy

61

Hip Motion

(DDA) \ S: x\y -- 'x\'y

\ G: Starting with a value for x and y, calculate
\ the next step values 'x and 'y (Sine and
\ Cosine respectively) using the DDA algorithm
\ as published in several papers on the topic
\ [references included].

TUCK OVER \ y\x\y\x

256 / - -ROT \ 'y\ly\x

SWAP 256 / + SWAP \ 'x\'y

bl

Staring seed x=0 y=32768 (Maxneg on 16-bit)

22 February 2013 Paul E. Bennett [Eng MIET 9
HIDECS Consultancy

PWM to Servos

PWM \ “<spaces> name”

G: Create an active array with the identity of "name" 1in
which is reserved two cells of data space. Each pass
through "name" shall decrement the second cell and return
a TRUE flag. If the second cell reaches zero the returned
flag shall be FALSE, the second cell 1is reloaded with the
value contained in the first cell during a PWM-RESET that
is aware of the storage structure. The first cell is the
desired value of delay for the channel.

CREATE @ , 0 , \ S: “ spaces name”
DOES> DUP CELL+ @ ?DUP \ S: -- flag

IF 1- SWAP CELL+ ! TRUE

ELSE DROP FALSE

THEN

P i L L

22 February 2013 Paul E. Bennett I[Eng MIET 10
HIDECS Consultancy

PWM to Servos

Setting up the Servos
PWM Left-Leg

PWM Right-Leg

PWM Hip

\ Then to centre all servos
$80 ' Left-Leg PWM!

$80 ' Right-Leg PWM!

$80 ' Hip PWM!

22 February 2013 Paul E. Bennett [Eng MIET 11
HIDECS Consultancy

That is but one example....

* My target so far has been the Schools and
Colleges that teach the theory and practices in
all STEM subjects (UTC's, Technical Secondary
Schools, 6" Form colleges and beyond).

» A web-site is to be created where this and other
ideas will be published to help others get
started with projects that excite them. A forum
will also be run where signed up members can
post their questions and help answer others.

22 February 2013 Paul E. Bennett I[Eng MIET 12
HIDECS Consultancy

62

How to get rid of C

M. Anton Ertl
TU Wien

Problem: C has become unreliable

186 undefined behaviours in C standard

every real-world program has them

C compiler maintainers focus exclusively on
programs without undefined behaviours
benchmarks (SPEC)

bug reports are not taken seriously

= We want to get rid of C

Gforth components

high-level code

(gforth.fi)
: Primitives
signals
loader support c-call
setup functions |wrappers
C library
oS

63

Primitives

replace with native-code compiler on popular platforms

keep existing primitives on other platforms

= we cannot get rid of C

remove non-standard usage when gcc acts up
no longer work around performance problems
= slowdown

Or maybe some primitives in assembly language
high-level replacement for others

Native-code compiler

Still want to use image files

Compiler from image files to native code

For interactive use:
Compiler from threaded-like code to native code
threaded-like code allows storing image files

For bootstrapping:
Compiler from image files to assembly language

Support functions

Called by primitives
e.g. mixed division

replaced by native-code compiler

or high-level code

64

Calling C

e For system calls
Alternative: direct system calls
additional system-specific stuff to implement
CPU-specific optimizations

e For library calls

e use wrappers like now?

e teach calling convention to native-code compiler
Use extern: for specifying C functions

Setup, loader, signals

e Could be replaced with Forth code
on systems with native-code compiler

e But: two versions to maintain

e not performance-sensitive
Slowdown from C standards compliance should not be noticable

Conclusion

e Getting away from C is a long-term effort

e Is it worthwhile to get rid of C completely?

65

