
A Forth-Simulator of Real-Time Multi-Task Applications
Sergey Baranov

 St. Petersburg Institute for Informatics and Automation of the Russian Academy

of Sciences (SPIIRAS), ITMO University
1

SNBaranov@gmail.com

Introduction. Software applications for real-time systems (RTS) are usually built as cooperative

complexes of communicating tasks τ1, τ2, … , τn, which share common computational and

informational resources and whose behavior is impacted by system events, occurring from time

to time according to a particular scenario. Each task is a sequential program, closed in itself with

respect to control flow, and is activated in response to external events within some timing

intervals not less than some value called its period and is expected to elaborate some response as

a result of its activation and the following run. A j
th

 activation of the task τi (1≤ i ≤n) means

generation of a j
th

 instance of this task τi; i.e., a respective job denoted as jτi for subsequent

execution. When this execution terminates, it means that a respective result has been provided in

response to the system event which caused activation of this particular job.

A characteristic feature of an RTS is the requirement for on-time execution, usually

expressed as a requirement that for each task τi the longevity r(jτi) of any of its jobs jτi shall not

exceed some pre-defined deadline value Di: Ɐi,j r(jτi) ≤ Di. With the notion of the task response

time Ri = max{r(1τi), r(2τi), ... } this may be reformulated as Ɐi Ri≤ Di with any allowable scenario

of system events and is often interpreted as the property of feasibility of the given multi-task

application. To check application feasibility, various structural models of its tasks are built and

analyzed to provide reliable estimates for the response times of the application tasks, taking into

account all impacting factors.

Software simulation is an acknowledged method to check feasibility of real-time multi-task

applications. This paper describes an experience of constructing such simulator in Forth with the

VFX Forth for Windows [1] as a development platform. Forth was selected as the

implementations language due to the flexibility it provides for implementing programming

solutions. The simulator employs a simple model of a multi-task application under study which

may use several scheduling modes with various task priorities for allocation of the processor

computational resource and several access protocols to access shared informational resources.

The simulator helps to study multi-task application behavior and check whether a given

combination of the scheduling mode and access protocol guarantees application feasibility under

the given processor performance and system event scenarios. It may also identify the minimal

processor performance which still ensures application feasibility under the given conditions.

By now, the nomenclature of scheduling modes and access protocols implemented in the

simulator consists of two classical scheduling modes – RM (rate monotonic) and EDF (earliest

deadline first) – and three access protocols – NI (no inheritance), BI (basic inheritance), and PI

(priority inheritance). However, it may be further extended to simulate systems with other

scheduling modes on a multi-processor and/or multi-core platform and other protocols of access

to shared informational resources [2].

Source Data. Simulation is based on components of four kinds: resources, tasks, jobs, and

events. Resources and tasks are entities of the application under study; jobs and events are

entities created and operated on by the simulator. Resources and tasks are also represented within

the simulator with respective entities. The application is assumed to run on a single processor

platform with a certain processor performance P in terms of "the number of standard operations

per second", which a particular scaling factor determining the actual processor speed is related

to. Each application task τi is characterized by its timing period Ti – the minimal timing interval

1
 This work was partially financially supported by Government of the Russian Federation, Grant 074-U01.

between two consecutive activations of τi determined by the current scenario of system events,

its priority Prioi – which descends with increase of i, its weight Wi – the amount of processor

time needed to accomplish this task, its deadline Di – the maximal time period for the task to be

completed, and its phase Phi – the offset of the first activation of this task from the simulation

starting moment (by default Phi=0). Like the processor performance P, the task weight Wi is

specified in the number of standard operations, and may be converted into seconds: Ci=Wi/P.

Obviously, Ɐi Ci≤ Ti. The values Ti, Di, and Phi are specified in absolute timing units (e.g.,

seconds) and do not depend on the processor performance P.

Application tasks may access shared informational resources identified with their unique

ID numbers; however, at any moment of time a shared resource may be accessed by only one

task. Tasks which do not share any informational resources are considered to be independent

with respect to each other. To prevent simultaneous access of 2 or more tasks to a shared

resource, critical intervals within the task code are established and guarded with special

constructs of the mutex type, which is a particular case of Dijkstra semaphores.

With this in mind, the structure of each task τi is represented in the simulator as a finite

series of k(i) segments, each segment performing some computation within a certain period of

time Sj>0 and terminating with one of the following system events: “Lock m”, “Unlock m”, or

“End”, m being the resource ID number. The duration of processing a system event is assumed

to be negligibly small. A correct application should neither unlock a resource not locked by this

task earlier, nor lock it again without preceding unlocking it, nor leave it locked upon task

termination, and each task should terminate with the segment “End”. Obviously, the task weight

Wi equals to the sum of time periods of all its segments: Wi =Σ j=1..k(i) Sj.

Fig. 1. Four tasks sharing 2 resources

An example of an application description in an XML-type fashion [3] is provided in Fig. 1.

Here are 4 tasks τ1, τ2, τ3, and τ4, which share 2 informational resources m1 and m2. The code of

the highest priority task τ1 consists of 3 segments of 1 time unit each. Its first segment ends with

the operation lock for resource m1; the next segment ends with unlocking this resource and the

third segment terminates the task. The code of the task τ2 consists of the only segment of 9 time

<task name=“t_1” prio =“1 ”
phase=“5” period= “15” >

<segment length=“1 ”
interface =“m_1”
op_type =“lock”/>

<segment length=“1”
interface=“m_1”
op_type =“unlock”/>

<segment length=“1”
op_type =“end”/>

</task>

Task τ1

<task name=“t_2” prio =“2 ”
phase=“5” period= “35” >

<segment length=“9”
op_type =“end”/>

</task>

Task τ2

<task name=“t_3” prio =“3 ”
phase=“3” period=“25”>

< segment length=“1”
interface=“m_1”
op_type =“lock”/>

<segment length=“2”
interface=“m_2”
op_type =“lock”/>

<segment length=“1”
interface=“m_2”
op_type =“unlock”/>

<segment length=“1”
interface=“m_1”
op_type =“unlock”/>

<segment length=“1”
op_type =“end”/>

</task>

Task τ3

<task name=“t_4” prio =“4 ”>
period=“45”>

<segment length=“2”
interface=“m_2”
op_type =“lock”/>

<segment length=“4”
interface=“m_2”
op_type =“unlock”/>

<segment length=“1”
op_type =“end”/>

</task>

Task τ4

units while task τ3 consists of 5 segments with two critical intervals to access the resources m1

and m2, the intervals being embedded in one another. The least priority task τ4 consists of 3

segments and accesses only the resource m2.

Task periods T1, T2, T3, and T4 for task activations are 15, 35, 25, and 45 time units

respectively with the phase shifts 15, 35, 25, and 45; deadlines are assumed to be equal to task

periods: Di=Ti. Tasks and resources are rendered by objects of the type task and resource

respectively and are created by respective Forth words during simulator initialization when

reading an input file with the task descriptions:

: CreateTask (-- task-addr)
: CreateResource (n -- resource-addr)

Output Data. For each task τi the derivative characteristics are defined: its utility load Ui=Ci/Ti

and its hardness Hi=Ti/Di which characterize tasks execution. If Hi < 1 then the existence

intervals of consecutive jobs jτi and j+1τi created from two consecutive activations of the task τi do

not intersect. The reverse condition Hi > 1 means that they may intersect. An important metric –

the density of the whole application: Dens=max P (Σ i=1..n Ui) – may be calculated too, in order to

compare different application structures and implementations on their efficiency [4].

The ultimate purpose of simulation is to obtain data on efficiency of various combinations

of scheduling modes and access protocols in various scenarios of system events. In particular,

the dual problem to calculating the application density – to determine the minimal processor

performance which still ensures the feasibility of the application (i.e., that Ɐi Ri≤ Di) under given

conditions – may be solved as well.

To calculate the application density, the initial interval [a,b] for selecting the scaling factor

f∊[a,b] for the task weights and processor performance is established. Prior to the simulator run,

the source values of task segment durations Sj (and therefore, the task weights Wi) in task

descriptions and the processor performance P are multiplied by this factor. Obviously, if the

inequality Ri≤ Di is violated for some i at the end-values a and b of the interval, it is violated for

all intermediate values. However, for f=a=0 (which means an infinitely high processor

performance) these inequalities do hold for all i. Therefore, the initial values are set to a=0 and

b=Σi=1..n Ui with the standard processor performance P=10
6
 standard operations per second. Then

the first simulation iteration is performed with the scaling factor f=(b–a)/2. If no violations of

Ri≤Di occurred, then a is set to f, otherwise b is set to f and simulation is reiterated until the

scaling interval shrinks to just one value [a, a+1] in which case the scaling factor equals to this

found value a, the application density is calculated accordingly, and the minimal processor

performance P which still ensures the application feasibility is P=a×10
6

operations per second. It

usually takes from 5 to 15 simulations to reach the resulting values.

Data Structures. The simulator uses ordered chained lists whose elements consist of 3 cells: the

link to the next list element or NULL, the ordering value and the data specific to the list. Elements

in a list are ordered with respect to the ordering value, starting with the smallest one. Lists are

defined with the defining word List:
: List (list-element-size, max-list-length --)

and use respective “methods” to add and retrieve elements in lists created by this word:
: >List (new-elem-addr, list-addr --)

Place a new element into the ordered list

: List@ (list-addr-- elem-addr)

Get the first (heading) element of the list

: List> (list-addr-- elem-addr)

Delete the first element from the list

: List>> (ordering-value, list-addr--)

Find and delete a list element with this ordering value

Static objects (tasks and resources) are created at the simulator initialization from the task

description file and are modified during simulation.

A resource is rendered with an object of 4 cells: its ID number, its priority (reserved for

future use), its status (either NULL if the resource is currently unlocked, or a reference to the job

description, which currently owns this resource and locked it), and a possibly empty ordered list

of job descriptions, currently waiting for this resource to become unlocked. Resources are stored

in a special pool which allows to easily enumerate them and to add a new one.

Tasks are represented with objects of various length which depends on the number of task

segments. It starts with 10 cells followed by a series of 4 cells for each task segment. The initial

10 cells contain: task unique ID number i, task period Ti, task weight in the number of standard

operations Wi, task weight in seconds Ci (depends on the scaling factor f), task priority Prioi, task

response time Ri (is calculated during simulation), task deadline Di, task phase Phi, the number

of executed task activations , and the number of task segments. The 4 cells for each task segment

are: segment type (Lock, Unlock, or End), segment parameter (the resource ID for Lock/Unlock

and zero for End), segment weight in the number of standard operations Sj, and the segment time

in seconds (recalculated while scaling the task data with the scaling factor f).

Dynamic objects (jobs and events) are created during simulation sessions as needed with

the words CreateJob and CreateEvent :
: CreateJob (task-addr--job-addr)
: CreateEvent

(resource-addr, job-addr, task-addr, event-type, event-time --

 event-addr)

The job object is represented with 10 cells: the job unique ID, its current priority (it may

change with the priority inheritance scheduling mode), current segment number which specifies

the segment begin executed, current segment expected termination time, current segment start

time, current segment used time, current segment time yet to be used, reference to the respective

task, number of references to the job description, and a reference to a resource which this job is

waiting for or NULL if the job is not waiting for a resource. Jobs waiting for the processor form a

chained list JobList in the order of their current priorities. The first job in this list owns the

processor and is considered as the current one. When this list is empty, the processors stays idle.

System events are characterized by the time when they occur. Events with the same timing

form a group of time-sake events. Four types of system events are considered: to activate a task

(i.e., to form a job for this task and add it to the list JobList of active jobs waiting for the

processor), to terminate the current job (and pass the processor to another job in list JobList, if

any), to lock a resource, or to unlock a resource – and these activities are performed with

respective Forth words:
: TaskActivate (task-addr--)

: JobTerminate (job-addr--)

: ResourceLock (resource-addr, job-addr--)

: ResourceUnlock (resource-addr, job-addr--)

The event object which represents a system event consists of 6 cells: the event unique ID, the

scheduled time for this event to occur, the type of the event (Activate, Lock/Unlock, or End), a

reference to the task object to be activated or NULL, a reference to the job object to be ended or

NULL, and a reference to the resource object to be locked/unlocked or NULL. The chained list

EventList of system events ordered with respect to their time moments when they scheduled

to occur is maintained by the simulator.

The Simulator. Simulator initialization consists in selecting the desired combination of the

scheduling mode and access protocol, setting the respective simulator constraints, reading the

task description file, and forming the respective resource and task objects. Then the initial list of

system events EventList is formed which consists in activation of the all tasks at the moments

of system time defined by their phase shifts. Counts for their maximal response times are set to

zero and all resources are set to be unlocked.

The major simulator loop does the following. The first group of time-sake events in the

EventList is considered, the simulator system time is set to this time moment and all system

events from this first group are processed one-by-one. Processing depends on the event type:

activate a task, terminate a job, or lock/unlock a shared resource.

Activating a task. A new job is created from this task referred to by the event with its

planned starting time equal to the current system time and is added to the JobList with its

priority, while a new event is added to the EventList – to activated the next copy of this task

at the moment of time not less than the current time plus the task period Ti.

Terminating a job. The response time of the task referred to by the respective job object is

updated: the difference between the current system time and the moment when this job was

created and added to JobList (the response time which consists of the time when the job owned

the processor plus the time it waited for it) is calculated and the maximum of this value and the

response time already stored in the task referred to is stored as the new value of the task response

time. If this exceeds the task deadline Di, then a violation of the task feasibility is registered. The

considered job is deleted from the JobList.

Locking a resource. If the resource is unlocked, then it becomes locked by this task;

otherwise, the job is moved from the JobList to the ordered list of jobs waiting for unlocking

of this resource.

Unlocking a resource. If the ordered list of jobs waiting for unlocking of this resource is

not empty, then the first job form this list is moved from it back to the JobList according to its

priority and the resource becomes locked by this job; otherwise, the resource becomes unlocked.

Upon completion of the event processing, the considered event is deleted from the

EventList. After all time-sake events have been processed, the JobList, which may have

changed as a result of previous event processing, is considered unless it is empty.

If the JobList is not empty then the first job from it (which currently owns the processor)

is selected and the residue of the processor time not yet consumed by its current segment is

considered. This value determines the moment of the segment termination. If this value is

greater than the time of the next time-sake group of system events in the EventList then this

residue is decremented by the remaining time till this event group; otherwise, a new event

corresponding to this segment is added to the EventList for this moment of segment

termination and the next job segment if any becomes its current segment.

Emptiness of the JobList means that the processor is idle from this moment till the next

time-sake event group in the EventList. Upon completion of processing the first job of

JobList (if any) the major loop is reiterated. The loop terminates upon exhausting the time

limit of the simulation session or when a specified number of created jobs is reached (which of

these conditions occurs earlier, if both limits are specified).

TimeLimit=25 JobLimit=0 ViolationLimit=1
SchedulingMode=RM InheritanceMode=NI
Configuration file name: c:\MPE\App_4t2r.txt
Time=0 Proc=0 for 0 A 4.1
Time=2 Proc=4.1 for 2 L 4.1 of 2
Time=3 Proc=4.1 for 1 A 3.2
Time=4 Proc=3.2 for 1 L 3.2 of 1
Time=5 Proc=3.2 for 1 A 1.3 A 2.4
Time=6 Proc=1.3 for 1 W 1.3 of 1
Time=15 Proc=2.4 for 9 E 2.4
Time=16 Proc=3.2 for 1 W 3.2 of 2
Time=19 Proc=4.1 for 3 U 4.1 of 2 L 3.2 of 2
Time=20 Proc=3.2 for 1 U 3.2 of 2
Time=21 Proc=3.2 for 1 U 3.2 of 1 L 1.3 of 1
Time=22 Proc=1.3 for 1 U 1.3 of 1
Time=23 Proc=1.3 for 1 E 1.3
Time=24 Proc=3.2 for 1 E 3.2

TimeLimit=25 JobLimit=0 ViolationLimit=1
SchedulingMode=RM InheritanceMode=BI
Configuration file name: c:\MPE\App_4t2r.txt
Time=0 Proc=0 for 0 A 4.1
Time=2 Proc=4.1 for 2 L 4.1 of 2
Time=3 Proc=4.1 for 1 A 3.2
Time=4 Proc=3.2 for 1 L 3.2 of 1
Time=5 Proc=3.2 for 1 A 1.3 A 2.4
Time=6 Proc=1.3 for 1 W 1.3 of 1
Time=7 Proc=3.2 for 1 W 3.2 of 2
Time=10 Proc=4.1 for 3 U 4.1 of 2 L 3.2 of 2
Time=11 Proc=3.2 for 1 U 3.2 of 2
Time=12 Proc=3.2 for 1 U 3.2 of 1 L 1.3 of 1
Time=13 Proc=1.3 for 1 U 1.3 of 1
Time=14 Proc=1.3 for 1 E 1.3
Time=23 Proc=2.4 for 9 E 2.4
Time=24 Proc=3.2 for 1 E 3.2

Time=25 Proc=4.1 for 1 E 4.1
Time=25 Hardness=1,0000 1/Hardness=1,0000
Density=0,6056 ScalingFactor=1,0000
ERROR: Deadline violation in Task 1 ok

Time=25 Proc=4.1 for 1 E 4.1
Time=25 Hardness=1,0000 1/Hardness=1,0000
Density=0,6056 ScalingFactor=1,0000 ok

Fig. 2. Logs of two simulation sessions as they are output by the simulator

The results of simulation – task maximal response time, number of deadline violations, the

application density, and other statistics data are displayed. A simulation log may also be

displayed. When any system event is processed, the respective time and other accompanying

data are printed-out. All these data may be easily copied into MS Excel for a graphical

representation of the obtained results and execution log.

There are the two logs of simulator runs in Fig. 2 – for two different protocols of access to

shared resources: NI (no inheritance) and BI (basic priority inheritance) as they are recorded by

the simulator. The number after "Time=" is the time of an occurring system event denoted by

one of the letters: A – activate, E – end, L – lock, U – unlock, or W – wait to lock an already

locked resource, followed by the event parameter. The job ID is displayed as two numbers (the

task number and the unique job number separated with a period). The section "of" is followed by

the resource number to be locked or unlocked, while a number after "for" is the activity duration

terminated with this event. Same logs are presented in Fig. 3 in a more readable graphic form.

Fig. 3. Simulated execution of 4 tasks sharing 2 resources with different access protocols

This application, when simulated twice with different access protocols, demonstrates two

different behaviors: a violation of the specified deadline 15 for the highest priority task τ1 under

the protocol NI – Fig. 3a, and correct work with no violations under the protocol BI – Fig. 3b.

Fig. 4 compares two scheduling modes for the same application of 4 tasks and 2 shared

resources defined in Fig. 1. The output simulation data were copied into an Excel file to obtain

these charts. Data for application hardness and respective density values for the two scheduling

modes are in the right columns of the chart. As one can see, there's no big difference in the

application density between the two scheduling modes RM and EDF for this application. Density

as a function of hardness
–1

 grows nearly linearly with two plateaus and then the growth stops

after hardness
–1

=0.75. As one can see, this application cannot reach 100% density – its

maximum is 0.9083 with the application hardness=1/0.75= 1.33 and it does not change with

τ4

τ3

g 2

g 2

g 1

t
0 5 10 15 20 25

g 1

τ1

g 2

g 2

g 1

t
0 5 10 15 20 25

g 1

τi τi

τi is owns the processor

τi owns the resource gj

g j

τi is waiting for access to gj

τi is waiting for the processor

g j

τ4

τ2

τ3

g 2

g 2

g 1

g 1

t
0 5 10 15 20 25

τ1

g 2

g 2

g 1

g 1

t
0 5 10 15 20 25

a) no priority inheritance – deadline violation in τ1

b) basic priority inheritance – no violations

τ2

further decrease of hardness (i.e., increase of hardness
-1

), which means that the processor would

be inevitably idle for at least ≈10% of time while executing this application.

1/H RM EDF

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

0.0336
0.1009
0.1682
0.3028
0.3028
0.3028
0.3028
0.3028
0.3784
0.4541
0.5046
0.6392
0.7065
0.7568
0.8326
0.9083

0.0336
0.1009
0.1682
0.3028
0.3028
0.3028
0.3028
0.3784
0.4541
0.5046
0.5719
0.7065
0.7568
0.8326
0.9083
0.9083

Fig. 4. RM vs. EDF for same application of 4 tasks with 2 resources

Four Dining Philosophers. This classical puzzle, first proposed by E.Dijkstra as “Five Dining

Philosophers” [5], demonstrates the situation of mutual blocking under certain scenarios of

dependent task behavior with any number n≥2 of the respective processes. Let’s consider 4

iterative processes, each with two alternate activities called “think” and “eat”, the latter assuming

simultaneous access to 2 of 4 shared resources (called the left and the right fork for this

philosopher) for a certain period of time. Access to the resources is performed via critical

intervals guarded with respective mutexes.

With the proposed technique this may represented as 4 tasks τ1, τ2, τ3, and τ4 (the

philosophers), which share 4 informational resources r1, r2, r3, and r4 (the forks). Task phases are

10, 7, 4, and 1 respectively; 2 units after its start the task τ1 locks the resource r1 and after 4 units

more it locks the resource r2. Then after 20 time units it unlocks r1 and in 68 units more it

unlocks r2. After 1000 time units or more since its start, the task τ1 reiterates. Other tasks behave

similarly with 73, 79, and 85 time units rather than 68 for unlocking their second resource (left

fork). In the formalism of Fig.1 the behavior of task τ1 may be specified as (others are similar):

<task name=“t_1” phase=”10” period=”1000”>

<segment length=2 interface=”r_1” op_type=”lock”/>

<segment length=4 interface=”r_2” op_type=”lock”/>

<segment length=20 interface=”r_1” op_type=”unlock”/>

<segment length=68 interface=”r_2” op_type=”unlock”/>

<segment length=2 op_type=”end”/> </task>

With the specified phases and timings for locking/unlocking resources, a clinch occurs at

time=25, as Fig.5 displays this with the log obtained by the simulator.

System Log Interpretation/Comments

TimeLimit=1000000 JobLimit=0 ViolationLimit=0
SchedulingMode=RM InheritanceMode=PI
Configuration file name: c:\MPE\App_4PhD.txt
Time=1 Proc=0 for 1 A 4.1
Time=3 Proc=4.1 for 2 L 4.1 of 4
Time=4 Proc=4.1 for 1 A 3.2
Time=6 Proc=3.2 for 2 L 3.2 of 3

Rate Monotonic with Priority Inheritance

Task 4 (job 4.1) is activated at time=1

Task 4 (job 4.1) locks resource 4 at time=3

Task 3 (job 3.2) is activated at time=4

Task 3 (job 3.2) locks resource 3 at time=6

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,2

0

0
,4

0

0
,6

0

0
,8

0

1
,0

0

1
,2

0

1
,4

0

1
,6

0

1
,8

0

2
,0

0

2
,2

0

2
,4

0

2
,6

0

2
,8

0

3
,0

0

3
,2

0

3
,4

0

3
,6

0

D
e

n
si

ty

Hardness-1

Density/Hardness-1 for 4 Dependent Tasks

RM EDF

System Log Interpretation/Comments

Time=7 Proc=3.2 for 1 A 2.3
Time=9 Proc=2.3 for 2 L 2.3 of 2
Time=10 Proc=2.3 for 1 A 1.4
Time=12 Proc=1.4 for 2 L 1.4 of 1
Time=16 Proc=1.4 for 4 W 1.4 of 2
Time=19 Proc=2.3 for 3 W 2.3 of 3
Time=22 Proc=3.2 for 3 W 3.2 of 4
Time=25 Proc=4.1 for 3
Mutual clinch for job 4.1 on resource 1 ok

Task 2 (job 2.3) is activated at time=7

Task 2 (job 2.3) locks resource 2 at time=9

Task 1 (job 1.4) is activated at time=10

Task 1 (job 1.4) locks resource 1 at time=12

Task 1 (job 1.4) waits for resource 2 at time=16

Task 2 (job 2.3) waits for resource 3 at time=19

Task 3 (job 3.2) waits for resource 4 at time=22

Clinch detected for task 4 (job 4.1) when it tried

to lock resource 1 at time=25

Fig. 5. System log for the 4 philosophers puzzle

 The resource status displayed by the word .resources confirms this clinch. As one can

see there’s a vicious circle of locked resources with mutually waiting jobs:

Resource_1 Prio=0 Status=Job 1.4 JobsWaiting=NULL
Resource_2 Prio=0 Status=Job 2.3 JobsWaiting=Job 1.4

Resource_3 Prio=0 Status=Job 3.2 JobsWaiting=Job 2.3

Resource_4 Prio=0 Status=Job 4.1 JobsWaiting=Job 3.2

Conclusions. The simulator was written in Forth with VFX Forth for Windows, version 4.70,

provided to the author at the courtesy of MPE [6], and is just 985 lines of code under the

respective coding standards. It uses only fixed-point arithmetic and works remarkably fast on a

PC. To avoid memory overflow, the simulator uses its own simple subsystem for memory

allocation and reuse for chained list elements, jobs and events. Further work will be focused on

improving the user interface, extending the nomenclature of scheduling modes and access

protocols of this simulator, and transition to simulation of multi-core and multiprocessor

platforms, as well as running more experiments with models of real-time multi-task applications.

References.
1. VFX Forth for Windows. User manual. Manual revision 4.70, 19 August 2014. –

Southampton: MicroProcessor Engineering Limited, 2014. – 429 p.

2. Andersson B., Baruah S., Jonsson J. Static-Priority Scheduling on Multiprocessors //

Proc. of 22
nd

 IEEE Real-Time Systems Symposium. – London, 2001. – P.193-202.

3. Nikiforov V.V., Shkirtil V.I. Specification of interfaces in real-time software applications

by XML forms. // SPIIRAS Proceedings, 2009, issue 11. – P. 159-175. (In Russian.)

4. Baranov S.N., Nikiforov V.V. Density of Multi-Task Real-Time Applications //

Proceedings of the 17th Conference of Open Innovations Association FRUCT, Yaroslavl,

Russia, 20-24 April 2015. – P.9-15.

5. Dijkstra E.W. Hierarchical ordering of sequential processes. Acta Informatica 1(2), 1971.

– P.115-138.

6. MicroProcessor Engineering Limited. Company site http://www.mpeforth.com .

About the Author. Sergey N. Baranov graduated with honor the Leningrad State University in

1972, worked at this University, at SPIIRAS, Motorola, St.Petersburg State

Polytechnic University; PhD since 1978, Doc.Sci since 1991, Professor since

1993. Currently he works at SPIIRAS as a Chief Research Associate and a

lecturer at 3 major St. Petersburg Universities. His major scientific interests are

software engineering, compilers, analysis and verification of software

specifications, formal methods, symbolic computations, and Forth. He is an

active member of the international Forth community after publishing in 1988

the monograph "The Programming Language Forth and its Implementations",

the first one on Forth to appear in Russian.

http://www.mpeforth.com/

