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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 31th Euro-
Forth finds us in Bath for the first time. The two previous EuroForths were
held in Hamburg, Germany (2013) and in Palma de Mallorca, Spain (2014).
Information on earlier conferences can be found at the EuroForth home page
(http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there were two submissions to the refereed track, and both were accepted (100%
acceptance rate). For more meaningful statistics, I include the numbers since
2006: 19 submissions, 12 accepts, 63% acceptance rate. Each paper was sent to
three program committee members for review, and they all produced reviews.
The reviews of all papers are anonymous to the authors. I thank the authors
for their papers and the reviewers and program committee for their service.

Several papers were submitted to the non-refereed track in time to be in-
cluded in the printed proceedings. Late papers will be included in the online
proceedings (http://www.euroforth.org/ef15/papers/).

Workshops and social events complement the program. This year’s Euro-
Forth is organized by Peter Knaggs

Anton Ertl
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Abstract

We have developed and implemented hardware multitasking support for a softcore CPU.

The N.I.G.E. Machine's softcore CPU is an FPGA-based 32 bit stack machine optimized for

running the FORTH programming language. The virtualization model that we have developed

provides at least 32 independent CPU virtual machines within a single hardware instance. A

full task switch takes place in only two clock cycles, the same duration as a branch or jump

instruction. We have use the facility to provide a multitasking platform within the N.I.G.E.

Machine's FORTH environment. Both cooperative multitasking, by means of the PAUSE

instruction, and pre-emptive multitasking are supported.

1 Introduction

The N.I.G.E. Machine is a complete microcomputer system implemented on an FPGA development
board [1]. It comprises a 32 bit softcore processor optimized for the FORTH programming language,
a set of peripheral hardware modules, and FORTH system software (�gure 1). The N.I.G.E.
Machine was presented at EuroFORTH in 2012, 2013 and 2014 [2, 3, 4]. The N.I.G.E. Machine
follows in the footsteps of a number of signi�cant FORTH processors [6, 7, 8, 9, 10, 11], most
especially the J-1 [6]. The N.I.G.E. Machine design �les are are freely available with an open
source license [5].

Most embedded systems, including those that control scienti�c instruments (such as the Open
Network Forth system that controls the Munich particle accelerator [25]), require some level of
multitasking. In this paper we explain how we have implemented multitasking in a novel manner
on the N.I.G.E. Machine at the hardware level.

The development of the N.I.G.E. Machine has followed a path of utilizing FPGA hardware to
enhance the performance and features of a softcore CPU. The �rst version of the N.I.G.E. Machine,
presented at EuroFORTH 2012 [2], demonstrated the integration of a softcore CPU with a full set
of peripheral modules (VGA adapter, DMA controller, I/O ports) within the same FPGA to create
a standalone microcomputer system intended for the rapid prototyping of experimental scienti�c
apparatus. The second version, presented at EuroFORTH 2013 [3], added a custom memory
controller to facilitate faster and more �exible access to FPGA system memory. The third version,
presented at EuroFORTH 2014 [4], introduced a sophisticated hardware return stack to allow the
FORTH exception handling constructs, CATCH and THROW, to be implemented within the CPU
as atomic machine language instructions. With the same philosophy in mind, the fourth version
of the N.I.G.E. Machine described in this paper, adds the facility of hardware multitasking with
resulting bene�ts for performance and reliability.
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After a short overview the paper begins with a review of prior work that looks at the history of
hardware support for concurrency, the history of multitasking FORTH systems and considers some
notable examples of hardware designs used to assist multitasking. The following section sets the
terms of reference for implementing a hardware multitasking scheme by noting the requirements
for multitasking on a FORTH system in general, the requirements for the multitasking of a stack
machine, and speci�c additional requirements that are applicable to the N.I.G.E. Machine. After
that, the implementation of hardware multitasking on the N.I.G.E. Machine is described in detail
at both the hardware and software levels, along with a description of how the N.I.G.E. Machine's
multitasking functionality can be accessed by user applications. Finally there is a brief discussion
of the advantages and limitations of our design and implementation.

Figure 1: System diagram of the N.I.G.E. Machine

2 Outline of our model for hardware multitasking on the

N.I.G.E. Machine

Our design provides 32 separate tasks hosted within a single softcore CPU instance. At any given
point in time one task will be executing live on the CPU. The complete state of the other 31 tasks
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that are not executing, including their program counters, stack pointers, and various registers are
stored within a new sub-unit of the CPU, the virtualization unit. Because the multitasking unit
is fabricated from FPGA logic within the CPU, a task switch (i.e. transfer of execution from one
task to another) can be actioned with a single machine language instruction that executes very
quickly, in two clock cycles in fact, the same duration as a branch or jump instruction. A second
consequence of the fact that task switches are conducted entirely in hardware is that they are
entirely atomic from the perspective of the �ow of program code.

In addition, our design includes a lightweight task monitor that leverages the CPU hardware
multitasking facility to provide multitasking capability at the FORTH software level.

3 Review of prior work

The IBM VM/370 as described by Love Seawright and Richard MacKinnon [12] o�ered hardware
concurrency support in the form of virtualization. Rather than provide multitasking to software
applications via additional functionality within the operating system, Seawright and MacKinnon's
insight was to provide each application (or each operating system) with a virtual machine that
was an exact copy of the underlying hardware. The software layer that provided these hardware
replicas became known as the Virtual Machine Monitor (VMM).

At a lighter level than full virtualization are processor architectures that provide hardware support
for context switching, but without the full resource isolation of virtualization. They are generally
referred to as multithreading architectures of various types.

Barrel processors are processors that switch between n threads of execution on every cycle, thus
guaranteeing that each processor will execute one instruction every n cycles. This has advantages
for real-time threads operating with precise timing. The CDC 6000 range of supercomputers were
pioneers of this architecture [29]. Barrel processors are an example of interleaved multithreading
architectures.

Other processors such as the ARM [20] have multiple register banks to allow quick context switching
for interrupt processing. Multiple register bank designs are examples of block multithreading
architectures.

Another example of a block multithreading architecture is the Microcode Level Timeslicing archi-
tecture [28]. In this architecture CPU context information is held in hardware for a �xed number of
tasks. Context switching overhead is eliminated since a task switch requires only the appropriate
manipulation of select lines. A �stream control unit� performs the select line manipulation and
coordinates context switching for the prefetch and execution units of the CPU according to the
availability or otherwise of valid instructions in the prefetch registers.

Hardware multitasking support focused speci�cally on the e�cient handling of exceptions has been
tackled by two notable systems.

Klaus Schleisiek's microcore includes a hardware mechanism to support multitasking and is specif-
ically focused on the problem of dealing with busy resources [7]. The microcore EXCEPTION
mechanism allows routines to access external resources without having to query status bits to
ascertain their availability/ readiness. This greatly simpli�es the software needed for serial chan-
nels communicating with external devices or processes. It works as follows: when the processor
intends to access a resource, the resource may not be ready yet. In such an event, the resource
can assert the EXCEPTION signal before the end of the current instruction execution cycle. This
disables storing the next processor state into any register except for the instruction register, which
loads a special �exc� instruction instead of the next instruction from program memory. In the
next processor cycle, exc will be executed calling the Exception Service Routine (ESR) at its �xed
address. The ESR address will typically hold a branch to code that performs an operating system
dependent task switch.
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The INMOS Transputer [17], employed a rendezvous communication mechanism on external I/O
ports that was used to perform a task switch entirely in hardware.

An alternative to virtualization or hardware multithreading is a multi-core processor architecture.
In �eld of embedded design we note that most ARM Cortex [20] processors are now dual core or
quad core. In addition the Parallax Propeller [21] is a low cost micro-controller with eight 32 bit
cores that has a simple tool chain making it attractive for prototyping applications. Finally, the
GreenArrays GA144 is a more specialized system with 144 polyFORTH execution units on a single
chip [22]. Both the Transputer and the GA144 feature high speed connections between cores.

4 Hardware multitasking requirements

4.1 Requirements for a multitasking system in FORTH

The ultimate purpose of implementing hardware multitasking on the N.I.G.E. Machine is to pro-
vide a multitasking FORTH system. Brad Rodriguez's 1992 article, �FORTH Multitasking in a
Nutshell� [15], provides a comprehensive review of the requirements. These are, in terms of mem-
ory: private stacks, private user areas and private bu�ers, and in terms of software: re-entrant
FORTH system code, suitable mechanisms for the mutual exclusion of resources that cannot be
shared, and suitably designed task switching functionality.

Many FORTH systems o�er cooperative multitasking (where a call to the word PAUSE is required
to yield the CPU to the next task) in preference to pre-emptive multitasking (where the CPU
is automatically time sliced between tasks). In an embedded environment where all tasks are
part of a single integrated system pre-emptive multitasking may not be necessary. In these cases
cooperative multitasking may have some advantages for simplicity of design and testing, provided
that all tasks truly cooperate.

4.2 Requirements for the multitasking of a stack machine

The general requirements for multitasking of a CPU are the ability to (a) switch the execution of
the CPU from one task to another, (b) store the state of the task that is being �frozen� (i.e. preserve
the �state vectors�) and (c) restore the state of the task that is being �thawed�. This requirement
can be applied to a stack machine where the CPU state vector will in general comprise three
elements (1) the program counter, (2) the stack pointers and (3) the stack memory space. (If
stack memory space is global to all virtual machines then it is su�cient to switch only the stack
pointers.)

In addition, a stack machine may utilize a number of registers. For example, top of stack values
may be held in registers to enhance processing throughput, there may be �ags such as arithmetic
carry/over�ow, or an interrupt processing indicator, and the internal state of the CPU is likely to
be a �nite state machine (FSM) with its own state register. For each of these registers a decision
needs to be made as to whether (a) it will be included in the saved CPU state vector, (b) it will
be discarded on each virtual machine switch, or (c) whether virtual machine switching will be
arranged so that it is not necessary to save the value (e.g. switching can only occur when the FSM
is in a single, predetermined state).

4.3 Speci�c requirements relating to the design of the N.I.G.E. Machine

The parameter and return stacks of the N.I.G.E. Machine are connected directly to the datapath
through dedicated memory ports rather than being accessed via the general CPU system memory
bus. This design leads to performance advantages because the datapath is always in a position to
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read or write from stacks with no latency. However it also means that a �software only� multitasking
implementation is not feasible on the N.I.G.E. Machine. Modi�cations must be made to the
datapath itself in order to facilitate the switching of stacks for each task.

In addition to the parameter and return stacks, the N.I.G.E. Machine datapath utilizes internal
subroutine and exception stacks that provide hardware support for subroutine calls, local variables
and the FORTH exception handling words CATCH and THROW [4]. Although these stacks are
not directly accessible to user applications, it is necessary for each task to have a private copies.

Lastly, the N.I.G.E. Machine has been designed speci�cally for embedded control and scienti�c
prototyping. As EuroFORTH 2012 paper explained [2], short interrupt response times and deter-
ministic execution are critical in these applications. Any hardware multitasking scheme employed
needs to respect both of these objectives.

5 Hardware multitasking design on the N.I.G.E. Machine

5.1 General features

As explained in the introduction, the purpose of incorporating hardware multitasking into the
N.I.G.E. Machine is to provide multitasking for the FORTH system software. (Since each task at
the FORTH system level will run on its own virtual machine instance.)

In the default con�guration of the N.I.G.E. Machine, 32 tasks are available, each with a parameter
stack depth of 256 cells and a return stack depth of 128 cells. Cooperative multitasking is achieved
with a PAUSE machine language instruction which executes a full task switch in 2 clock cycles (the
same duration as the execution of a branch or subroutine call). A pre-emptive multitasking mode
is also available that implements a task switch after a user de�nable count of executed instructions.
The default task scheduling system is round-robin among active tasks.

There is a lightweight task monitor included in the FORTH system software that comprises words
for starting, stopping, and otherwise managing tasks. The task monitor is not involved with task
switching since this is handled entirely by hardware. Each task has a 2 KiB private user memory
area that o�ers space for 245 longword user variables and holds private bu�ers and certain task
speci�c system variables. The N.I.G.E. Machine's remaining 128 KiB of FPGA systems memory
(including the FORTH dictionary) and all of the 16 MiB of PSDRAM is shared memory available
to all tasks.

Simple semaphore based locks have been implemented in the FORTH system software to mediate
access to shared I/O resources. The locks are arranged so that no FORTH system routine will ever
attempt to lock more than one resource at any given time. In this way it is not possible for user
applications to enter a deadlock situation if they only call system functions.

The N.I.G.E. Machine also provides a feature that we describe as �virtual interrupts�. With a
virtual interrupt, a task may cause another task to jump to a subroutine (typically a FORTH
execution token) before returning to its prior point of execution. A virtual interrupt may be
scheduled in advance at any time and will be actioned when a switch to the task in question next
occurs.

5.2 Multitasking unit

The multitasking unit is a new component within the CPU alongside the control unit and the
datapath (�gure 2). The multitasking unit is responsible for two functions: �rstly for storing the
states of all of the tasks that are not currently executing, and secondly for managing the transition
between executing tasks.
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To achieve the �rst objective the multitasking unit relies on an internal RAM module termed
the �freezer RAM�. The freezer RAM module is 116 bits wide and 32 addresses deep. (The RAM
modules within the multitasking unit are implemented with FPGA logic elements (registers) rather
than BLOCK RAM - see section 6 for further explanation).

The state of each task is arranged as a 116 bit state vector as illustrated in table 1.

Task state vector component Number of bits

Program counter 20

Top-of-stack register 32

Next-on-stack register 32

Parameter stack pointer 8

Return stack pointer 8

Subroutine stack pointer 8

Exception stack pointer 8

Total 116

Table 1: Storage of the task state vectors within the �freezer� RAM module

The freezer RAM module is dual ported with a single write port and a single read port. When
a task switch is signaled, the state vector of the current (and now retiring) task is presented at
the write port with a valid write enable signal, while the state vector of the next-to-execute task
is taken from the read port. These state vectors are routed to and from the control unit (for the
program counter) and the datapath (for all other elements). Figure 2 illustrates the place of the
multitasking unit in relation to the control unit and datapath within the CPU.

The address input of the freezer RAM module's write port comes from a 5 bit wide register within
the multitasking unit that holds the number of the currently executing task. The address input for
the read port (i.e. the number of the next-to-execute task) is drawn from a second RAM module
within the multitasking unit called the task control RAM. The signal to execute a task switch
originates from the control unit (described more fully below).
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Figure 2: Relationship between the multitasking unit, control unit and datapath with the CPU

The task control RAM module is 16 bits wide and 32 addresses deep. It can be considered as
a set of 32 x 16 bit registers, one belonging to each task. The lower 5 bits of each resister hold
the number of the next-to-execute task following that task. For example if register 1 holds the
value �00010�, then task 2 is the next-to-execute task following task 1. The task control RAM
module is dual ported. The �rst port is read-only and is addressed with the register holding
the value of the currently executing task. The output from this port is therefore the number of
the next-to-execute task (in the lowest 5 bits). It is used to address the read port of the freezer
RAM as described above. The second port is a read/write port that is memory mapped to the
system memory address space. The task monitor within the FORTH system software uses these
memory mapped addresses to con�gure the order of task execution by appropriately setting the
individual task control registers. The upper 11 bits of each task control register are not read by
the multitasking hardware but are used by the task monitor as general storage for further task
control purposes as described below.

In order to initialize a new task the task monitor needs to be able to con�gure the program counter
of a task before it begins execution for the �rst time. A third dual ported memory block, the �PC
override� RAM block, is used to provide this facility. The PC override RAM module is 20 bits
wide and 32 addresses deep. It can also be thought of as 32 individual registers. Like the task
control RAM module, each register is mapped to the system memory address space and can be
written to by the task monitor. When a task switch occurs, if the PC override register of the
next-to-execute task contains a non-zero value, then that value is sent to the control unit as the
new program counter address in place of whatever value may have been held in the task's state
vector in freezer RAM. The PC override register for that task is then automatically reset to zero
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so that the following task switch will proceed without a second override.

The fourth RAM block (the �virtual interrupt� RAM block) provides functionality for virtual
interrupts in a similar manner to the PC override RAM. However in the case of a task switch with
a virtual interrupt, the control unit pushes the saved value of the PC from the state vector onto
the subroutine and return stacks before setting the program counter register to the value from the
virtual interrupt RAM.

The multitasking unit also contains a number of individual memory mapped registers that allow
the task monitor to control the conduct of task switching. These are scheduled in table 2. Table 3
schedules the overall memory map of the multitasking unit as seen from the system memory bus.

Figure 3 illustrates the key operational features of the of the multitasking unit.

Figure 3: Illustration of the key operational features of the multitasking unit
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Register name Function R/W Width
(bits)

System
address

SINGLEMULTI Enable ('1') or disable ('0') multitask-
ing. If a PAUSE machine language
instruction is encountered with multi-
tasking disabled then it will be treated
as a NOP

R/W 1 3F000

CURRENTVM The number of the currently executing
task. Tasks are numbered 0 through 31.
At power-on task 0 will be executing the
FORTH system software

R 5 3F004

INTERVAL The interval for pre-emptive multitask-
ing task switches, in count of instruc-
tions. If INTERVAL = 0 then pre-
emptive multitasking is disabled.

R/W 16 3F008

Table 2: Multitasking control registers

Register name Function # registers System
address

Multitasking
control registers

As table 2 3 3F000

Task control
registers

Each virtual machine has an associ-
ated task control. Bits 4 down to 0 of
this register specify the next-to-execute
task. Bits 15 down to 5 are for task
monitor usage

32 3F200

PC override
registers

Writing a non-zero address to a PC
override register will cause the task in
question to continue from that address
on the next occasion that it executes

32 3F400

Virtual interrupt
register

Writing a non-zero address to a virtual
interrupt register will cause the task to
branch to a subroutine at that address
on the next occasion that it executes

32 3F600

Table 3: Memory map of the multitasking unit as viewed from the system memory bus

5.3 Softcore CPU - datapath

Two updates were necessary to the CPU datapath in order to support hardware multitasking.
Firstly, the parameter, return, subroutine and exception stacks were extended so that each task
would have its own private stack. This was achieved by increasing the addressable width of each
stack and allocating to each stack additional FPGA BLOCK RAM. Following this modi�cation,
each stack is addressed within the datapath by concatenating the number of the current virtual
machine (higher 5 bits) with the current stack pointer (lower 8 bits).

Secondly, the values of the top-of-stack and next-on-stack registers and the values of the stack
pointers were interfaced with the freezer RAM within the multitasking control unit. This was
done simply by including additional multiplexers and extending the width of microcode instructions
communicated from the control unit to 23 bits. Further details on the operation of the datapath
and how the control unit uses microcode to choreograph the datapath multiplexers is given in the
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EuroFORTH 2012 paper [2]. By way of illustration, table 4 shows how the exception stack pointer
is updated each clock cycle according to the microcode signaled from the control unit.

Function Microcode bits
22 down to 20

No change 000

Decrement 001

Increment 010

Set to zero 011

Load value from virtualization unit 100

Table 4: Control table for the exception stack pointer illustrating the extension for hardware
multitasking. The exception stack pointer is a datapath register that is operated from the control
unit by microcode bits 22 down to 20

5.4 Softcore CPU - control unit

The �rst modi�cation made to the control unit was to specify a new PAUSE instruction to e�ect
a cooperative multitasking task switch. No major �rewiring� of the control unit was required to
accomplish this: the PAUSE instruction acts on the same level and in the same way as all machine
language instructions within the control unit's �nite state machine via microcode lookup. In fact
the PAUSE instruction was implemented as a modi�ed jump (JMP) instruction, but with the
appropriate microcode to control the datapath registers, and with the next-instruction address
read from the multitasking unit rather than from the parameter stack. It is because a task switch
can be executed as a standard machine language instruction that the latency for a task switch
is the same as for any other jump or branch (2 clock cycles). A task switch involving a virtual
interrupt involves an additional stage to push the value of the program counter onto the subroutine
stack and therefore executes in 3 clock cycles.

Secondly, a 16 bit counter was introduced to count the number of instructions executed since
the last task switch. This counter is compared with the INTERVAL register of the multitasking
unit and a pre-emptive task switch is triggered when the INTERVAL count has been reached or
exceeded, if preemptive multitasking is enabled.

The control unit uses a common mechanism to handle a PAUSE instruction and a preemptive task
switch. One important di�erence however is the value of the program counter that is saved to
the multitasking unit. In the case of encountering a PAUSE instruction, the task should resume
execution at the instruction following this PAUSE. In the case of a preemptive task switch, then
the current instruction (whatever it is) will not be executed since the preemptive task switch has
priority. In this case the task should resume execution at this instruction. This di�erentiation is
similar to how the control unit selects the appropriate value of the program counter to push onto
the subroutine stack in the cases of jump to subroutine (JSR) instructions and interrupts, and
identical hardware logic was used.

5.5 Interrupts

With any multitasking design a decision is needed as to how interrupts will interact with task
switching. There are two broad alternatives: either interrupts are synchronized with task switches
so that interrupt handlers always run within their own tasks, or interrupts are handled by whichever
task happens to be running at the time when the interrupt request occurs.

We did not examine the trade-o� between these two approaches in great detail. The N.I.G.E.
Machine takes the latter approach. For us the simplicity of design thus a�orded and the avoidance
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of any possible latency in interrupt responses were su�ciently compelling advantages in the absence
of any obvious considerations to the contrary.

Given this design decision, the N.I.G.E. Machine system interrupts for RS232 and PS/2 I/O execute
in whichever task is running when the interrupt request occurs. The RS232 and PS/2 interrupt
service routines operate by transferring characters between the relevant hardware interface and
memory bu�ers, updating the bu�er counters accordingly. Tasks that need to wait for RS232 or
PS/2 communications do so by polling for updates to the relevant bu�er counters in a loop that
includes a PAUSE statement. The FORTH word KEY? is implemented in this manner.

In order to avoid any performance or reliability impact in interrupt handling, it is necessary to
ensure that interrupts cannot themselves be interrupted by task switches. Pre-emptive multitask-
ing is automatically disabled by the control unit during interrupt processing. If the preemption
instruction counter reaches INTERVAL while an interrupt is in progress then the task switch is
postponed until immediately after the interrupt service routine has concluded. For cooperative
multitasking, it is a N.I.G.E. Machine software design requirement that PAUSE machine language
instructions should not be included within interrupt service routines.

5.6 Task monitor software

The task monitor software is a set of words within the FORTH system software available to initiate
and control tasks. A description of some of the words is presented in section 7.

The task monitor's method to control the default sequencing and allocation of tasks is as follows:
the lowest 5 bits of each task control register (there is one task control register for each task)
indicate the number of the next-to-execute task. These 5 bits are utilized directly within the
multitasking unit to sequence a task switch as described above. The remaining 11 bits do not
directly control hardware but are utilized by the task monitor. Bit 15 is used to indicate whether
a task has been allocated to a running task ('1') or is unassigned and therefore available for a new
task upon request ('0'). Bits 9 down to 5 are used by the task monitor to indicate the number of
the task that points execution to this task. In this way the lower 10 bits form the nodes of a doubly
linked list that speci�es the task execution order. Bits 14 down to 10 are reserved for expansion.

When a new task is requested (see RUN in section 7) the task monitor �rst searches the set of task
control register to identify an unassigned task (indicated if bit 15 is clear). The new task is then
inserted into the doubly linked list of executing tasks after the currently executing task by updating
the nodes of the double linked list maintained within the lower 10 bits of the task control registers.
For all newly initialized tasks, the program counter for the new task is directed to a common
initialization routine. This brief (~60 byte) initialization routine is responsible for resetting the
stack pointers of that task to zero, copying the set of initialization parameters speci�ed by the RUN
command to the stack via. intermediate storage in shared memory, initializing the user variable
area, initializing the exception stack variables and then jumping to the speci�ed execution token.

When a task is put to sleep (see SLEEP in section 7), it is removed from the doubly linked list of
executing tasks but bit 15 of the task control register remains set to indicate that the task is still
allocated. When a task is woken (see WAKE in section 7) it is re-inserted into the doubly linked
list of executing tasks. When a task is stopped, then in addition to removing it from the list of
currently executing tasks, bit 15 is cleared to indicate that it is now free for reallocation.

5.7 Controls over task switching

The multitasking unit operates two controls to limit task switching and thus avoid glitches:

Firstly, because the state-vector of the next-to-execute task is automatically transferred from the
RAM blocks within the multitasking unit into the control unit and datapath when a task switch
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occurs, it is necessary for these RAM blocks to have time to update properly between task switches.
The minimum interval between task switches is 3 clock cycles due to this update requirement. A
control device within the multitasking unit imposes a 5 clock cycle minimum interval between task
switches. If a PAUSE instruction or pre-emptive task switch occurs within this limit then it will
simply be ignored. This is a critical control since cooperative PAUSE instructions continue to
remain e�ective even after pre-emptive multitasking has been enabled.

Secondly, multitasking is automatically disabled by the multitasking unit when there is only one
active task (i.e. where the lower 5 bits of the currently active task's task control register references
itself). This is necessary on account of the same update constraint.

5.8 User memory area

Each task has a private 2 KiB user memory area that is mapped to the system address space. The
user memory areas are hosted within 64 KiB of FPGA BLOCK RAM. The upper 5 address bits are
linked directly to the register that holds the number of the currently executing task. In this way
each of the 32 user memory areas can be mapped to the same address range in the system address
space. The currently executing task will always have guaranteed private assess to its own user
memory area but no access to the user memory areas of other tasks. Table 5 is an outline memory
map of the user memory area. Further details are given in the N.I.G.E. Machine documentation.

Usage # bytes System address

FORTH system task speci�c variables 44 3D000

Available for USER variables 980 3D02C

The FORTH PAD bu�er 512 3D400

The FORTH ACCEPT bu�er 256 3D600

Reserved for expansion 256 3D700

Table 5: Outline memory map of the 2 KiB user memory area

5.9 Memory management

We took the decision not to implement any form of memory management over the 128 KiB of
system memory that holds the FORTH system dictionary and user applications, or over the 16
MiB of o�-chip PSDRAM that holds the screen bu�er and is available for application data storage.
As a result, all of the system memory and PSDRAM is available to any task without restriction.
The discussion in section 8 considers the merits and limitations of this approach.

5.10 Motivation for the design decisions

The principal motivations for our design decisions are discussed in section 8 by way of comparison
to alternative concurrency strategies.

A hardware multithreading approach o�ers some advantages, as described in this paper, but nec-
essarily also entails some �xed allocation of resources at design time. Our resource allocations
were based on �educated guesses� rather than speci�c research, but this is a softcore design and
�exibility is retained since the allocations can quite easily be adapted for individual builds, often
simply by changing VHDL GENERIC declarations.
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6 FPGA implementation

The N.I.G.E. Machine is implemented on a Digilent Nexys4 development board [18] which features
a Xilinx Artix-7 FPGA (Xilinx part number XC7A100T-1CSG324C [19]). The design has been
developed using the VHDL hardware description language and the Xilinx ISE development studio,
version 14.6. Table 6 shows the FPGA utilization for the fully synthesized design. Table 7 analyzes
the usage of BLOCK RAM.

FPGA resource Utilization

Slice registers 4%

Slice look up tables (LUT's) 9%

FPGA BLOCK RAM 97%

Table 6: FPGA utilization

Design component BLOCK RAM count

System memory 32.0

Task private user memory 16.0

Parameter stacks 7.5

Return stacks 4.0

Subroutine stacks (including space for
local variable storage)[4]

68.0

Exception stacks [4] 5.0

VGA display interface 1.0

CPU microcode 0.5

Table 7: FPGA BLOCK RAM usage by design component. Each BLOCK RAM resource represents
4Kbytes.

The Xilinx XC7A100T is a latest generation FPGA in the Xilinx �value� range. The N.I.G.E.
Machine utilizes less than 10% of the fabric logic on this device. On the other hand the BLOCK
RAM is signi�cantly utilized at 97%. The simple reason for the high utilization of BLOCK RAM is
that the private stacks and user memory areas for all of the 32 tasks are pre-dedicated at synthesis
time regardless of how many active tasks any given application will actually create. However it is
also possible to synthesis the design with 16, 8, 4, or 2 virtual machines instead of 32 by adjusting
the top-level VHDL GENERIC declarations and the ipCORE declarations of the relevant RAM
blocks.

Not all of the RAM modules on the N.I.G.E. Machine are instantiated with BLOCK RAM. All
of the RAM modules within the multitasking unit are instantiated using distributed FPGA logic
elements for resource e�ciency reasons. Xilinx Artix-7 BLOCK RAM units can be con�gured in
a variety of formats between 32K x 1 and 512 x 36 (address depth x bit width), but the freezer
RAM has a relatively wide but shallow format of 32 x 116 which would lead to poor utilization in
BLOCK RAM.

We had concerns that the over utilization of BLOCK RAM would signi�cantly impede place
and route performance, since the design e�ectively requires that signals be routed to and from
BLOCK RAM instances right across the FPGA. During development we found that ISE's simulated
annealing placement algorithm was quite sensitive to design changes (meaning that small changes in
the logic design could have signi�cant impact on the place and route performance, presumably due
to their implications for routing). ISE's SmartXplorer, which is a tool for automatically optimizing
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placement using for example, di�erent cost tables within the simulated annealing algorithm, was
able to meet timing with a clock frequency of 100 MHz but signi�cant search e�ort was required (8
out of 100 strategies succeeded). At a clock frequency of 95 MHz, SmartXplorer was able to meet
timing with the vast majority (95 out of 100) of strategies. The N.I.G.E. Machine's 100 MHz clock
frequency has been retained, but it would likely be easier to develop future projects with a clock
frequency of 95 MHz and then use SmartXplorer re-optimize place and route for a clock frequency
of 100 MHz as the �nal step.

7 N.I.G.E. Machine multitasking functionality

This section describes a selection of the FORTH words that are available to user applications to
control multitasking on the N.I.G.E. Machine. A full list is give in the N.I.G.E. Machine system
documentation [5]. The majority of words are directly analogous to those of the PolyFORTH
multitasking system [16].

7.1 Multitasking con�guration

SINGLE ( --)

Disable multitasking. PAUSE instructions will be treated as a NOP. Multitasking is enabled at
power-on by default on the N.I.G.E. Machine.

MULTI ( --)

Enable multitasking. Note that if there is only a single active task then PAUSE will be treated as
NOP.

7.2 Task initiation

RUN ( p1 ... pn n XT -- TN true | false)

Initialize a new task to take n stack parameters (p1 ... pn) and execute the code pointed to
be execution token XT. Return the number of the task allocated to this task (TN) and true if
successful, or false if all tasks are currently otherwise allocated. The newly created task will be
positioned in the round-robin sequence immediately after the current task. Tasks are numbered 0
through 31. Note that the XT must either code an in�nite loop or contain termination instructions
to self-abort.

7.3 Task switching

PAUSE ( --)

Task switch. Yield CPU execution of the current task and switch CPU execution to the next-to-
execute task.

SLEEP ( n --)

Put task n to sleep by removing it from the list of executing tasks. The task remains allocated
and can be woken at a later time.

WAKE ( n --)

Wake task n by inserting it into the list of executing tasks immediately following the current task.

STOP ( n --)

Deallocate task n and remove it from the list of executing tasks. This task may now be recycled
by RUN.
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7.4 Pre-emptive multitasking

PREEMPTIVE ( n --)

Enable preemptive multitasking with period of n instructions between task switches. If n = 0 then
preemptive multitasking is disabled. Preemptive multitasking is disabled at power on by default
on the N.I.G.E. Machine.

7.5 Virtual interrupts

VIRQ ( XT n --)

Virtual interrupt. Cause task n to branch to the subroutine at XT and then return to its prior
point of execution. The virtual interrupt will be actioned when task n is next scheduled to execute.

7.6 Mutual exclusion

ACQUIRE ( sem --)

Acquire the binary semaphore (sem) or yield until it becomes free. A semaphore can be any
FORTH variable with global scope. Semaphores are minimum single byte in length (word or
longword length variables may also be used). A semaphore contains the number of the latest
successfully acquiring virtual machine XOR 255, or 0 if not acquired.

RELEASE ( sem --)

Release the binary semaphore (sem).

7.7 Inter-task communication

We have not attempted to provide hardware based support for inter-task communication. As noted
above, each task's 2 KiB private memory is not accessible by other tasks but the rest of the 128
KiB system memory and all of the 16 MiB of PSDRAM on the N.I.G.E. Machine is accessible by
all tasks. Application speci�c inter-task communication designs can utilize shared memory for data
passing and may take advantage of the ACQUIRE and RELEASE words for mutual exclusion.

8 Discussion

8.1 Comparison with other hardware multithreading strategies

The N.I.G.E. Machine's approach to hardware multitasking has some similarities with the multiple
register �le / block multithreading architectures referenced in section 3 but as a whole is di�erent
from those strategies.

Multiple register �le architectures essentially use control lines to select which instances of the CPU
registers are to be updated each cycle. The N.I.G.E. Machine takes a similar approach in selecting
the parameter and return stack for each task by extending the address width of each stack and
concatenating the number of the currently executing thread at the high end of the address bus
with the relevant stack pointer at the low end.

However the N.I.G.E. Machine does not apply this approach to the registers within the CPU and
datapath (e.g. the program counter and top-of-stack register), rather they are saved and reloaded
from an external store (the multitasking unit) each time a task switch occurs. The reason for doing
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this is timing e�ciency. The N.I.G.E. Machine operates at 100 MHz meaning that each clock cycle
must complete within 10 ns if the design is to �meet timing�. Each additional layer of logic in a
signal path adds delay due to both the response time of the logic itself and the necessary signal
routing. In terms of logic layout, a register �le of 32 registers is essentially a 32 way multiplexer
that must sit between say the ALU and the register to be updated. Even though modern FPGA
multiplexers are highly optimized, a 32 way multiplexer would need to be implemented in 2 or 3
additional layers of FPGA logic[30]. By storing register information for each task in a separate
unit, the N.I.G.E. Machine avoids the need for any extra FPGA logic on the signal path that
updates each cycle. Rather the �update burden� is shifted to the cycles that occur between clock
cycles, which in the case of the N.I.G.E. Machine is only 2 clock cycles in any case.

A �nal di�erence is that a task switch on the N.I.G.E. Machine switches more than the CPU
context: the USER memory areas that are private to each task are switched concurrently. Hence
we have termed the N.I.G.E Machine's architecture as hardware multitasking rather than hardware
multithreading.

8.2 Comparison with multi-core processor strategies

In recent years the trend in processor development has been �rmly towards multi-core CPU's,
even in embedded applications [20]. However this trend is not without a number of di�culties
imposed by the complications of multi-core software development [23]. Our focus on developing
a virtualization model for the N.I.G.E. Machine has been to attempt to balance the pursuit of
absolute performance with simplicity for the application programmer.

The key di�erence between programming a single core multitasking architecture such as the
N.I.G.E. Machine as compared with a multi-core CPU is the elimination of possible asynchronous
e�ects. The N.I.G.E. Machine used in cooperative multitasking mode will have absolutely deter-
ministic behaviour (and timing) since there is a single execution path through all contexts. In
a multi-core CPU multiple asynchronous execution paths must be modelled, programmed and
debugged.

The N.I.G.E. Machine is intended for rapid prototyping applications where fast and easy software
development should be a particular advantage. The certain absence of asynchronous e�ects is the
programmer simpli�cation motivating our preference for a single core rather than a multi-core
approach.

8.3 Chosen approach to memory management

As described in section 5, aside from providing a 2 KiB private memory area, we decided not to
implement any memory management mechanisms for the 128 KiB of main system memory and
the 16 MiB of PSDRAM. We recognize that on a modern server or desktop based multitasking
system it would be considered a fatal weakness not to provide memory protection mechanisms that
prevent tasks from corrupting the memory used by other tasks. High-reliability computing is also
in demand in the embedded space.

However the intended focus of the N.I.G.E. Machine is in relatively small scale deeply embedded
applications. For that reason we envisage that in most situations, all tasks will be sub-modules
of a single overall application and so inter-task protections may be a less critical factor in total
application reliability.

Another reason for our decision is that since the overall system memory is only 128 KiB (albeit
this is probably still a reasonable system memory size for a deeply embedded device [24]), it would
not be feasible to subdivide this memory between tasks and still retain a sensible amount for each.

Finally, the FORTH language is dictionary based and it is typical for multitasking FORTH systems
to have access to a common system dictionary. The FORTH system software on the N.I.G.E.
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Machine implements the ANSI Search-Order word list which allows individual applications or
tasks to extend or restrict the dictionary with private word lists if desired.

8.4 Alternative task scheduling models

The task scheduling model implemented by the task monitor is a simple round-robin scheme. That
is, all active tasks take their turn to be executed once per round. This is the fastest task switching
model that can be implemented using the N.I.G.E. Machine's hardware multitasking framework
since the next-to-execute task is determined in advance and task switches take place atomically in
only two clock cycles. Given the high performance of this scheduling model within the N.I.G.E.
Machine, and it's ubiquity on multitasking FORTH systems [15], we believe that it would likely
be the most e�ective choice for most embedded applications.

However many other priority based task scheduling models exist [13]. A priority based task schedul-
ing model can be accommodated within the N.I.G.E. Machine's hardware multitasking framework
by changing the way that task control registers are used by the task monitor. An outline of how
this could be achieved is as follows: the task control registers of all tasks are set such that the
next-to-execute task is always a common scheduling task (say task 31). The scheduling task would
be responsible for maintaining a list of task priorities and determining the next-to-execute on a
real time basis. It would conclude its operation by setting the value of its own task control register
before executing PAUSE.

Paul Bennett has pointed out [26] that an alternative model for cooperative multitasking is the
Time-Triggered Systems (TTS) approach [27]. TTS is typically based on just one interrupt (the
system tick timer). It schedules cooperative tasks to run at intervals according to their order in
the �tick list�. There is no main loop of program execution aside from the tick list itself. All I/O
is polled. TTS could quite likely be implemented on the N.I.G.E. Machine using this multitasking
hardware with light adjustments to the task monitor software.

Although we have not further investigated in any detail, it was mentioned to us that this archi-
tecture might also be leveraged to support the high level language features of co-routines and
continuations.

8.5 Limitation of the hardware multitasking approach

An obvious limitation of the N.I.G.E. Machine's approach to multitasking is that the number of
tasks is limited to the 32 that are pre-instantiated in hardware. We did not conduct a feasibility
study of the number of tasks typically required by an embedded system but would expect based
on general experience that parallel programming complexities might become a constraint in an
embedded application before the limit of 32 tasks had been reached.

Another limitation is that hardware resources (mainly FPGA RAM blocks) are pre-allocated to
tasks that may never be used, in which case they are e�ectively wasted. With 32 tasks allocated
there is 128Kbytes of system memory for FORTH applications and parameter and return stack
depths of 256 and 128 cells respectively in each virtual machine. So su�cient resources are available
for a meaningful FORTH system. As explained in section 6, it is possible to synthesize the N.I.G.E.
Machine with 32, 16, 8, 4 or 2 tasks by adjusting the generics declarations in the VHDL code.

8.6 Advantages of the hardware multitasking approach

We suggest that there are a number of advantages to using hardware multitasking to provide a
multitasking FORTH system as compared with traditional software-based multitasking.
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Firstly although task switching on FORTH systems is typically very fast [15], the ability to complete
a full task switch in the same duration as a jump or branch means that e�ectively multitasking
has no performance overhead on the N.I.G.E. Machine.

One way this performance advantage could be put to use for enhancing reliability is by including
PAUSE instructions within FORTH loop structure words (LOOP, +LOOP, UNTIL, AGAIN, RE-
PEAT) [26]. Although that has not been done with the current version of the N.I.G.E. Machine's
FORTH system software, the advantage of doing so would be to decrease the likelihood of tasks
failing to cooperate due to their being insu�cient PAUSE instructions within their routines.

Secondly, because pre-emptive multitasking is implemented directly by the CPU and not via in-
terrupts, it is never necessary to disable interrupts during tasking switching, or even during the
initiation of new tasks. This means that the N.I.G.E. Machine avoids any interrupt latency due to
multitasking.

Lastly, since task switching is handled by a single machine language instruction, each task switch
is atomic, i.e. the thread of execution is always with one task or another, never in-between tasks.
This may have some reliability bene�ts since there are no task switching software routines that
have the potential to become corrupted during program execution.

9 Conclusion

FORTH systems have o�ered multitasking since very early in the history of FORTH language
and on very lightweight system [15, 16]. Now that the N.I.G.E. Machine includes multitasking
capability with fast and e�cient hardware support, we believe that the platform is su�ciently
developed to be applied to its intended �eld in the rapid prototyping of experimental scienti�c
apparatus. It is hoped that the next stage of development will focus on opportunities in this area.
In addition there is the possibility to port the design to other FPGA development boards (e.g. the
Diligent Nexys4-DDR) or enhance the range of input/output ports.

The authors wish to thank the anonymous academic reviewers for their comments, especially those
relating to the terminology of the architecture. Their comments have signi�cantly improved the
clarity of the paper.
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Abstract—Wireless Sensor Networks (WSNs) are composed
of tiny sensor nodes able to monitor environmental conditions.
Existing applications for WSNs usually adopt a centralized
approach that exploit sensor nodes just for sensing, while data
processing takes place on more powerful base stations. This can
be considered a consequence of the common WSN programming
practice that proves too rigid to support development based on
distributed processing. In fact, local processing of complex data,
such as symbolic information and rules, is an under explored
aspect. The adoption of high level interpreters above general
purpose operating systems is often unpractical since it implies
the saturation of the available resources. In this paper, we detail
the implementation of an alternative Forth-based approach that
implements a minimal but extensible operating system featuring
common WSN functionalities as well as advanced skills such as
symbolic distributed processing. We show the definition of words
and syntactic constructs that enable collaborative processing on
WSNs and ease the development of complex applications even on
resource constrained WSN nodes. To this purpose, our approach
is based on an abstract mechanism enabling nodes to exchange
directly Forth code. Cooperative behaviors, introducing dynamic
computation into the network, are thus easily implemented, as
we show in a few applicative examples. Moreover, using the
same mechanism, remote nodes can be effortlessly reprogrammed
even after their deployment. Finally, we show how our approach
proves to be feasible and advantageous through a comparison, in
terms of memory usage, with relevant interpreter-based software
platforms for WSNs.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of tiny
wirelessly interconnected sensor nodes that are equipped with
a microcontroller, a radio interface subsystem, some sensor
devices and an autonomous power supply, usually consisting
in batteries [1]. Generally, such devices are characterized by
quite constrained resources in terms of energy, communication
and processing capabilities.

WSNs represent a very active research area as several
applications have been proposed in literature in several con-
texts such as biomedical, healthcare, military, industrial and
environmental fields [2].

The development of high level applications is typically sup-
ported by general purpose operating systems for WSNs such
as Contiki and TinyOS [3], which primarily focus on reducing
power consumptions while optimizing resource usage [4].

Mainstream programming practices involve the cross-
compilation of specialized code with the thin layer operating
system of choice, and the subsequent code uploading to the
on-board ROM memory. Any modifications in the source code
lead to retrace the same steps afresh.

Such practice strongly limits the development of more
advanced applications than the static acquisition and trans-
mission of sensory data that is then to be processed by a base
station [5].

Sophisticated applications, such as those concerning Ambi-
ent Intelligence (AmI) scenarios, could instead be developed
if the nodes were able to process cooperatively more complex
data –e.g. symbolic data and rules– than the numerical values
in rigid representations resulting from sensing. Such applica-
tions may in fact implement intelligent, autonomic, and self-
organizing behaviors by distributed processing of symbolic
and qualitative description of the observed phenomena. How-
ever, due to memory constraints of the available development
methodologies, such kind of applications are too complex to
be implemented on WSNs without recurring to centralized or
Cloud-based infrastructures [6].

In order to give the network some adaptivity to changes
of the environment as well as of the application goals after
the nodes have been deployed, alternative WSN application
development tools are thus strongly required [7].

To overcome the inflexibility of conventional programming
methodologies, several interpreters targeting resource con-
strained Wireless Sensor Network (WSN) nodes have been
presented in literature [8], [9], [6], [10]. Their primary goal is
to support the application development as well as the retasking
of already deployed nodes. However, node reprogramming af-
fects just the application code, while the hardware-abstraction
layer modifications require to upload the whole binary image
or to replace just the modules to be updated [11].

In general, high-level language interpreters are designed as
applications running atop the chosen general purpose operating
system. Unfortunately, such a strategy dramatically increases
the processing load on the on-board microcontrollers, and
detaches the application from the hardware. Moreover, this
solution often leads to high memory occupation that leaves
insufficient memory resources to develop not trivial applica-
tions [8].

The choice of Forth in WSN AmI applications, which are
characterized by realtime and resource constraints, seems thus
quite natural and desirable [12]. Moreover, the interactive
nature of Forth makes it easy to face the challenges of AmI
development with experimental programming.

In this paper, we detail our experimentation on the use
of Forth on WSN nodes as an operating system and devel-
opment tool. We describe our ongoing implementation of a
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Forth-based software platform that provides nodes with basic
WSN capabilities such as networking, sensing, and actuation,
accessible through expressive words, and easily extensible to
support complex functionalities.

Distributed processing is one of the key goals of our
platform that we addressed with a simple abstract mechanism
based on the transmission of Forth code among nodes, even
already deployed ones. In the next sections, we show how we
have been able to implement this abstraction in a few dozen
words, with a remarkably low resource usage with respect to
other available interpreters.

The remainder of the paper is organized as follows. Sec-
tion II details the wordset we have implemented to use Forth
as an operating system for WSNs. In Section III, the primitives
supporting distributed processing are presented. Section IV
describes some working applications running on WSN nodes
in order to demonstrate the feasibility of our approach and
finally Section V reports our conclusions.

II. FORTH AS AN OPERATING SYSTEM FOR WSNS

Forth naturally provides an interactive environment with
most of the functionalities of an operating system for common
computers. In the case of WSN nodes the OS responsibilities
include the management of networking as well as all the
various on-board and optional sensors and devices.

Most WSN nodes –referred to as motes in the specific
literature– are based on MCU with Harvard architecture with
separate memories for data and programs. Several interfaces,
e.g. digital I/O, analog inputs, I2C, SPI and UARTs enable
the connection with external modules, such as the radio
subsystem, sensing boards, and so forth. For instance, the
IrisMote platform that we used as a testbed, which is one
of the most adopted, especially for research purposes [13], is
equipped with an IEEE 802.15.4 compliant radio transceiver,
128 KB of Flash memory, 8 KB of static RAM and a 4 KB
EEPROM, and can be expanded with sensing and prototyping
boards.

At the beginning of our experimentation, we sorted out all
the available Forth environments targeting the AVR microcon-
troller used in the IrisMote platform. We chose AmForth [14],
a simple indirect threaded code interpreter, as it proved mature
enough to be used as a development tool, and as it also
provided a usable interactive shell through a serial terminal.
However, AmForth did not include natively the support for
any WSN platform. This required us to patch AmForth for
the IrisMote to include specific configuration settings, such
as those concerning ports, clock generators, on-board radio
registers, timers and so on.

In our efforts to build an operating system for WSNs we
defined an essential collection of definitions for the basic func-
tionalities needed by WSN applications, such as networking
and sensing.

Not all the definitions are strictly related to the hard-
ware. Instead, we defined some more generic and platform-
independent words that are not tied to specific hardware im-
plementation and can thus easily work on different platforms.

Frame Control  Field
Sequence

Number
Addressing Fields MAC Payload CRC

2 bytes 1 byte 0-20 bytes 2 bytes

Frame Type Frame 

Pending

Security 

Enabled

ACK 

Request

Intra

PAN
Reserved

Destination

Addressing Mode
Reserved

Source 

Addressing Mode

Fig. 1: Format of a valid MAC layer frame according to the 802.15.4 standard.
The frame control field is detailed in the bottom of the figure.

As an example, hardware independent words are those used to
create valid data frames according to the 802.15.4 standard.
In our implementation, transmission and reception of valid
802.15.4 frames is based on two buffers:

• outbound: a memory area where the outgoing frame is
stored before downloading it to the radio frame buffer
for the transmission;

• inbound: a memory area where the received frame is
stored after it is uploaded from the radio frame buffer.

The buffers are 128 bytes long. According to the 802.15.4-
2003 standard (see Figure 1), we defined the words to create
valid data frames and to set the frame fields appropriately,
e.g. short/long destination addressing mode field, frame type,
frame length, and so on. In particular, Listing 1 shows the
word definition to create a default frame with the following
settings:

• short addressing mode (source and destination);
• intra-pan bit set to 1;
• 0xabcd pan address;

Listing 1: Forth word to create a valid 802.15.4 data frame with fixed settings
: default-pkt ( -- packet )
outbound dup erase
data frame_type
pan_compr
dest short mode! src short mode!
dest pan $abcd s_addr! src addr id @ s_addr! ;

A. Forth Words for Input Redirection to the Radio Module

Our Forth-based implementation supports interactive devel-
opment on already deployed devices. This feature permits
adding new words on remote nodes even if they are not
physically connected to a serial terminal. Interactivity, sym-
bolic processing and executable code exchange are the pivotal
characteristics of our system.

The code exchanged among nodes and received from the
radio channel is interpreted by the system, provided that the
default input –the USART, at boot– has been redirected to the
radio transceiver. Each incoming frame triggers the interrupt
invoking the text interpreter on the frame payload.

Listing 2 shows the word definitions to enable the interpreta-
tion of incoming frames from the radio channel, by switching
the input from the USART to the radio.
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Listing 2: Forth words to redirect the standard input device to the radio
variable old-key
variable old-key?
variable payld-addr
variable payld-size
variable payld-in
$200 constant usart_rx_in
$201 constant usart_rx_out
$202 constant usart_rx_data

: payld-reset
0 payld-size !
0 payld-in ! ;

: payld-set ( addr n -- )
payld-size !
payld-addr !
0 payld-in ! ;

: radio-key?
payld-size @ dup 0 > swap
payld-in @ > and ;

: radio-keyin
payld-in @ dup payld-addr @ +
c@ swap 1 + payld-in ! ;

: radio-key
begin pause radio-key? until radio-keyin ;

: +radio-input
payld-reset
[’] key defer@ old-key !
[’] key? defer@ old-key? !
[’] radio-key is key
[’] radio-key? is key? ;

: -radio-input
old-key @ is key
old-key? @ is key? ;

: usart_inject
usart_rx_in c@ usart_rx_data + !
1 usart_rx_in +! ;

Essentially, the input redirection makes the deferred words
key? and key point to radio-key? and radio-key
respectively. The word radio-key? is used to assess if
there are unread characters in the frame payload by checking
either if the variable payld-size is greater than 0 and
the current pointer to the payload payld-in is lower than
payld-size. The word radio-keyin fetches the next
character in the frame payload and advances the current
payload pointer payld-in. Finally, the word radio-key
executes radio-key? and radio-keyin until all the
characters in the frame payload have been read. To redirect
the input to the radio, the word +radio-input is typed in
the node shell. The execution causes the AmForth shell to be
lost, until a data frame containing the word -radio-input
is received. This word restores the input to the USART.

Code processing takes place directly in the interpreter loop
as the last character of each incoming frame is required to be
a carriage return. Such an event triggers the interpretation of
the payload. However, in real use, interacting with networked
devices through a wired line is unpractical. In fact, to redirect
the input to the radio system without any wired connection,
we defined a special frame containing just the character $17,
which is the ASCII code for the non-printable character ETB.

Once a frame is received, the node uploads it from the radio

frame buffer and checks whether the frame payload is equal to
ETB. If so, it executes +radio-input. Actually, to switch
the input, the word usart_inject must be executed to
exit the system blocking loop waiting for characters from the
USART that in the current AmForth implementation cannot
be preempted in other ways.

B. Support to the Radio Operations
In order to support the communication among nodes, we

defined a number of words to drive the radio of IrisMotes. The
low-power AT86RF230 transceiver [15] is connected to the
master SPI interface of the microcontroller and to additional
control signals, i.e. IRQ and GPIO signals. Essentially, the
SPI is used for frame buffer and register access operations,
according to the SPI protocol. Although AmForth already
provides the words spi! and spi@ for writing and reading
a character on the SPI bus, further efforts were needed to
configure ports for the specific target device.

We also defined word sets to support the functional specifi-
cation of the radio device. For instance, in Listing 3 the words
reg_rd and reg_wr specify the operations to be undertaken
for reading and writing the radio registers. Similarly, we
defined the words to_framebuf and from_framebuf
to upload incoming frames, and download outgoing frames,
respectively. Word choices reflect the nomenclature of the
radio datasheet.

Uninterruptible code, such as that implementing SPI oper-
ations, is enclosed within critical sections. The words ss_l
and ss_h set the SS line of the SPI interface respectively low
and high.

Listing 3: Some words of the radio driver
: reg_rd ( register_address -- register_value )

reg_addr_mask and reg_rd_command or
critical[
ss_h ss_l spi! spi@ ss_h
]critical

;

: reg_wr ( register_value register_address -- )
reg_addr_mask and reg_wr_command or
critical[
ss_h ss_l spi! spi! ss_h
]critical

;

: to_framebuf ( packet_to_send -- packet )
dup critical[
ss_h ss_l framebuf_wr_command spi! length spi!
dup length 0 ?do dup I + 1 + c@ spi! loop
ss_h ]critical

;

: from_framebuf ( packet -- packet )
critical[
ss_h ss_l framebuf_rd_command spi!
spi@ over c! dup length 0 ?do
spi@ over I + 1 + c! loop ss_h ]critical

;

The radio transceiver operating modes and its transitions can
be represented by the state diagram in Figure 2.

To permit a plain alignment between specifications and
implementation, the same diagram can be completely ported
into Forth definitions as shown in Listing 4, which includes
just a restricted number of defined words.
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Fig. 2: Part of the state diagram representing the set of operating modes of
the AT86RF230 according to the datasheet [15]. The label on the arrows
represents the command that writes to the TRX STATUS register causing the
transaction to another state. Events are indicated with labels in italics.

Listing 4: Definitions for radio operating modes and transitions
: pll_on ( -- )

pll_on_state cmd-wr ;

: trx_off ( -- )
st-reset ;

: tx_start ( -- )
tx_start_cmd cmd-wr ;

: rx_on ( -- )
rx_on_state cmd-wr ;

: rx_aack_on ( -- )
pll_on rx_aack_on_state cmd-wr ;

: tx_aret_on ( -- )
pll_on tx_aret_on_state cmd-wr ;

: transmit ( packet -- )
-int IRQ low
idle? if green led blink else
trx_off outbound process-tx drop to_framebuf drop
tx_aret_on tx_start
then +int

;

: switch-input? ( inbound -- )
dup payld addr nip c@ $17 = if
+radio-input $17 usart_inject
then

;

: received ( inbound -- )
trx_off
from_framebuf dup process-rx switch-input?
payld addr nip swap payld size payld-set

;

In particular the words process-rx and process-tx are
deferred words that may be used to process inbound and
outbound buffers. A possible use may be for encryption
and decryption purposes. The last three definitions implement
frame transmission, input redirection and frame reception.
Transmission and reception of frames are signaled by in-

terrupts on the Timer1 Input Capture Trigger. The Interrupt
Service Routine in AmForth is also a defined word. Therefore,
we defined a word acting as the handler routine and we stored
its address as interrupt vector. Our interrupt handler routine
reads the IRQ STATUS register and acts as a dispatcher. Since
the AT86RF230 differentiates between six interrupt events,
it calls the appropriate interrupt handler, according to the
interrupt source. For instance, the interrupt generated by either
a frame transmission/reception causes the execution of the
word trx_end_isr. If a correct transmission triggers the
interrupt, the radio enters the rx_aack_on state, otherwise
the frame is downloaded to the inbound buffer.

: trx_end_isr
red led blink state?
tx_aret_on_state = if
else inbound received
then trac_status trac !
rx_aack_on ;

C. Supporting Sensing and Actuating Tasks

The acquisition of sensory data is the main functionality
of WSN nodes. Typically, expansion boards are required to
provide the nodes with several sensors simultaneously. As in
the case of the radio transceiver driver implementation, we
have extended the WSN node dictionary with a number of
words to drive sensor boards. Moreover, word sets composed
of high level words enable the data sensory acquisition through
the different available sensors. For instance, a program to make
a node sense the temperature may consist of the single word
temperature that leaves at the top of the stack the required
sensory value. Similarly, the word luminosity activates
the light sensor, puts the sensory reading atop the stack, and
finally disables the sensor. Although the code is concise and
expressive, the execution of these words involves low level
aspects as reading from the ADC and returning the raw data
on the stack. However, we choose high level word names to
make the description of a task in natural language and the
implementation as similar as possible. The words we defined
to support sensing tasks are summarized in Table I.

WSNs may also include some actuator nodes to change
the environmental conditions. An IrisMote can behave as an
actuator when connected, for instance, to the MDA300 expan-
sion board that includes two relays, one of which normally
opened and the other one normally closed. We defined words
to drive the relays and developed a light control application
by connecting a LED to the expansion board, as detailed in
Section IV.

III. A FORTH-BASED APPROACH TO ENABLE SYMBOLIC
DISTRIBUTED PROCESSING FOR WSNS

To implement sophisticated AmI applications, even resource
constrained nodes may need to exchange complex informa-
tion that is not rigidly structured and that may differ from
numerical values such as symbolic descriptions and rules.
Conventional programming methodologies impose to define
in advance the format of the message to be exchanged as well
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TABLE I: Summary table of words used for sensing tasks. Words are indicated together with their “stack effect”

Word name Description
temperature ( -- temp value) Measure temperature and push the numeric value onto the stack
luminosity ( -- light value) Measure light and push the numeric value onto the stack
mic ( -- mic value) Measure sound level and push the numeric value onto the stack
accx ( -- accx value) Measure the acceleration along the X axis and push the numeric

value onto the stack
accy ( -- accx value) Measure the acceleration along the Y axis and push the numeric

value onto the stack
+sounder ( -- ) Activate the buzzer
-sounder ( -- ) Disable the buzzer

as to fix the packet fields where given information must be
placed. To overcome this rigidity, interpreters targeting WSN
nodes, such as Maté [9], T-RES [6] and TakaTuka [10],
have been presented. However, such solutions are based on
bytecode transmission and interpretation. Not only the source
code expressivity gets lost as the source code is translated into
bytecode but also the translation process is, in all effects, a
cross-compilation.

In order to retain expressiveness without sacrificing com-
pactness, we let our nodes able to directly exchange and
execute Forth code. Indeed, we implemented an abstract
mechanism to handle the transmission of code among nodes,
and from the terminal shell to nodes. The implementation cost
of such an abstraction is quite low in Forth and, at the same
time, the support to distributed applications is straightforward,
as shown in Listing 5.

Listing 5: Forth words for executable code exchange
variable current_pay
variable nest
variable current_buf
variable buf $80 cells allot

: 2dup over over ;
: buf-reset buf current_buf ! ;
: pay-reset outbound payld addr nip current_pay ! ;

: (write) \ i*x addr len dest_addr -- j*y
swap cmove

;

: num>str ( number -- string_addr string_len )
hex 0 <# #s [char] $ hold #> ;

: space+ ( pay_ptr -- pay_ptr+1)
bl p+

;

: cr+ ( pay_ptr -- pay_ptr+1)
$0d p+

;

: nest+ ( -- )
nest @ 1 + nest ! ;

: nest- ( -- )
nest @ 1 - nest ! ;

: [tell:]? ( addr len -- f )
s" [tell:]" icompare ;

: [:tell]? ( addr len -- f )
s" [:tell]" icompare ;

: tell:? ( addr len -- f )
s" tell:" icompare ;

: :tell? ( addr len -- f )

s" :tell" icompare ;

: >buf ( addr1 n -- )
dup >R current_buf @ dup >R (write)
R> R> + space+ current_buf ! ;

: >pkt ( addr1 n -- )
dup >R current_pay @ dup >R (write)
R> R> + space+ current_pay ! ;

: c>pkt ( value -- )
current_pay @ swap ( c@ -- ) p+ current_pay ! ;

: char>buf ( value -- )
current_buf @ swap over c! 1 + current_buf !

;

: subst
0 do buf I + c@ dup ( c@ -- )
case
$0e of drop num>str >pkt endof
$0f of drop num>str >pkt endof
$10 of drop >pkt endof
c>pkt
endcase loop

;

: [endtell] ( flash-addr flash-count -- )
dup >r buf imove r>
subst outbound dup current_pay @ cr+
endpayld transmit
pay-reset

;

: endtell ( buf buf-len -- )
nip subst outbound dup current_pay @ cr+
endpayld transmit
pay-reset

;

: subst? nest @ 0 = if
2dup s" ˜" icompare if drop drop $0e true else
2dup s" ˜˜" icompare if drop drop $0f true else
2dup s" ˜s" icompare if drop drop $10 true else
drop drop 0 then then then
else drop drop 0 then

;

: parse-tell ( -- buf buf-len )
buf-reset
begin bl word count

2dup :tell? if
nest @ 0 > if nest- >buf 0

else true
then

else
2dup tell:? if nest+ >buf 0
else 2dup [tell:]? if nest @ 3 + nest ! >buf 0
else 2dup [:tell]? if nest @ 3 - nest ! >buf 0
else 2dup subst? if char>buf drop drop 0
else >buf 0
then then then then then until drop drop
buf current_buf @ over -

28



;

: [parse-tell]
buf-reset
begin bl word count

2dup [:tell]? if
nest @ 0 > if nest @ 3 - nest ! >buf 0

else true
then

else
2dup [tell:]? if nest @ 3 + nest ! >buf 0
else 2dup tell:? if nest+ >buf 0
else 2dup :tell? if nest- >buf 0
else 2dup subst? if char>buf drop drop 0
else >buf 0
then then then then then until drop drop
buf current_buf @ over -

;

: reply ( -- dest_addr)
inbound src addr @ nip ;

;

: pkt-init 0 nest ! outbound erase
default-pkt dest addr rot s_addr! drop
pay-reset

;

: tell:
pkt-init parse-tell endtell

;

: [tell:]
postpone pkt-init
[parse-tell] postpone sliteral
postpone [endtell]

; immediate

Our programming environment and experimental setup is
composed of some nodes wirelessly deployed and a wired
node that behaves as a bridge to send user inputs to the
network.

The syntactic construct for the code exchange among nodes
is based on the word tell: that parses the input until :tell
is encountered and sends a default data frame, according to
IEEE 802.15.4 standard, to the node holding the MAC address
placed on top of the stack.

To tell all the nodes in the radio range to turn their green
LED on, a simple line of code is all that it needs to be typed
on the bridge node shell:

bcst tell: green led on :tell

As a consequence, the microcontroller on the bridge node
interprets the text typed by the user and creates a default data
frame with the broadcast address as destination, containing the
program to be sent, green led on, as payload.

A recursive usage of code exchange, through nested tell:
<code> :tell constructs, permits commands to hop form
one device to another before reaching the final destination,
as shown in Figure 3. From a mere semantic standpoint, the
sense is “to tell a node to tell another node to do something”.

The code to be remotely executed may contain syntactic
placeholders that are substituted at runtime with the content
of the top of the stack using a hexadecimal representation. For
the sake of clarity, our implementation consists in a two pass
parsing process. An intermediate substitution of such special
markers takes place in the first pass, while the items on top of

$2801 tell: $0901 tell: green led on :tell :tell
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Node ID: 

$E301

Node ID: 

$2801

Node ID: 

$0901

Fig. 3: Recursive employment of the tell: <code> :tell
primitive. Once the node with ID E301 encounters the first tell: it
parses all the following symbols until the last :tell and a frame containing
0901 tell: green led on :tell is sent to node with ID 2801.
The payload interpretation of the payload on the receiving side leads to the
sending of a new frame destinated to node 0901 with green led on as
payload. Once received, node 0901 turn its green LED on.

Node ID: 

$E301

Node ID: 

$0901

5

5

Fig. 4: The node with address $0901 interprets the code it receives and tells
the node with address $E301 to perform the sum between 2 and 3, and then
to reply with the value on top of its stack. Even though the reply message
consists only in a literal value, it is interpretable Forth code and it is simply
executed by node $0901 leaving 5 on top of its stack.

the stack definitively replaces placeholders during the second
pass.

Such special markers are:
• ∼ for a single cell value
• ∼ ∼ for a double cell value
• ∼s for strings
Instead of implementing state-smart words for

code exchange [16], we defined the compile-time
construct [tell:]<code>[:tell].

An example of code exchange between two nodes is de-
scribed in Figure 4. Incorporating such high level abstraction
on resource constrained devices leaves plenty of room for
the development of WSN applications that natively support
distributed processing. The word sets composing our software
platform are reported in Figure 5 along with their size in terms
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Fig. 5: A comprehensive view of the main word sets we defined and that
compose our software platform. For each word set, the number of words and
the Flash usage in bytes are indicated.

0 20000 40000 60000 80000 100000 120000

Flash

RAM

Flash

RAM

Flash

RAM

Flash

RAM

M
a

té
(M

ic
a
Z

)
T

-R
E

S
(W

iS
M

o
te

)
T

a
k
a

T
u
k
a

(I
R

IS
)

O
u

r
S

y
s
te

m
(I

R
IS

)

[Bytes]

Used Available

Fig. 6: Memory footprint of our software platform along with some represen-
tative interpreter-based architectures.

of number of words and Flash memory occupation.

Besides providing an on-board interpreter that does not need
cross-compilation, our approach compares favorably with the
aforementioned interpreter-based architectures with respect to
memory usage, as we assessed with tests in our experimental
setup. Where possible, as for TakaTuka and Maté, we compiled
the software platforms for the IrisMote or for the quite similar
MicaZ hardware. T-RES, instead, only runs on the WiSMote
hardware platform.

Results, reported in Figure 6, confirm that the implemen-
tation of the interpreter above a general purpose operating
system occupies much of the available memory, as in the case
of Maté and T-RES. As scripts are stored in RAM, not enough
space is left for the development of complex applications, even
in the presence of the double-sized RAM of WiSMotes. Our
Forth-based approach, instead, compactly keeps application
code in the relatively abundant Flash, while RAM just holds
temporary data as variable values, buffers and stacks.

More in detail, the memory footprint of all the platform
word sets is 5170 bytes of Flash, as reported in Figure 6,
and 1026 bytes of RAM. Including the underlying AmForth,
the overall footprint of our platform is 18693 bytes of Flash
memory and 1321 bytes of RAM memory.

IV. APPLICATION DEVELOPMENT ON WSNS

We have developed different applications for WSNs to test
both our approach and our software platform. As a first step,
we designed and implemented a working telnet-like remote
shell on the bridge node to be actually used as a development
tool [17]. Using the remote shell application on the bridge
node through a serial terminal, the programmer can interact
with a remote node that is reachable by the bridge node.

Besides debugging and node reprogramming, this applica-
tion can serve different purposes such as the inspection of the
state of a remote node or the acquisition of sensory readings
as if the remote node were physically connected through the
serial line.

The code is fully functional, and has been extensively
used in our experimentations. We defined a number of words
to redirect the output to the outgoing message, to display
incoming messages from the inspected node, and to implement
the remote shell loop. The resulting implementation is quite
readable and understandable. The almost complete remote
shell application code is shown in Listing 6. Although few
additional words are omitted, their description can be found
in Table II.

Listing 6: Code for a simple remote shell application
80 constant cmd-maxlen
variable cmd cmd-maxlen cells allot
variable cmd-len
variable node_id
variable timeout

: input-send ( -- )
cmd cmd-len @
node_id @ [tell:] ˜s [:tell] ;

: rshell-task ( -- )
payld-reset
input-send
timeout @ wait-answer if
payld-print then ;

: user-input ( -- )
cmd cmd-maxlen accept ( -- len )
cmd-len ! ;

: close ( -- )
node_id @ [tell:] -radio-output
[:tell] quit ;

: rshell-loop ( -- )
begin
cr ." rsh>" user-input
close?
if close
else rshell-task
then
again ;

: on-timeout ( -- )
." Connection timeout." cr ;

: welcome-msg
." Welcome to the remote shell

application!" cr
." Enter ’close’ to close the

application" cr ;

: rshell ( id -- )
welcome-msg
2000 timeout !
dup node_id !
[tell:] +radio-output [:tell]
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rshell-loop ;

A desirable use of WSN nodes is monitoring the envi-
ronment to react to undesired events. A role-based working
implementation differentiates the words defined on remote
nodes on the basis of their role in the network.

For instance, the actuator node dictionary could include
words to trigger an alarm if the luminosity value exceeds a
predefined threshold. A node provided with a light sensor
may regularly perform the luminosity measurement and tell
its neighbor to forward it to the actuator.

Such words explicitly make use of the syntactic construct
for distributed code exchange. However, the designer may
interactively set the topology, the threshold, the actuator node
and may start the event detection application by interacting
with the bridge node shell.

The code to implement such an application is provided
in Listing 7 and consists in few words defined on the three
kinds of nodes. With respect to the baseline of our platform,
the increment of RAM usage on the sensor node for the
application is just 6 bytes, while additional 156 Flash bytes are
required to store the word definitions for timer3 management
and the application. Since the routines for timer3 are not
needed on the forwarder and actuator nodes, Flash and RAM
increments for both are just 86 and 4 bytes respectively.

More importantly, the overall Flash and RAM memory
footprint of the application and the software platform, even
considering 21 additional bytes for the turnkey definitions,
is 18714 bytes of Flash memory and 1321 bytes of RAM
memory. Such result is even lower than the baselines of the
other platforms –that is without any application– as can be
deduced from Figure 6.

Listing 7: Distributed event detection application on WSN nodes
\ Defined on the sensor node
variable neighbor
variable threshold

: luminosity-check
luminosity
threshold @ > if
neighbor @ [tell:] alarm [:tell]
then ;

: light-monitoring
[’] luminosity-check
5seconds timer3.init timer3.start ;

\ Defined on the forwarder node
\ and on the actuator node

variable actuator
variable neighbor

: same ( -- outbound)
outbound inbound over length copy ;

: message ( dest_addr outbound --outbound)
dest addr rot s_addr! ;

: propagate
transmit ;

: actuator?
actuator @ 1 = ;

: alarm

actuator? not if
neighbor @ same message propagate
else +sounder 1000 ms -sounder
then ;

Furthermore, instead of an alarm, the actuator may directly
switch the light off once the luminosity exceeds the threshold
value through a redefinition of the word alarm (Listing 8).

Listing 8: Redefinition on the actuator node of the word that triggers the alarm
: alarm

actuator? not if
neighbor @ same message propagate
else light off then ;

In previous work [18] we have also showed how to support
smart applications that exploit symbolic reasoning. We en-
riched a Forth formalism for Fuzzy Logic by VanNorman [19]
with the possibility to exchange definitions and evaluations
among nodes. Instead of reasoning about crisp values, resource
constrained nodes process the fuzzy variables temp and
lightexp that can be easily defined on deployed nodes. Fur-
ther words such as fvar define the related membership func-
tions. By exploiting executable code exchange, a fuzzy vari-
able definition can be easily distributed among nodes even af-
ter their deployment. After defining the membership functions
lightexp.low, lightexp.medium, lightexp.high
and temp.low, temp.medium, temp.high, the follow-
ing code makes a node measure and fuzzify light exposure:

lightexp measure apply

while the code:

lightexp.low @

pushes onto the stack the truth value resulting from the fuzzifi-
cation phase. For instance, rather than through a thresholding
process, a device can establish if it is close to the window
through the evaluation of fuzzy rules in the form:

temp.high @ lightexp.high @ &
=> close-to-window

A node can request the others to update their fuzzy temperature
values as follows:

bcst temp fvar-remote-update

The word fvar-remote-update evaluates temp and
broadcasts a message containing the Forth code to update
the three membership values. The frame payload includes a
repetition of the structure:

<truth> <membership func> fvar-update

for each membership function of the argument fuzzy variable.
When a node receives the message, it interprets the command
updating the truth values of its local membership functions.
The combination of symbolic reasoning with executable code
exchange makes even resource constrained devices able to pro-
cess and exchange qualitative information about the physical
phenomenon.
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TABLE II: Summary table of additional words used in the remote shell application

Word ( before -- after) Description
+radio-output ( -- ) Redirect the output to the radio. This word is part of the Radio

I/O word set
-radio-output ( -- ) Redirect the output to the UART. This word is part of the Radio

I/O word set
radio-input? ( timeout -- flag ) Check for incoming radio messages. If no message arrives be-

fore timeout milliseconds leave false on the stack, otherwise
leave true

payld-reset ( -- ) Set to 0 the incoming payload length and its current pointer
payld-print ( -- ) Display the incoming frame content (i.e. the payload)
wait-answer ( timeout -- flag ) Wait for incoming radio frame for a predefined period of time

specified by the timeout variable. If the timeout expires
without receiving any answer message, an exception handled
by on-timeout occurs

user-input ( -- ) Wait for user input and store its content in the cmd buffer and
its length in the cmd-len variable for further processing by
close? and input-send

V. CONCLUSIONS

As remarked in literature, common programming method-
ologies for WSNs lack proper programming abstractions for
the development of distributed applications. The standard prac-
tice consists in linking the application, written in C-derived
programming languages, with a general-purpose operating sys-
tem at the end of a cross-compilation process. All this proves
rigid and time consuming. To overcome these limitations, the
adoption of interpreters for high-level languages to be run
on established operating systems has been proposed. Never-
theless, existing approaches consist in several software layer
implementations that collide with the resource constraints of
nodes.

In this paper, we detailed the implementation of an alter-
native Forth-based approach that implements a minimal but
extensible operating system featuring common WSN function-
alities along with symbolic distributed processing through exe-
cutable code exchange. The Forth-based software platform we
have implemented is quite compact. Indeed, we showed how
a symbolic distributed AmI event detection application can be
implemented with a total memory usage that is less than the
mere baselines of relevant interpreter-based software platform
for WSNs. In further experimentations we will compare our
Forth environment to other existing interpreter-based platforms
for WSNs in terms of efficiency, interpretation overhead and
energy consumption.
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Introduction. Software applications for real-time systems (RTS) are usually built as cooperative 

complexes of communicating tasks τ1, τ2, … , τn, which share common computational and 

informational resources and whose behavior is impacted by system events, occurring from time 

to time according to a particular scenario. Each task is a sequential program, closed in itself with 

respect to control flow, and is activated in response to external events within some timing 

intervals not less than some value called its period and is expected to elaborate some response as 

a result of its activation and the following run. A j
th

 activation of the task τi (1≤ i ≤n) means 

generation of a j
th

 instance of this task τi; i.e., a respective job denoted as jτi for subsequent 

execution. When this execution terminates, it means that a respective result has been provided in 

response to the system event which caused activation of this particular job. 

A characteristic feature of an RTS is the requirement for on-time execution, usually 

expressed as a requirement that for each task τi the longevity r(jτi) of any of its jobs jτi shall not 

exceed some pre-defined deadline value Di: Ɐi,j r(jτi) ≤ Di. With the notion of the task response 

time Ri = max{r(1τi), r(2τi), ... } this may be reformulated as Ɐi Ri≤ Di with any allowable scenario 

of system events and is often interpreted as the property of feasibility of the given multi-task 

application. To check application feasibility, various structural models of its tasks are built and 

analyzed to provide reliable estimates for the response times of the application tasks, taking into 

account all impacting factors. 

Software simulation is an acknowledged method to check feasibility of real-time multi-task 

applications. This paper describes an experience of constructing such simulator in Forth with the 

VFX Forth for Windows [1] as a development platform. Forth was selected as the 

implementations language due to the flexibility it provides for implementing programming 

solutions. The simulator employs a simple model of a multi-task application under study which 

may use several scheduling modes with various task priorities for allocation of the processor 

computational resource and several access protocols to access shared informational resources. 

The simulator helps to study multi-task application behavior and check whether a given 

combination of the scheduling mode and access protocol guarantees application feasibility under 

the given processor performance and system event scenarios. It may also identify the minimal 

processor performance which still ensures application feasibility under the given conditions. 

By now, the nomenclature of scheduling modes and access protocols implemented in the 

simulator consists of two classical scheduling modes – RM (rate monotonic) and EDF (earliest 

deadline first) – and three access protocols – NI (no inheritance), BI (basic inheritance), and PI 

(priority inheritance). However, it may be further extended to simulate systems with other 

scheduling modes on a multi-processor and/or multi-core platform and other protocols of access 

to shared informational resources [2]. 

Source Data. Simulation is based on components of four kinds: resources, tasks, jobs, and 

events.  Resources and tasks are entities of the application under study; jobs and events are 

entities created and operated on by the simulator. Resources and tasks are also represented within 

the simulator with respective entities. The application is assumed to run on a single processor 

platform with a certain processor performance P in terms of "the number of standard operations 

per second", which a particular scaling factor determining the actual processor speed is related 

to. Each application task τi is characterized by its timing period Ti – the minimal timing interval 
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between two consecutive activations of τi determined by the current scenario of system events, 

its priority Prioi – which descends with increase of i, its weight Wi – the amount of processor 

time needed to accomplish this task, its deadline Di – the maximal time period for the task to be 

completed, and its phase Phi – the offset of the first activation of this task from the simulation 

starting moment (by default Phi=0). Like the processor performance P, the task weight Wi is 

specified in the number of standard operations, and may be converted into seconds: Ci=Wi/P. 

Obviously, Ɐi Ci≤ Ti. The values Ti, Di, and Phi are specified in absolute timing units (e.g., 

seconds) and do not depend on the processor performance P. 

Application tasks may access shared informational resources identified with their unique 

ID numbers; however, at any moment of time a shared resource may be accessed by only one 

task. Tasks which do not share any informational resources are considered to be independent 

with respect to each other. To prevent simultaneous access of 2 or more tasks to a shared 

resource, critical intervals within the task code are established and guarded with special 

constructs of the mutex type, which is a particular case of Dijkstra semaphores. 

With this in mind, the structure of each task τi is represented in the simulator as a finite 

series of k(i) segments, each segment performing some computation within a certain period of 

time Sj>0 and terminating with one of the following system events: “Lock m”, “Unlock m”, or 

“End”, m being the resource ID number.  The duration of processing a system event is assumed 

to be negligibly small. A correct application should neither unlock a resource not locked by this 

task earlier, nor lock it again without preceding unlocking it, nor leave it locked upon task 

termination, and each task should terminate with the segment “End”.  Obviously, the task weight 

Wi equals to the sum of time periods of all its segments: Wi =Σ j=1..k(i) Sj.  

 

Fig. 1. Four tasks sharing 2 resources 

An example of an application description in an XML-type fashion [3] is provided in Fig. 1. 

Here are 4 tasks τ1, τ2, τ3, and τ4, which share 2 informational resources m1 and m2.  The code of 

the highest priority task τ1 consists of 3 segments of 1 time unit each. Its first segment ends with 

the operation lock for resource m1; the next segment ends with unlocking this resource and the 

third segment terminates the task. The code of the task τ2 consists of the only segment of 9 time 

<task name=“t_1”  prio =“1 ” 
phase=“5” period= “15” > 

<segment length=“1 ” 
interface =“m_1” 
op_type =“lock”/> 

<segment length=“1” 
interface=“m_1” 
op_type =“unlock”/> 

<segment length=“1” 
op_type =“end”/> 

</task> 

Task τ1  

<task name=“t_2”  prio =“2 ” 
phase=“5” period= “35” > 

<segment length=“9” 
op_type =“end”/> 

</task> 

Task  τ2  

<task name=“t_3”  prio =“3 ” 
phase=“3” period=“25”> 

< segment length=“1” 
interface=“m_1” 
op_type =“lock”/> 

<segment length=“2” 
interface=“m_2” 
op_type =“lock”/>  

<segment length=“1” 
interface=“m_2” 
op_type =“unlock”/> 

<segment length=“1” 
interface=“m_1” 
op_type =“unlock”/> 

<segment length=“1” 
op_type =“end”/> 

</task> 

Task τ3  

<task name=“t_4”  prio =“4 ”> 
period=“45”> 

<segment length=“2” 
interface=“m_2” 
op_type =“lock”/> 

<segment length=“4” 
interface=“m_2” 
op_type =“unlock”/> 

<segment length=“1” 
op_type =“end”/> 

</task> 

Task τ4 
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units while task τ3 consists of 5 segments with two critical intervals to access the resources m1 

and m2, the intervals being embedded in one another. The least priority task τ4 consists of 3 

segments and accesses only the resource m2.  

Task periods T1, T2, T3, and T4 for task activations are 15, 35, 25, and 45 time units 

respectively with the phase shifts 15, 35, 25, and 45; deadlines are assumed to be equal to task 

periods: Di=Ti. Tasks and resources are rendered by objects of the type task and resource 

respectively and are created by respective Forth words during simulator initialization when 

reading an input file with the task descriptions: 

: CreateTask ( -- task-addr) 
: CreateResource ( n -- resource-addr)  

Output Data. For each task τi the derivative characteristics are defined: its utility load Ui=Ci/Ti 

and its hardness Hi=Ti/Di which characterize tasks execution. If Hi < 1 then the existence 

intervals of consecutive jobs jτi and j+1τi created from two consecutive activations of the task τi do 

not intersect. The reverse condition Hi > 1 means that they may intersect. An important metric – 

the density of the whole application: Dens=max P (Σ i=1..n Ui) – may be calculated too, in order to 

compare different application structures and implementations on their efficiency [4]. 

The ultimate purpose of simulation is to obtain data on efficiency of various combinations 

of scheduling modes and access protocols in various scenarios of system events. In particular, 

the dual problem to calculating the application density – to determine the minimal processor 

performance which still ensures the feasibility of the application (i.e., that Ɐi Ri≤ Di) under given 

conditions – may be solved as well. 

To calculate the application density, the initial interval [a,b] for selecting the scaling factor 

f∊[a,b] for the task weights and processor performance is established. Prior to the simulator run, 

the source values of task segment durations Sj (and therefore, the task weights Wi) in task 

descriptions and the processor performance P are multiplied by this factor. Obviously, if the 

inequality Ri≤ Di is violated for some i at the end-values a and b of the interval, it is violated for 

all intermediate values. However, for f=a=0 (which means an infinitely high processor 

performance) these inequalities do hold for all i. Therefore, the initial values are set to a=0 and 

b=Σi=1..n Ui with the standard processor performance P=10
6
 standard operations per second. Then 

the first simulation iteration is performed with the scaling factor f=(b–a)/2. If no violations of 

Ri≤Di occurred, then a is set to f, otherwise b is set to f and simulation is reiterated until the 

scaling interval shrinks to just one value [a, a+1] in which case the scaling factor equals to this 

found value a, the application density is calculated accordingly, and the minimal processor 

performance P which still ensures the application feasibility is P=a×10
6 

operations per second. It 

usually takes from 5 to 15 simulations to reach the resulting values. 

Data Structures. The simulator uses ordered chained lists whose elements consist of 3 cells: the 

link to the next list element or NULL, the ordering value and the data specific to the list. Elements 

in a list are ordered with respect to the ordering value, starting with the smallest one. Lists are 

defined with the defining word List: 
: List ( list-element-size, max-list-length -- ) 

and use respective “methods” to add and retrieve elements in lists created by this word: 
: >List ( new-elem-addr, list-addr -- )   

Place a new element into the ordered list  

: List@ ( list-addr-- elem-addr) 

Get the first (heading) element of the list 

: List> ( list-addr-- elem-addr) 

Delete the first element from the list  

: List>> ( ordering-value, list-addr--) 

Find and delete a list element with this ordering value 

Static objects (tasks and resources) are created at the simulator initialization from the task 

description file and are modified during simulation.  
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A resource is rendered with an object of 4 cells: its ID number, its priority (reserved for 

future use), its status (either NULL if the resource is currently unlocked, or a reference to the job 

description, which currently owns this resource and locked it), and a possibly empty ordered list 

of job descriptions, currently waiting for this resource to become unlocked. Resources are stored 

in a special pool which allows to easily enumerate them and to add a new one.  

Tasks are represented with objects of various length which depends on the number of task 

segments. It starts with 10 cells followed by a series of 4 cells for each task segment. The initial 

10 cells contain: task unique ID number i, task period Ti, task weight in the number of standard 

operations Wi, task weight in seconds Ci (depends on the scaling factor f), task priority Prioi, task 

response time Ri (is calculated during simulation), task deadline Di, task phase Phi, the number 

of executed task activations , and the number of task segments. The 4 cells for each task segment 

are: segment type (Lock, Unlock, or End), segment parameter (the resource ID for Lock/Unlock 

and zero for End), segment weight in the number of standard operations Sj, and the segment time 

in seconds (recalculated while scaling the task data with the scaling factor f).  

Dynamic objects (jobs and events) are created during simulation sessions as needed with 

the words CreateJob and CreateEvent :  
: CreateJob ( task-addr--job-addr) 
: CreateEvent  

( resource-addr, job-addr, task-addr, event-type, event-time -- 

  event-addr) 

The job object is represented with 10 cells: the job unique ID, its current priority (it may 

change with the priority inheritance scheduling mode), current segment number which specifies 

the segment begin executed, current segment expected termination time, current segment start 

time, current segment used time, current segment time yet to be used, reference to the respective 

task, number of references to the job description, and a reference to a resource which this job is 

waiting for or NULL if the job is not waiting for a resource. Jobs waiting for the processor form a 

chained list JobList in the order of their current priorities. The first job in this list owns the 

processor and is considered as the current one. When this list is empty, the processors stays idle. 

System events are characterized by the time when they occur. Events with the same timing 

form a group of time-sake events. Four types of system events are considered: to activate a task 

(i.e., to form a job for this task and add it to the list JobList of active jobs waiting for the 

processor), to terminate the current job (and pass the processor to another job in list JobList, if 

any), to lock a resource, or to unlock a resource – and these activities are performed with 

respective Forth words: 
: TaskActivate ( task-addr--) 

: JobTerminate ( job-addr--) 

: ResourceLock ( resource-addr, job-addr--)   

: ResourceUnlock ( resource-addr, job-addr--) 

The event object which represents a system event consists of 6 cells: the event unique ID, the 

scheduled time for this event to occur, the type of the event (Activate, Lock/Unlock, or End), a 

reference to the task object to be activated or NULL, a reference to the job object to be ended or 

NULL, and a reference to the resource object to be locked/unlocked or NULL. The chained list 

EventList of system events ordered with respect to their time moments when they scheduled 

to occur is maintained by the simulator. 

The Simulator. Simulator initialization consists in selecting the desired combination of the 

scheduling mode and access protocol, setting the respective simulator constraints, reading the 

task description file, and forming the respective resource and task objects. Then the initial list of 

system events EventList is formed which consists in activation of the all tasks at the moments 

of system time defined by their phase shifts. Counts for their maximal response times are set to 

zero and all resources are set to be unlocked.  

The major simulator loop does the following. The first group of time-sake events in the 

EventList is considered, the simulator system time is set to this time moment and all system 
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events from this first group are processed one-by-one. Processing depends on the event type: 

activate a task, terminate a job, or lock/unlock a shared resource.  

Activating a task. A new job is created from this task referred to by the event with its 

planned starting time equal to the current system time and is added to the JobList with its 

priority, while a new event is added to the EventList –  to activated the next copy of this task 

at the moment of time not less than the current time plus the task period Ti.  

Terminating a job. The response time of the task referred to by the respective job object is 

updated: the difference between the current system time and the moment when this job was 

created and added to JobList (the response time which consists of the time when the job owned 

the processor plus the time it waited for it) is calculated and the maximum of this value and the 

response time already stored in the task referred to is stored as the new value of the task response 

time.  If this exceeds the task deadline Di, then a violation of the task feasibility is registered. The 

considered job is deleted from the JobList. 

Locking a resource. If the resource is unlocked, then it becomes locked by this task; 

otherwise, the job is moved from the JobList to the ordered list of jobs waiting for unlocking 

of this resource. 

Unlocking a resource. If the ordered list of jobs waiting for unlocking of this resource is 

not empty, then the first job form this list is moved from it back to the JobList according to its 

priority and the resource becomes locked by this job; otherwise, the resource becomes unlocked.  

Upon completion of the event processing, the considered event is deleted from the 

EventList. After all time-sake events have been processed, the JobList, which may have 

changed as a result of previous event processing, is considered unless it is empty.  

If the JobList is not empty then the first job from it (which currently owns the processor) 

is selected and the residue of the processor time not yet consumed by its current segment is 

considered. This value determines the moment of the segment termination.  If this value is 

greater than the time of the next time-sake group of system events in the EventList then this 

residue is decremented by the remaining time till this event group; otherwise, a new event 

corresponding to this segment is added to the EventList for this moment of segment 

termination and the next job segment if any becomes its current segment.  

Emptiness of the JobList means that the processor is idle from this moment till the next 

time-sake event group in the EventList. Upon completion of processing the first job of 

JobList (if any) the major loop is reiterated.  The loop terminates upon exhausting the time 

limit of the simulation session or when a specified number of created jobs is reached (which of 

these conditions occurs earlier, if both limits are specified).  

TimeLimit=25 JobLimit=0 ViolationLimit=1 
SchedulingMode=RM InheritanceMode=NI 
Configuration file name: c:\MPE\App_4t2r.txt 
Time=0 Proc=0 for 0 A 4.1  
Time=2 Proc=4.1 for 2 L 4.1 of 2  
Time=3 Proc=4.1 for 1 A 3.2  
Time=4 Proc=3.2 for 1 L 3.2 of 1  
Time=5 Proc=3.2 for 1 A 1.3 A 2.4  
Time=6 Proc=1.3 for 1 W 1.3 of 1  
Time=15 Proc=2.4 for 9 E 2.4  
Time=16 Proc=3.2 for 1 W 3.2 of 2  
Time=19 Proc=4.1 for 3 U 4.1 of 2 L 3.2 of 2  
Time=20 Proc=3.2 for 1 U 3.2 of 2  
Time=21 Proc=3.2 for 1 U 3.2 of 1 L 1.3 of 1  
Time=22 Proc=1.3 for 1 U 1.3 of 1  
Time=23 Proc=1.3 for 1 E 1.3  
Time=24 Proc=3.2 for 1 E 3.2  

TimeLimit=25 JobLimit=0 ViolationLimit=1 
SchedulingMode=RM InheritanceMode=BI 
Configuration file name: c:\MPE\App_4t2r.txt 
Time=0 Proc=0 for 0 A 4.1  
Time=2 Proc=4.1 for 2 L 4.1 of 2  
Time=3 Proc=4.1 for 1 A 3.2  
Time=4 Proc=3.2 for 1 L 3.2 of 1  
Time=5 Proc=3.2 for 1 A 1.3 A 2.4  
Time=6 Proc=1.3 for 1 W 1.3 of 1  
Time=7 Proc=3.2 for 1 W 3.2 of 2  
Time=10 Proc=4.1 for 3 U 4.1 of 2 L 3.2 of 2  
Time=11 Proc=3.2 for 1 U 3.2 of 2  
Time=12 Proc=3.2 for 1 U 3.2 of 1 L 1.3 of 1  
Time=13 Proc=1.3 for 1 U 1.3 of 1  
Time=14 Proc=1.3 for 1 E 1.3  
Time=23 Proc=2.4 for 9 E 2.4  
Time=24 Proc=3.2 for 1 E 3.2  
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Time=25 Proc=4.1 for 1 E 4.1 
Time=25 Hardness=1,0000  1/Hardness=1,0000  
Density=0,6056  ScalingFactor=1,0000  
ERROR: Deadline violation in Task 1  ok 

Time=25 Proc=4.1 for 1 E 4.1 
Time=25 Hardness=1,0000  1/Hardness=1,0000  
Density=0,6056  ScalingFactor=1,0000 ok 

Fig. 2. Logs of two simulation sessions as they are output by the simulator 

The results of simulation – task maximal response time, number of deadline violations, the 

application density, and other statistics data are displayed. A simulation log may also be 

displayed. When any system event is processed, the respective time and other accompanying 

data are printed-out. All these data may be easily copied into MS Excel for a graphical 

representation of the obtained results and execution log. 

There are the two logs of simulator runs in Fig. 2 – for two different protocols of access to 

shared resources: NI (no inheritance) and BI (basic priority inheritance) as they are recorded by 

the simulator. The number after "Time=" is the time of an occurring system event denoted by 

one of the letters: A – activate, E – end, L – lock, U – unlock, or W – wait to lock an already 

locked resource, followed by the event parameter. The job ID is displayed as two numbers (the 

task number and the unique job number separated with a period). The section "of" is followed by 

the resource number to be locked or unlocked, while a number after "for" is the activity duration 

terminated with this event. Same logs are presented in Fig. 3 in a more readable graphic form.  

 
Fig. 3. Simulated execution of 4 tasks sharing 2 resources with different access protocols 

This application, when simulated twice with different access protocols, demonstrates two 

different behaviors: a violation of the specified deadline 15 for the highest priority task τ1 under 

the protocol NI – Fig. 3a, and correct work with no violations under the protocol BI – Fig. 3b.  

Fig. 4 compares two scheduling modes for the same application of 4 tasks and 2 shared 

resources defined in Fig. 1. The output simulation data were copied into an Excel file to obtain 

these charts. Data for application hardness and respective density values for the two scheduling 

modes are in the right columns of the chart. As one can see, there's no big difference in the 

application density between the two scheduling modes RM and EDF for this application. Density 

as a function of hardness
–1

 grows nearly linearly with two plateaus and then the growth stops 

after hardness
–1

=0.75. As one can see, this application cannot reach 100% density – its 

maximum is 0.9083 with the application hardness=1/0.75= 1.33 and it does not change with 
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further decrease of hardness (i.e., increase of hardness
-1

), which means that the processor would 

be inevitably idle for at least ≈10% of time while executing this application. 
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Fig. 4. RM vs. EDF for same application of 4 tasks with 2 resources 

Four Dining Philosophers. This classical puzzle, first proposed by E.Dijkstra as “Five Dining 

Philosophers” [5], demonstrates the situation of mutual blocking under certain scenarios of 

dependent task behavior with any number n≥2 of the respective processes. Let’s consider 4 

iterative processes, each with two alternate activities called “think” and “eat”, the latter assuming 

simultaneous access to 2 of 4 shared resources (called the left and the right fork for this 

philosopher) for a certain period of time. Access to the resources is performed via critical 

intervals guarded with respective mutexes.  

With the proposed technique this may represented as 4 tasks τ1, τ2, τ3, and τ4 (the 

philosophers), which share 4 informational resources r1, r2, r3, and r4 (the forks). Task phases are 

10, 7, 4, and 1 respectively; 2 units after its start the task τ1 locks the resource r1 and after 4 units 

more it locks the resource r2. Then after 20 time units it unlocks r1 and in 68 units more it 

unlocks r2.  After 1000 time units or more since its start, the task τ1 reiterates. Other tasks behave 

similarly with 73, 79, and 85 time units rather than 68 for unlocking their second resource (left 

fork). In the formalism of Fig.1 the behavior of task τ1  may be specified as (others are similar): 

<task name=“t_1” phase=”10” period=”1000”>  

<segment length=2 interface=”r_1” op_type=”lock”/> 

<segment length=4 interface=”r_2” op_type=”lock”/> 

<segment length=20 interface=”r_1” op_type=”unlock”/> 

<segment length=68 interface=”r_2” op_type=”unlock”/> 

<segment length=2 op_type=”end”/> </task> 

With the specified phases and timings for locking/unlocking resources, a clinch occurs at 

time=25, as Fig.5 displays this with the log obtained by the simulator. 

System Log Interpretation/Comments 

TimeLimit=1000000 JobLimit=0 ViolationLimit=0 
SchedulingMode=RM InheritanceMode=PI  
Configuration file name: c:\MPE\App_4PhD.txt 
Time=1 Proc=0 for 1 A 4.1  
Time=3 Proc=4.1 for 2 L 4.1 of 4  
Time=4 Proc=4.1 for 1 A 3.2  
Time=6 Proc=3.2 for 2 L 3.2 of 3  

 
Rate Monotonic with Priority Inheritance 
  

Task 4 (job 4.1) is activated at time=1 

Task 4 (job 4.1) locks resource 4 at time=3 

Task 3 (job 3.2)  is activated at time=4 

Task 3 (job 3.2)  locks resource 3 at time=6 
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System Log Interpretation/Comments 

Time=7 Proc=3.2 for 1 A 2.3  
Time=9 Proc=2.3 for 2 L 2.3 of 2  
Time=10 Proc=2.3 for 1 A 1.4  
Time=12 Proc=1.4 for 2 L 1.4 of 1  
Time=16 Proc=1.4 for 4 W 1.4 of 2  
Time=19 Proc=2.3 for 3 W 2.3 of 3  
Time=22 Proc=3.2 for 3 W 3.2 of 4  
Time=25 Proc=4.1 for 3  
Mutual clinch for job 4.1 on resource 1  ok 

Task 2 (job 2.3)  is activated at time=7 

Task 2 (job 2.3)  locks resource 2 at time=9 

Task 1 (job 1.4)  is activated at time=10 

Task 1 (job 1.4)  locks resource 1 at time=12 

Task 1 (job 1.4)  waits for resource 2 at time=16 

Task 2 (job 2.3)  waits for resource 3 at time=19 

Task 3 (job 3.2)  waits for resource 4 at time=22 

Clinch detected for task 4 (job 4.1) when it tried 

to lock resource 1 at time=25 

Fig. 5. System log for the 4 philosophers puzzle 

 The resource status displayed by the word .resources confirms this clinch. As one can 

see there’s a vicious circle of locked resources with mutually waiting jobs: 

Resource_1 Prio=0 Status=Job 1.4 JobsWaiting=NULL 
Resource_2 Prio=0 Status=Job 2.3 JobsWaiting=Job 1.4   

Resource_3 Prio=0 Status=Job 3.2 JobsWaiting=Job 2.3   

Resource_4 Prio=0 Status=Job 4.1 JobsWaiting=Job 3.2   

Conclusions. The simulator was written in Forth with VFX Forth for Windows, version 4.70, 

provided to the author at the courtesy of MPE [6], and is just 985 lines of code under the 

respective coding standards. It uses only fixed-point arithmetic and works remarkably fast on a 

PC. To avoid memory overflow, the simulator uses its own simple subsystem for memory 

allocation and reuse for chained list elements, jobs and events. Further work will be focused on 

improving the user interface, extending the nomenclature of scheduling modes and access 

protocols of this simulator, and transition to simulation of multi-core and multiprocessor 

platforms, as well as running more experiments with models of real-time multi-task applications.  
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From exit to set-does>

A Story of Gforth Re-Implementation

M. Anton Ertl∗
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Abstract

We changed exit from an immediate to a non-
immediate word; this requires changes in the de-
allocation of locals, which leads to changes in the
implementation of colon definitions, and to gener-
alizing does> into set-does> which allows the de-
fined word to call arbitrary execution tokens. The
new implementation of locals cleanup can usually be
optimized to similar performance as the old imple-
mentation. The new implementation of does> has
similar performance similar to the old implementa-
tion, while using set-does> results in speedups in
certain cases.

1 Introduction

Over the years there were several complaints about
not being able to tick exit in Gforth. In July 2015
we decided to do something about this. In combi-
nation with other innovations, this led to a number
of further changes in the implementation, and even-
tually to a generalization of does>.

The story of these changes and the other imple-
mentation issues they touch on should be interest-
ing and instructive for readers interested in Forth
implementation techniques, and is told in Section 2.
These changes were not performed for performance
reasons, but performance should not suffer from
them. In Section 3 we evaluate the performance im-
pact with microbenchmarks. Section 4 discusses an
implementation caveat for locals cleanup on native-
code compilers.

2 The Story

While Forth-94 and Forth-2012 systems are allowed
to implement exit as an immediate compile-only
word, we have received a number of complaints
about Gforth implementing exit this way, so we
decided to change the implementation of exit into
a non-immediate word in July 2015.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

2.1 Locals cleanup

Now we had implemented exit as immediate
compile-only word for a good reason: When
exiting a definition with locals, we need to remove
the locals before exiting. In the following contrived
example:

: foo { a } exit ;

the original immediate exit compiles lp+ ;s,
where lp+ increments the locals-stack pointer lp to
remove a from the locals stack and ;s returns to
the caller of foo.

Our new, non-immediate exit is just an alias for
;s, so we have to clean up the locals in some other
way. We took the established approach of pushing
additional data and an additional return address on
the return stack. In our case the additional data is
the depth of the locals stack at the start of the colon
definition, and the return address points to a code
fragment equivalent to

r> lp! ;s

except that we have a single primitive
lp-trampoline that does what this sequence
would do; the (sub-optimal) AMD64 code1 for this
primitive is:

mov %rp,%rax
mov 0x8(%rp),%ip
lea 0x10(%rp),%rp
mov (%rax),%lp
add $0x8,%ip
mov -0x8(%ip),%rdx
mov %rdx,%rax
jmpq *%rax

So, an exit inside a colon definition with lo-
cals jumps to this code fragment, sets lp to its old
value, and finally returns to the calling definition
(see Fig. 1).

This solution for the clean-up problem poses
the problem of where these additional return-stack

1Register names for virtual machine registers are re-
placed, as follows: ip=rbx, rp=r13, lp=rbp, sp=r15,

tos=r14, cfa=rcx.
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: x { a b c } ... ;
: y x [’] x execute ;

new

return
stack

y
docol

call-loc

lit

execute
;s

head
code field
body

x
docolloc

>l
>l
>l
.
.
.

unlocal
;s

head
code field
body

locals
stack

a
b
c

lp-tramp

rp

lp

old

return
stack

y
docol
call

lit

execute
;s

head
code field
body

x
docol

>l
>l
>l
.
.
.

lp+!#
24
;s

head
code field
body

locals
stack

a
b
c

rp

lp

exit

Figure 1: Old and new implementation of cleaning up locals; the state of the return and locals stack
corresponds to execution being at the red arrows in the code.

items are pushed. A classical solution would be
to do it at the first definition of locals. However,
in Gforth, locals can be first defined inside control
structures, e.g.:

: foo ?do { a } i loop ;

Either we push the return-stack items before the
control structure, or we have to pop them off the
return stack at the end of the loop2.

We decided to push them before the control struc-
ture, on entering the colon definition, by changing
the code field to point to a new routine docolloc
instead of the ordinary docol routine. Docolloc
peforms all the work that docol does, but in addi-
tion pushes the current value of lp and the address
of the code fragment pointing to lp-trampoline on
the return stack. Here you see both routines for the
AMD64:

2In general, whenever the locals stack becomes empty.

docol docolloc
mov %rp,%rax mov %rp,%rax
mov %ip,%rdx mov %ip,%rdx
lea -0x8(%rp),%rp lea -0x18(%rp),%rp
mov %rdx,-0x8(%rax) mov %rdx,-0x8(%rax)

lea 0x80(%rsp),%rdx
lea 0x18(%cfa),%ip lea 0x18(%cfa),%ip

mov %lp,-0x10(%rax)
mov %rdx,-0x18(%rax)

mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx
mov %rdx,%rax mov %rdx,%rax
jmpq *%rax jmpq *%rax

Gforth uses primitive-centric threaded code
[Ert02], so the routines docol and docolloc are
executed only when the word is executed or called
through a deferred word. When calling the word
directly from a colon definition (about 99% of
the calls), Gforth uses the primitives call and
call-loc that take (the body address of) the called
definition from the next cell in the threaded-code:
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call call-loc
mov %ip,%rdx mov %ip,%rdx
mov (%ip),%ip mov (%ip),%ip
mov %rp,%rax mov %rp,%rax
add $0x8,%rdx add $0x8,%rdx
lea -0x8(%rp),%rp lea -0x18(%rp),%rp

mov %lp,-0x10(%rax)
mov %rdx,-0x8(%rax) mov %rdx,-0x8(%rax)

lea 0x80(%rsp),%rdx
add $0x8,%ip add $0x8,%ip

mov %rdx,-0x18(%rax)
mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx
mov %rdx,%rax mov %rdx,%rax
jmpq *%rax jmpq *%rax

Gforth has an intelligent compile, that produces
the appropriate primitive for the word, and it gen-
erates call for docol words, and call-loc for
docolloc words, plus (in the next cell) the body
address of the colon definition.

Some Forth programmers like to use code like
r> drop exit to return to the next-but-one sur-
rounding definition instead of the next one. If the
next one uses locals, the programmer has to force
a cleanup, and we provide the word unlocal to
achieve this. So if the calling word uses locals,
the sequence above has to be modified to r> drop
unlocal exit. Unlocal just removes the addi-
tional return stack data and removes the locals from
the locals stack:

unlocal unlocal-;s
mov %rp,%rax mov 0x10(%rp),%ip
lea 0x10(%rp),%rp mov 0x8(%rp),%lp
add $0x8,%ip add $0x18,%rp
mov 0x8(%rax),%lp add $0x8,%ip
mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx
mov %rdx,%rax mov %rdx,%rax
jmpq *%rax jmpq *%rax

The sequence unlocal ;s is more efficient than
;s jumping to lp-trampoline (see Section 3), es-
pecially if we combine the sequence into a superin-
struction unlocal-;s. So, if the current definition
contains locals, and if we know that exit returns
from the current definition, we can compile exit
into unlocal ;s as an optimization (through the
intelligent compile,). If the definition performs
return-address manipulation (so that the exit may
return from a different definition), it first has to
clean up the locals with unlocal. So, if the word
contains unlocal, we disable this optimization.

2.2 does>

In addition to colon definitions, words defined with
does> also call code that may define locals. We will
use the following running example:

: const create , does> @ ;
5 const b
: c b ;

newold
head
code field
body

const
docol
call

create
call

,
call

(does)
@
;s

b
dodoes

5

c
docol

does-exec

;s

head

code field

body

head
code field
body

const
docol
call

create
call

,
branch

docol
@
;s
lit

call
set-does>

;s

b
dodoesxt

5

head

code field

body

head
code field
body

c
docol

lit

call

;s

head
code field
body

Figure 2: Old and new implementation of does>

: const create , does> ( A ) @ ;
5 const B

When running B, the code A after does> is called
with either the primitive does-exec (when B is
compile,d) or with the code-field routine dodoes
(when B is executed).

Now the does part may also define locals and
contain exit, so we have to push the additional stuff
on the return stack in these cases, too. Our first
idea was to add dodoesloc and does-exec-loc,
but that would have resulted in complications, so
we soon came up with the following, better idea
(see Fig. 2):

The code after does> (A in our example) is a full-
blown colon definition with its own code field and
execution token. Instead of using dodoes, which
(after pushing the body address of B) calls the
code at A as call does, we have dodoesxt, which
executes the xt of A. Here is the code for dodoes,
compared to dodoesxt followed by docol:
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dodoes dodoesxt, docol
mov %tos,(%sp) mov %tos,(%sp)
lea 0x10(%cfa),%tos lea 0x10(%cfa),%tos
mov %ip,%rdx
mov 0x8(%cfa),%ip mov 0x8(%cfa),%cfa
sub $0x8,%sp sub $0x8,%sp

mov (%cfa),%rdx
mov %rdx,%rax
jmpq *%rax

mov %rp,%rax mov %rp,%rax
mov %ip,%rdx

lea -0x8(%rp),%rp lea -0x8(%rp),%rp
lea 0x18(%cfa),%ip

mov %rdx,-0x8(%rax) mov %rdx,-0x8(%rax)
add $0x8,%ip
mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx
mov %rdx,%rax mov %rdx,%rax
jmpq *%rax jmpq *%rax

The advantage for our locals problem is that no
additional work is needed: the first locals definition
in A changes the A colon definition into a docolloc
colon definition, and there is no need to change the
dodoesxt.

Again, dodoesxt is only used when B is executed
or called through a deferred word. When we
compile, B, the intelligent compile, compiles
the body address of B as literal, followed by
compile,ing the xt of A, resulting in call or
call-loc followed by the body address of A. We
have added static superinstructions for lit call
and lit call-loc to eliminate the overhead of
executing two primitives instead of one. Here is
the code for does-exec compared to that for the
lit-call superinstruction:

does-exec lit-call
mov %tos,(%sp) mov %tos,(%sp)

mov %ip,%rax
mov (%ip),%tos mov (%ip),%tos
mov %ip,%rdx mov 0x10(%ip),%ip
mov %rp,%rax mov %rp,%rdx
add $0x8,%rdx add $0x18,%rax
lea -0x8(%rp),%rp lea -0x8(%rp),%rp
sub $0x8,%sp sub $0x8,%sp
mov 0x8(%tos),%ip
mov %rdx,-0x8(%rax) mov %rax,-0x8(%rdx)
add $0x10,%tos
add $0x8,%ip add $0x8,%ip
mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx
mov %rdx,%rax mov %rdx,%rax
jmpq *%rax jmpq *%rax

Given that our does> is now based on taking an
xt, we can make another interface to this function-
ality available: set-does> ( xt -- ) changes the
last defined word to first push its body address,
then execute the xt. There are two benefits to
set-does>:

First, when there is only one word between does>
and ;, one can pass that word (instead of a colon
definition containing just that word) to set-does>,
saving one call-exit pair at run-time. E.g.:

: const create , [’] @ set-does> ;
5 const B

When compiling B, this produces lit @ (without
additional effort), and saves a call and ;s around
the @ at run-time.

The other advantage is that set-does> can be
used more flexibly than does>, e.g., inside control
structures; e.g, struct.fs contains

: dofield ( -- )
does> ( name execution: addr1 -- addr2 )

@ + ;

: dozerofield ( -- )
immediate

does> ( name execution: -- )
drop ;

: field ( align1 off1 align size "name"
-- align2 offset2 )

2 pick >r create-field r> if \ off1<>0
dofield

else
dozerofield

then ;

In the usual case, a field should perform the
does> part of dofield, but if the field has off-
set 0, then it should not compile anything, so it is
defined as immediate word that does nothing (not
even 0 +, to avoid stack underflow at compile time).
The properties of does> force this factoring, which
I don’t consider particularly conducive to under-
standing. With set-does>, we can define this as

: field ( align1 off1 align size "name"
-- align2 offset2 )

2 pick >r create-field r> if \ off1<>0
[: @ + ;] set-does>

else
[: ;] set-does> immediate

then ;

Another use case of set-does> is optimization:

: const ( n "name" -- )
\ you must not change the body of "name"
create ,
[’] @ set-does>
[: >body @ postpone literal ;] set-opt ;

set-opt ( xt -- ) sets what happens when the
created word is compile,d (it is the basis for the
intelligent compile,). In this case it optimizes the
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word such that, instead of looking up the value at
run-time, the lookup happens at compile, time and
the resulting value is compiled as literal.

This can only happen after does> or set-does>,
because does> and set-does> change what the
word does, and that also overwrites any earlier
set-opt. It is possible to implement the above with
does>, but, like the field example, it would be
more cumbersome.

Continuing onwards from set-does>, we
could also define a defining word does-create
( xt -- ) that combines the functions of create
and set-does, used as follows:

: const ( n "name" -- )
[’] @ does-create , ;

The advantage of does-create would be that
the defined word gets the final code field right
from the start, instead of being first created with a
dovar code field, and later overwritten with dodoes
and (in our example) A; the current two-step ap-
proach leads to problems on Forth systems com-
piling to flash memory; while Forth implementors
have found workarounds for these problems, it’s
better to provide an interface that does not need
such workarounds. Does-create is not (yet?) im-
plemented in Gforth.

Note that, while the new does> implementa-
tion makes the new locals-cleanup implementation
simpler, the reverse is not true: You can do the
new does> implementation (and set-does> and
does-create) just fine in combination with the old
style of locals-cleanup implementation.

3 Performance Impact

For a realistic evaluation of performance we would
need a number of application benchmarks that
spend a lot of time calling to and returning from
definitions containing locals, and application bench-
marks performing lots of calls to does>-defined
words.

Unfortunately, we are not aware of benchmarks
with these characteristics, so we use microbench-
marks here to evaluate the performance. Real ap-
plications may see much smaller performance dif-
ferences than we see in these microbenchmarks.

Fig. 3 shows the results, and they will be ex-
plained in the following.

We call ten different words, with results from the
old implementation shown in reddish colours and
new implementations in bluish colours:

baseline An empty colon definition (without lo-
cals) that gives us a baseline.

0-locals A colon definition that is empty ex-
cept that it contains the overhead of clean-
ing up locals (plus, for the new implementa-
tion, putting the additional stuff on the re-
turn stack). We measure three ways to clean
up the locals: old is the old way of cleaning
up locals (using lp+!#); lp-trampoline is the
new implementation without using unlocal,
so ;s jumps to lp-trampoline; unlocal is the
optimized variant of the new implementation
that performs unlocal before ;s, thus skip-
ping lp-trampoline. Both new versions incur
the overhead of pushing the additional data on
the return stack with call-loc or docolloc.

3x0-locals If there are several words with locals,
our new implementation (without unlocal)
calls the same instance of lp-trampoline from
each of these words, and the NEXT inside
lp-trampoline then jumps to different code;
this can lead to mispredicting this branch (de-
pending on the indirect branch predictor of
the CPU). 0-locals just has one such word
and should not have problems with the branch
predictor. For contrast, we also have 3x0-
locals, where we have three instances of a
word like the one used in 0-locals; for the lp-
trampoline variant, this leads to a mispredicted
NEXT in lp-trampoline on CPUs that use a
branch target buffer (BTB) for predicting in-
direct branches. The number of calls and the
number of loops is the same, so there should
be no other differences from 0-local (except for
the execute variants, where there is more over-
head for handling three xts instead of one, and
additional mispredictions, see below).

does A does>-defined word that just drops the ad-
dress that dodoes (or its replacement) pushes
on the stack. There are no locals in this set of
words (the new does> implementation can also
be implemented without changing the locals,
and the performance should be independent).
Here we also have three variants: the old one
using does-exec and dodoes; the new one gen-
erating lit call (as a superinstruction) and
dodoesxt; and finally a variant defined with
[’] drop set-does> that saves the call and
return overhead.

We call these words in a loop in two ways: We
compile, them into the loop, or we call them in a
loop with dup execute (a little more complicated
for the three-copy-variant). We also measure an
empty loop and subtract its instructions, cycles,
and branch mispredictions from the results to get
an approximation of the pure cost of executing just
that one word.
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: baseline ;
: 0-locals { } ; old lp-trampoline unlocal
: 3x0-locals { } ; : y { } ; : z { } ; old lp-trampoline unlocal
does> drop ; old new [’] drop set-does>

cycles from mispredictions (K8, Haswell)

compile, execute compile, execute compile, execute compile, execute
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Figure 3: Instructions and cycles for performing a word (one invocation)

We used three different machines in our experi-
ments: A Core i7-4790K (Haswell) based machine,
an older (2005) Athlon 64 X2 4400+ (K8), and an
ARM Cortex-A9 based PandaBoard ES. All ma-
chines ran Linux. We used the same binaries for the
two machines with AMD64 architecture (Haswell,
K8). On the Haswell and K8 we measured instruc-
tions, cycles, and branch mispredictions using per-
formance counters; on the Cortex-A9 we measured
CPU time with time, and computed cycles from
that.

3.1 Locals performance

The first set of columns shows the AMD64 instruc-
tions executed when running the words. We see
that, in the old implementation, cleaning up the
locals stack takes two additional instructions over
the locals-less baseline, and the lp-trampoline im-
plementation takes 9 more instructions than the old
one; the unlocal implementation costs only 2 in-
structions more than the old implementation. The
same differences are seen in both the compile,d
variant and in the executed variant, but the base-

line is higher for the executed variant.
These differences in instruction count are not re-

flected in the Haswell cycles; this processor appar-
ently manages to execute most of the additional
instructions in parallel to the instructions that it
already performs in the baseline. But why can
it not extract more parallelism from the baseline?
There is probably a data-dependence chain having
to do with the Forth VM instruction pointer (ip).3

In more realistic code there is more code inside
the loops and definitions, so ip-based dependency
chains probably do not usually determine perfor-
mance in realistic code. Therefore, the instructions
counts may be a better indicator of the performance
impact of our changes on real code than the Haswell
cycle counts.

The Haswell has a very good branch predictor
[RSS15], so branch mispredictions don’t play a sig-
nificant role on Haswell, even for 3x0-locals.

The K8 also mostly shows few performance dif-
ferences between the implementations of the locals,

3Save ip to the return stack, load it back, load the tar-
get of the (loop) primitive, and perform a few additions in
between.
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Ertl From exit to set-does>

except that there are big differences in some cases
coming from branch mispredictions (the K8 predicts
indirect branches with a BTB). We estimate 20 cy-
cles penalty per misprediction, and have coloured
the corresponding part of the bars in black; com-
paring the non-black part of the 3x0-locals bars
with the 0-locals bars, this estimate is about right.
The compile,d 3x0-locals benchmark causes one
misprediction with the lp-trampoline variant, from
lp-trampoline, as discussed above. Optimizing
the new locals implementation with unlocal elim-
inated this slowdown.

The executed 3x0-locals benchmark has an ad-
ditional branch misprediction, in docol/docolloc,
with all implementations.

The ARM Cortex-A9 timing results seem to be
influenced by instructions counts (which are proba-
bly be similar to the AMD64 counts), and (compar-
ing 0-locals with 3x0-locals) also by mispredictions
in a way similar to the K8 results, so the Cortex-
A9 probably also has a BTB. Unfortunately, we do
not have performance counter results for this CPU,
so we cannot present misprediction results (nor in-
struction counts).

Concerning the difference between the old and
the new locals cleanup implementation, we see
that, on the Cortex-A9, lp-trampoline is quite a
bit of slower than the old implementation, but the
unlocal implementation has similar performance
as the old implementation.

3.2 DOES> performance

When compile,d, the new implementation of the
does>-defined word uses one instruction less (with
the lit call superinstruction) than the old imple-
mentation. There are also corresponding small dif-
ferences in the cycles on the K8 and Cortex-A9; on
the Haswell the new implementation takes 0.5 cy-
cles more than the old one.

When executed, the new implementation takes
three additional instructions; on the K8 and Cortex-
A9 this is also reflected in the number of cycles,
while there is little difference on the Haswell.

The [’] drop set-does> variant saves 15 in-
structions for the compile,d version and 8 instruc-
tions for the executed one compared to the old
implementation. It also gives good speedups on all
CPUs; this time this even includes the Haswell, be-
cause this variant shortens the dependence chain.

4 Native-code Caveats

If implemented näıvely, the additional return ad-
dress can have a high cost on native-code systems
that (unlike Gforth) use the architecture’s return
instruction for implementing exit. Return instruc-

tions on modern CPUs have a special branch predic-
tor that is called return stack (yes, the same name
as the Forth return stack, and it also contains re-
turn addresses, but it’s not programmer-visible). A
return to the address of the corresponding call nor-
mally predicts correctly, and a return to a differ-
ent address causes a misprediction (about 20 cycles
penalty on a modern CPU). Therefore each return
address should be produced by a call instruction,
and not manipulated. One way to achieve this in a
native-code system is to push the additional (Forth)
return stack items as follows:

push data needed for cleaning up locals
call rest-of-definition
clean up locals
ret
rest-of-definition:
...
ret

5 Conclusion

If we require that [’] exit execute works, we
have to clean up locals in a compatible way. The
popular technique of pushing extra data and the
return address of a cleanup code fragment on the
stack works, but has some performance caveats.
Fortunately, we achieve performance similar to the
old implementation in most cases by optimizing
exit to perform unlocal ;s.

The new locals cleanup implementation also led
to a new does> implementation (but the new does>
implementation can be implemented without the
new locals cleanup). The performance for code us-
ing does> is comparable to the old implementation;
but the new implementation also makes it possible
to use set-does>, which allows more flexibility in
structuring words, and may save a call-return pair,
increasing performance.
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Abstract
A unique opportunity arose to compare two similar applications on closely related 
platforms, one written in Python and one written in Forth.

1. Introduction
In the past two years, the economics of display devices in industrial automation has 
been transformed by the introduction of very low cost micro-PCs. These can be 
regarded as circuit boards with an RJ45 Ethernet connector at one end, and an HDMI 
digital video output at the other end. In our industry, several applications were 
immediately suggested. Initially, no Forth compiler was then available, so the first 
application was written using Python. Shortly afterwards, a version of Forth became 
usable, and therefore a second, similar application was written using Forth, giving an 
excellent means of comparing the efficiency of constructing new applications in each 
language.

2. Economics
An industrial display application (excludes screen etc. common to both solutions)
BUYING IN COST (Not sales price)
a) Before Micro-PCs

Industrial fanless PC, including disc & PSU £475
PC mounting brackets £23
Operating system (Windows OEM license) £49
Replication time (approx. 1 engineer-hour) £45
TOTAL £592

b) Using Micro-PC
Micro-PC £26
Steel protective enclosure £11
PSU £7
SD card £10
Replication time (approx. 5 engineer-minutes) £4
TOTAL £58
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3. Hardware overview
There is a wide variety of micro-PCs now available, all with similar function. By far 
the best-selling of these devices is known as the "Raspberry Pi". It consists of a 
circuit card 85mm x 56mm with a highly integrated ARM-based CPU, memory, and a
variety of ports. The "disc" consists of a plug-in micro-SD card.

4. Operating System
The recommended operating system for the Raspberry Pi is a version of Linux which 
is very similar to Debian. However, when used in industrial applications, this has a 
very serious drawback, in common with many other versions of Linux. In the event 
of an unplanned power interruption, there is a high chance of  corrupting the "disc". If
this happens in a conventional implementation, with a keyboard and mouse, there are 
repair programs that can be run. However, in a standalone display only application, it 
is not practical to have to repair the disc on a regular basis. To overcome this 
limitation, we have constructed our own implementation of Linux that makes the SD 
card "read-only". The systems are now highly reliable and maintenance free. 
Development work takes place on a standard Linux, and on completion of 
development, is copied onto the reliable Linux system, which can be switched 
between read-only and read-write modes.

5. Application overview
Typical applications in our industry are for the purpose of displaying dynamic data to 
a shop floor operator. The display device is in constant communication with a central 
control PC, which sends out information to be displayed, typically every 0.5s, using 
UDP messages over the Ethernet network.
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In the example shown on the previous page, the display unit shows the status of two 
healthcare laundry sorting stations. The customer, category, weight and piece count 
are shown. The category is illustrated for quick identification. Indicator beacons show
the operator clearly when to sort items. This application was implemented using 
Python.

In the example shown below, the display unit shows loads of towels approaching a 
towel folder feed station. The operator can clearly see the classification of the towels 
in the overhead rail bag approaching, on an intermediate belt conveyor, and in the 
feed bin. The photograph also shows the Micro-PC protective enclosure, just below 
the screen. This application was implemented using Forth.
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6. Program structure
The structure of both programs is exactly the same. On startup, the graphical user 
interface and the UDP port are initialised. A thread is started to process the 
communications, and a GUI timer is started to keep the graphics up to date.
The communications thread accepts UDP messages from the central control PC, 
indicates to the GUI that new data is available, and replies to the central control PC.
The timer compares each item of display data, and updates each part of the display as 
required. It also displays error information if no new data has been received recently.

7. The Python Experience

Although I have very extensive 
experience of programming in Forth, 
and quite wide experience of several 
other languages, this was my first 
foray into Python. In addition, I had 
not worked very much with Linux 
before. So there was quite a big 
learning process.

a) Ease of learning
Python is often suggested as a 
beginner's language, and indeed it is 
possible to write elementary programs
after only a few hours study. However,
some of the concepts of the language 
are extremely subtle, and in order to 
produce a serious and reliable 
commercial program, a long period of 
study is required. It is very 
unfortunate that there is currently no 
good book available which covers the 
latest version of the language. The 
online documentation is complete and 
well organised but can be somewhat 
terse.

8. The Forth Experience 

Being already very familiar with 
Forth, I had only to master a new 
version, and the interface with Linux.

a) Ease of learning
Like Python it is possible to write 
elementary programs after only a few 
hours study. However, equally, in 
order to produce a serious and reliable
commercial program, a long period of 
study is required. In this case, a good 
and up to date book is readily 
available.
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b) Dialects and variations
A Forth programmer will be shocked 
to learn that the Python language is 
highly regulated. There is essentially 
only one version of the language that 
is current at any time. Language 
development follows a formal 
process, and the originator of the 
language is regarded as a "Benevolent
Dictator For Life" and is assumed to 
have a power of veto.

c) Programming paradigm
Although Python bills itself as having 
multiple programming paradigms, in 
practice you are compelled to use an 
object-oriented model, because all of 
the really useful library functions 
assume this.

d) Standard libraries
The best recommendation for the 
Python language is the very 
comprehensive standard library 
support, covering almost every 
eventuality. Python bills itself as 
"batteries included". In practice, there 
are some important libraries that have 
not been updated to conform to the 
last major release, which came out in 
2008.

e) Graphical user interface
Python strongly encourages the use of 
the TCL/Tkinter GUI. This is 
extremely unfortunate because it lacks
the flexibility of GUIs that are more 
regularly maintained.

b) Dialects and variations
A Python programmer will be shocked
to learn that the Forth language is 
unregulated to the point of anarchy. 
There are as many versions of the 
language as there are programmers. 
Any "Benevolent Dictator" would be 
instantly overthrown. From here 
downwards, this paper will describe 
the VFX Forth for Linux by MPE.

c) Programming paradigm
Forth is its own paradigm.

d) Standard libraries
VFX Forth comes with a fair range of 
extensions covering many frequently 
needed functions. It is in the nature of 
Forth that these are regarded as 
suggestions only, and are frequently 
modified to suit a particular 
application.

e) Graphical user interface
VFX Forth provides elementary 
wrappers for the GTK+ GUI. 
Unfortunately the wrappers support 
only the older principal version 2 of 
GTK+, rather than the current 
principal version 3. In Forth, it is not 
difficult to create upgraded wrappers 
using the older code as a model. 
GTK+ is highly complete, very 
flexible, regularly updated, and far 
superior in every respect to the 
Tkinter GUI preferred by Python.
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f) Style and compactness
Python is the only language I have 
come across that approaches the 
compactness of Forth. In my view this
is a very important feature of any 
language because it enables complete 
functions to be read in one glance, 
which greatly assists in bug detection.
But, this compactness is achieved by 
the use of indentation to delimit 
blocks. This prevents free formatting 
which we use regularly to improve 
code readability. In addition, multiple 
statements per line are discouraged.

g) Readability
All languages can be used to produce 
more, or less, readable code. But 
Python programs when well written 
are definitely easier to read than most 
other languages.

h) Community support
Python has a very large user base, and
as one might expect there is a variety 
of community forums. In practice 
these tend to be clogged with 
elementary queries from beginner 
programmers, and it can be hard to get
good advice on the very subtle 
difficulties of the language.

f) Style and compactness
Forth is still the most compact 
language to code, primarily due to its 
low structuring overhead and 
concatenative programming model.

g) Readability
In a language that contains such "bad"
key words as -ROT and PICK, it is of 
course easy to write obfuscated code 
in Forth. However, with careful 
naming, use of Forth's completely free
formatting, and careful structuring, 
Forth code can still be the best 
language for readability and 
maintainability.

h) Community support
Forth has a rather small active base of 
practising commercial programmers, 
and therefore the chance of finding 
anyone else working in the same 
dialect and in a similar application 
area is slight. On the other hand, there 
is the opportunity (possibly after 
liquid bribery) to consult the actual 
author of the compiler.
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i) Difficulties
In addition to the problems with the 
obsolete default GUI, and the out of 
date libraries, we encountered the 
following problems with Python.
i. Scope of variables
There is an assumption in Python that 
all variables are as local as possible. 
Python is extremely averse to global 
variables, and for anyone used to the 
opposite assumption, this leads to 
frequent misunderstandings. In fact 
the whole subject of scoping of 
variables is so tricky in Python that it 
fills the community forums with 
obscure problems.
ii. Structures
The whole approach to structures in 
Python is completely different from 
that in C or Forth. The Python 
approach is really quite clever, but it 
is also quite complex and hard for a 
beginner to grasp. This makes it very 
difficult when writing a 
communications protocol, in which 
the data is normally defined as a C-
like structure.
iii. Garbage collection
This is the biggest weakness of 
Python, and one which occupies 
reams of forum discussion about the 
difficulty of debugging. Extreme 
coding care is needed to avoid either 
memory leaks (caused by uncollected 
garbage) or miraculously dereferenced
variables (due to over-zealous 
binmen).

i) Difficulties
In addition to the problems with the 
obsolete GUI version, we encountered
the following problems with VFX 
Forth for Linux.
i. No initial support for floating point
Unfortunately this meant that for the 
first application, it was not possible to 
use Cairo for drawing. The floating 
point is now working and will be used
on the next application.
ii. Difficulties with cache flushing in 
Linux
This means that perfectly correct code
will sometimes fail to compile. It is a 
temporary irritation only, as a second 
(sometimes third) compilation attempt
will succeed.
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9. Equivalent codes examples
The communications thread, with almost identical function in both applications:
a) Python

def coms(app):
    pcsock=socket_init()
    while apprunning:
        if socket_ready(pcsock):
            rbytes, raddress = pcsock.recvfrom(2000)
            app.mq.put_nowait(rbytes)
            sbytes = struct.pack('B', 0)
            pcsock.sendto(sbytes, raddress)
        time.sleep(0.05)

b) Forth

: COMACTION ( --- ) \ Communications task action
  SOCKET-INIT \ Initialise socket
  NEWFLAG OFF \ Clear new data available
  BEGIN
    SOCKET-READY IF \ Message ready
      SOCKET-GETPACKET LFPC4TX1 = IF \ Correct message length
        SOCKET-PROCESS \ Process received packet
        SOCKET-TRANSMIT \ Reply
      THEN
    THEN
    50 ms PAUSE
  AGAIN
;

9. Conclusion
Each language has both advantages and disadvantages. Full mastery of either 
language could only be achieved by constant practice. Since all our principal 
applications are written in Forth, we will continue to use it for future applications in 
Linux on Micro-PCs.

NJN
September 2015
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Using System Hyper Pipelining for a Multi-Threaded 
FORTH Compatible Stack Processor Mapped on an 

FPGA

Tobias Strauch

Abstract— FORTH  compatible  stack  processors  are  still 
subject to research and development. They also face new multi-
processing and multi-threading challenges. Most notoriously the 
multicore processor G144 from the inventor of FORTH Charles 
Moore. This paper outlines an alternative concept to generate a 
mutli-threaded  FORTH  compatible  stack  processor  by  using 
System Hyper Pipelining (SHP), which overcomes the limitations 
of classical  multi-threading methods  by adding thread stalling, 
bypassing  and  reordering  techniques  to  better  cope  with  the 
challenges  of  Symmetrical  Multi-Processing  and  Simultaneous 
Multi-Threading.  SHP  is  ideal  for  FPGAs  with  their  high 
number of registers and their flexible memory usage. The paper 
gives results for a FORTH compatible stack processor mapped 
on an FPGA.

Keywords—FORTH,  C-Slow  Retiming,  Symmetrical  Multi-
processing,  Simultaneous  Multi-threading,  Multi-processor 
Systems

I.  INTRODUCTION

Charles  Moore,  the  inventor  of  FORTH  introduced  a 
multicore  array  chip  based  on  a  FORTH  compatible  stack 
processor in [1]. This design uses the traditional approach of 
generating a multicore chip based on an array-like orientation. 
This paper now proposes an alternative approach of generating 
a  multi-threaded  stack  processor  by  using  System  Hyper 
Pipelining, which is a successor of C-Slow Retiming.

C-Slow  Retiming  (CSR)  provides  C  copies  of  a  given 
design  by  inserting  registers  and  reusing  the  combinatorial 
logic  in  a  time  sliced  fashion.  CSR therefore  improves  the 
performance per area factor.  Leiserson et. al. introduced the 
concept of C-Slow Retiming (CSR) in [2]. In section II,  the 
System  Hyper  Pipelining  technology  is  shown  and  how  it 
differs  from  CSR.  Section  III  outlines  a  thread  controller 
which  copes  with  a  high  number  of  threads.  Section  IV 
outlines,  how  a  FORTH  based  stack  processor  can  benefit 
from  SHP.  A  system  is  proposed  in  section  V  before  the 
results are given in section VI.

II. CSR AND SHP TECHNOLOGY 

System  Hyper  Pipelining  (SHP)  has  been  introduced  by 
Strauch in [3]. This paper gives a 2-page introduction for the 
readers' convenience again. SHP is based on C-Slow Retiming 
(CSR). It  enhances CSR with thread stalling, bypassing and 

reordering techniques by replacing the original registers of the 
design with memories and by adding a thread controller (TC). 
In the remainder of this paper, the word “thread” (T) is used 
synonym for the execution of a program or algorithm.

Figure 1: a) Simplified single clock design. b) Applying CSR 
technique.

Figure 1a shows the basic structure of a sequential circuit 
with its inputs, outputs, combinatorial logic (CL) and original 
design  registers  (DR).  The  sequential  circuit  handles  one 
thread T(1). Figure 1b shows the CSR technique. The original 
logic is sliced into C (here C=3) sections. This results in C 
functionally independent  design copies T(C=1..3) which use 
the logic  in  a  time sliced fashion.  Each  thread  has  its  own 
thread ID (TID). For each design copy it now takes C “micro-
cycles”  to  achieve  the  same  result  as  in  one  cycle  (called 
“macro-cycle”)  of  the  original  design.  The  implemented 
registers are called “CSR Registers”, (CR) and are placed at 
different C-levels (CRn).

Figure 2: a) SHP-ed design with thread controller, memories 
and CRs. b) Advanced SHP.

Figure  2a  shows  the  modifications  of  a  CSR-ed  design 
towards  SHP.  Assuming  the  DRs  are  now  replaced  by  a 
memory (M). The incoming design states / threads are stored 
at the relevant address (write pointer) based on the TID. D is 
the number of threads which the memory can hold (memory 
depth). The outgoing thread can now be freely selected within 
D available threads (read pointer), except the threads already 
passing through the design logic. A CSR-ed design has usually 
many  shift  registers.  DRs  are  followed  by  a  series  of  CR 
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registers. In the SHP-ed version, many memory data outputs 
are connected to CRs. In this case,  the shift registers  at the 
outputs can be replaced by registers at the read address inputs 
of  the  memories  (Figure  2b).  The  memory  is  sliced  into 
individual  sections  (M0,  M1,  M2)  and  each  section  has  a 
delayed read of the thread. The outputs can now be directly 
connected  to  the  relevant  combinatorial  logic  and  the  shift 
registers can be removed. The same trick can be applied on the 
shift register chains at the inputs of the memory.

Fcsr = Forig * C * r C with r ~ 0.93                     (1)
0 Hz <= Ft <= Forig * r C          (2)
Fshp = Σ Ft <=  Fcsr                       (3)

We  define  Forig  as  the  maximal  speed  of  the  original 
design.  The  maximal  speed  of  a  CSR-ed  design  can  be 
estimated by using Equation 1. Fcsr  is C times the original 
speed Forig reduced by a correction factor rC, which considers 
the  delay  inserted  on  the  critical  path  by  the  CRs.  r  is 
technology dependent. Based on empirical data, r is roughly 
0.93 for a Virtex-6 FPGA. Equation 2 says, that in an SHP-ed 
design, a single thread can now run at any speed (over a long 
period) between 0 Hz (stalled) and  Forig * r  C. The maximal 
speed  of  an  SHP-ed  design  Fshp  is  the  sum  of  all  active 
threads (Equation 3). Fshp cannot be greater than Fcsr.

Figure 3: SHP based performance per area improvement based 
on a Cortex M3 example.

Figure 3a shows a Cortex M3 (as it can be found in [4]) 
implementation  on  a  a  Virtex-6.  With  C=4  and  D=16,  the 
SHP-ed  version  (Figure  3b)  is  just  33%  larger  (occupied 
slices)  but  can  achieve  230%  more  performance  (overall 
330%)  compared  to  the  original  implementation.  In  other 
words, SHP improves the performance per area factor if the 
application can utilize this performance gain by using at least 
4 independent threads. 

Figure 4: Histogram of different scenarios (a-d) of running 
CSR and SHP.

Figure 4 shows the advantages of CSR and SHP over the 
original  design.  The  x-axis  shows  different  scenarios. 
Assuming a single CPU runs at 60MHz on an FPGA (Figure 
4a).  It  can  be  seen,  how  CSR  improves  the  system 
performance  of  the original  system implementation,  (Figure 
4b).  When  using  CSR,  the  system  performance  is  not 
necessarily limited by the critical path of the original design, 
but - for instance - by the switching limit of the FPGA (e.g.  
250MHz) or the external memory access instead. 

There  are  two key observations  when SHP is  used  on  a 
design.  First,  for  executing  multiple  programs  on  multiple 
CPUs (symmetrical multi-processing (SMP)) or for executing 
multiple  threads  on  a  CPU  (simultaneous  multi-threading 
(SMT)),  SHP  allows  a  more  efficient  usage  of  the  system 
resources.  It  adds  the  possibility  to  dynamically  scale  the 
system performance over a minimum (C, Figure 4b),  and a 
maximum (D, Figure 4d) set of design copies,  whereas  any 
solution  in-between  can  be  realized  (Figure  4c).  This  load 
balancing is handled by a thread controller (TC).

Secondly, threads don't interact with each other. There is no 
register  dependency  between  the  individual  threads.  The 
runtime of each thread is therefore deterministic. The variable 
latency that the execution per thread may experience due to 
different behavior in if-branches for instance is not an issue, 
because all threads work independent of each other. 

III. THE THREAD CONTROLLER

Figure 5: Thread Controller Mechanism.

A TC is  used,  which  is  controlled  by  a  special  function 
register  set  TCRS  (Thread  Controller  Register  Set).  It  is 
accessible by all active threads (T). Each thread has its own 
thread register (TR). Figure 5 shows how the Thread ID (TID) 
is provided for the SHP memories. When a thread is executed, 
its TID passes through the ID-Queue (IDQ).  It  is  reinserted 
into the IDQ or into the ID-FIFO, if the relevant bit in the TR 
shows that the thread is still active and not on hold or killed. 
When less than C threads are valid, active threads need to be 
re-executed, but the valid bit V of the IDQ indicates, that its 
state copies should not be stored. When more than C threads 
are executed or an additional thread is inserted, then the TID is 
parked in the ID-FIFO. 

Threads can be added to the active thread list  by writing 
their program start address to the “Activate” register. This sets 
the thread-specific active A bit in the TR. Threads can be hold 
by setting the hold H bit or killed by clearing the active A bit 
in the TR. When the thread priority bit P is set in the TR, then 
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a thread execution has a higher priority than the threads stored 
in the ID-FIDO or threads resulting from an interrupt or the 
CPU. It is therefore directly re-inserted into the IDQ again and 
not stored into the ID-FIFO. 

To cope with fork-join queueing, the following mechanism 
is implemented. A set of Ts an be started from a single main 
thread  (MT)  by  successively  writing  the  individual  start 
addresses of the Ts to be started to the TCRS called “Activate 
and Count” (AC). By doing that, the number of Ts called (CT) 
by the MT is stored in the AC register.  Optionally the MT 
stalls itself after that process. Each CT saves the MT's SID in 
the  “forked  thread  register”  (FT).  When  a  CT  is  killed,  it 
checks  the  FT  and  decrements  the  AC of  the  MT.  If  this 
number gets 0, the MT stalling bit is cleared by default and the 
MT continues. Alternatively the MT can read it's AC register 
to continue execution.

The  TCRS  can  be  programmed  to  set  a  group  of 
consecutive  threads  into  dynamic  length  instruction  word 
(DLIW) mode. By doing that, a given number of threads are 
executed in parallel. The concept is similar to the very long 
instruction  word  (VLIW)  concept,  except  the  fact  that  the 
number  of  threads  running  in  parallel  can  be  dynamically 
defined (but must be lesser or equal to D). 

Figure 7: Grouping threads to run dynamic length instruction 
words.

Figure 7 shows an example. The threads with the TID 2,3 
and 4 are running as a group using DLIW. Thread 9 is listed to 
show that alternative threads can still be actively running. The 
first thread in the DLIW (TID 2) starts the parallel execution 
when the number of subsequent threads (here 2) is written into 
its  DLIW  register.  Branch  instructions  (words)  are  only 
consider  by the  initial  thread  (here  TID  = 2),  the  program 
counter of the subsequent threads are always derived from its 
trailing thread (by adding the value of 2 for instance).

This outlined TC has a low complexity (see result section). 
It can stall and bypass individual threads and it is capable of 
handling  fork-join  queues.  By  default,  a  thread  runs 
completely independent of the other threads when its priority 
thread is set and when only less or equal number of C threads  
have  the  priority  bit  set.  It  can  also  group  threads  to  run 
dynamic  length  instruction  words.  The  DLIW  method  is 
accompanied by the message passing implementation, which 
is outlined in the sequel of this paper.

IV. BENEFITS OF A MULTI-THREADED STACK PROCESSOR 

A. … compared to its single core implementation

This sections lists  some of the benefits  of  an SHP based 

multi-threaded stack processor. First, it is compared to a single 
core implementation. It is assumed, that the application can be 
partitioned  into  individual  threads  to  a  certain  degree.  This 
certainly has its limit (Amdahl's Law), but applications in the 
field of automation and controlling for instance can usually be 
partitioned into individual tasks, whereas most of them can be 
executed in parallel.

The key benefit of SHP when applied on a single core is the 
increase  of  the performance-per-area (PpA) factor.  This has 
been shown in [3] based on FPGAs and it is demonstrated in 
the result  section of this paper again.  The performance of a 
system is already increased when a second thread can be used. 
All threads of an SHP-ed processor can share the same data. 
The time sliced access to the program memory increases the 
memory  bandwidth  and  reduces  potential  memory-wall 
problems.

B. … compared to a multicore implementation

Charles  Moore  has  introduced  a  multicore  array  stack 
processor GA144 [1]. A functional identical SHP-ed version 
can be realized on a smaller die size due to the increased ppa 
factor.  Alternatively more performance could be realized on 
the same area when SHP is used. 

The  GA144  was  used  by  Schneider  et  al.  in  a  research 
project  [5].  In  their  work,  an  application is  partitioned into 
individual tasks, whereas each task is assigned to an individual 
core on the GA144. It is easy to understand, that in this case, 
tasks have to stall sometimes, because they need to wait on 
data from other tasks to be processed. It has been outlined in 
section II of this paper, that SHP allows the dynamic scaling 
of individual threads on an SHP-ed processor. If a task can be 
stalled  (because  it  is  waiting  for  data  from other  tasks  for 
instance),  then  its  associated  thread  can  be  stalled  and 
therefore frees performance for other threads. A task on the 
SHP-ed  processor  array  does  not  necessary  consume 
performance nor logic area when stalled.

On an SHP-ed based processor array, multiple threads (D) 
on each element can share the same memory. On a traditional 
multicore  array  (GA144),  data  has  to  be  transferred  to  the 
individual core/thread.

C. … when used in a safety critical environment

FORTH compatible stack processors can be used in a safety 
critical environment. Most notoriously is the controlling of the 
Philae  landing  process,  using  FORTH  and  a  radiation 
hardened processor [6].  A C-slow retimed processor  can be 
used to generate a time redundant system, as outlined in [7]. It 
enables the detection of single event upsets (SEUs) and allows 
an on-the-fly recovery. The same technique can be applied on 
almost the same area on an SHP-ed stack processor. 

As  an  alternative  concept  to  detect  malfunctions  of  an 
application  running  on  a  stack  processor  is  the  usage  of 
different software tasks, which are aiming to deliver the same 
results. If  the results differ, at least one task did not execute 
the code as expected. The “free” additional threads that come 
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with SHP and its increased PpA factor enable the execution of 
redundant tasks on almost the same die size without loosing a 
reasonable amount of system performance.

D. … and what turned out to be not very beneficial

The  idea  of  combining  a  FORTH  compatible  SHP-ed 
processor with OpenMP [8] was not very successful. Although 
some OpenMP concepts can be used in the FORTH language, 
the  restriction  comes  from  the  write/read  policies  of 
private/shared  variables  used  by  individual  tasks.  Still,  the 
programmer  can  use  the  TCRS  to  benefit  from  the 
implemented fork-join mechanism.

Another  intriguing  idea  when  working  with  an  SHP-ed 
FORTH processor is that each thread can access the stack of 
alternative threads. It turned out that the resulting logic is too 
complex and therefore inefficient.  Alternatively,  threads can 
be synchronized using the TC's DLIW technique as well as the 
message passing method, which is outlined in the next section.

V. THE PROPOSED SYSTEM

Figure 8: Overview of the Proposed System.

A. Overview

Figure 8 gives an overview of the proposed system. It  is 
based on the diploma-thesis of G. Hohner, which is released 
on  the  OpenCores  webpage  [9].  A  FORTH  compatible 
program can  be  compiled  by the  original  client  (compiler). 
The program is then downloaded through an USB interface to 
a 12-bank wide SDRAM block. The original stack processor is 
enhanced by the SHP technology. A thread controller is added 
which  can  be  programmed  by  the  processor  using  special 
function  registers  (SFR).  There  are  also  some  standard 
peripherals  like  GPIO,  UART  and  Timer.  The  design  is 
mapped on an  FPGA. An external  SRAM provides  enough 
memory for data access.

B. The FORTH Stack Processor and its SHP-ed Version

The CPU is a FORTH compatible stack processor with 6 
stages  and  two 32-bit  wide  stacks.  It  supports  all  common 
FORTH commands (see [9] for more details).

The CPU is slightly optimized so that it can be used for an 
automatic transformation process towards an SHP-ed version, 
which is done by a tool called CoreMultiplier [10]. Based on 
empirical data of other CPUs of comparable complexity, the 
parameter  C  was  set  to  4,  which  results  in  a  good 
performance-versus-area (occupied slices) trade-off.  In  other 
words, 3 (C-1) registers are automatically inserted into each 

path in the CPU by a timing driven algorithm (, whereas some 
of the registers are merged into their adjacent memory blocks 
again, see section II). The parameter D was initially set to 16. 
Less than 16 threads do not reduce the number of occupied 
memory resources. Due to the high registers count of the CPU, 
D was then reduced to 8 so that the stacks can share FPGA 
memory resources. 

The  CPU  accesses  an  external  SRAM  using  an  SHP-ed 
SRAM controller  for  data transfer  and a external  SDRAMs 
using an SHP-ed  SDRAM controller  for  the  program code. 
The external SDRAM is based on 16-bit wide devices so that a 
pair  generates  a  32-bit  wide  interface.  Three  individual 
SDRAM  pairs  build  an  SDRAM  list  with  12  banks.  This 
allows  individual  threads  to  access  individual  banks.  Each 
thread can access the complete SRAM range and the complete 
SDRAM range as program memory.

C. The Message Passing Extension

Before  SHP  was  applied  on  the  original  design,  one 
additional coprocessor register COR is added. A new FORTH 
instruction CTC (copy to coprocessor) writes the stack value 
into  COR.  An  additional  instruction  CFC  (copy  from 
coprocessor) writes the COR value back onto the stack. The 
SHP-ed version was then modified so that each thread writes 
the stack's value into the COR of the thread with the next TID. 
This adjacent thread can then read this value one cycle later by 
using the CFC word. This mechanism is very helpful when the 
DLIW method is used and a message needs to be passed to 
another thread.

D. The FPGA Board

Figure 9: FPGA Board with unique SDRAM access structure.

The  proposed  system  is  mapped  on  a  Spartan  6  LX25 
FPGA  board  with  a  unique  SDRAM  access  structure  (see 
Figure  9).  It  allows  the  individual  threads  on  the  CPU  to 
access  up  to  12  individual  SDRAM  banks.  Without  that 
infrastructure,  the  memory  bandwidth  would  be  a  major 
bottleneck (memory wall).

E. The Software Compiler and Client 

The FORTH compiler and the client are taken over from the 
original  source  [9],  which  is  written  in  Java.  The  two 
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additional  instructions  (CTC  and  CFC)  are  added  to  the 
compiler  code.  The  communication  with  the  board  was 
enhanced for HS-USB using an FTDI [11] DLL and an FTDI 
USB chip. 

VI. RESULTS

In this section, the original design variations are compared 
to  the  system  hyper  pipelined  version  of  its  single  core 
implementation.  The  original  work  includes  a  feature  to 
automatically  generate  a  multicore  solution  by modifying  a 
parameter called “core”. By increasing the core parameter, the 
number of CPUs and CPU stacks increases accordingly. 

Table 1. Comparing Performance per Area of the Original Design 
and the SHP-ed Version.

unit original, core = SHP, C = 4, 
D = 81 2 3 4

occS 1377 1865 2380 3143 1927

Perf. MHz 45,44 45,44 45,44 45,44 159,12

PpA kHz/occS 32,99 24,36 19,09 14,45 82,57

ΔPpA % 100 73,83 57,86 43,81 250,23

Table  1  compares  the  results  for  the  different 
implementations mapped on a  Spartan  6  LX25 FPGA. The 
occupied slices (occS) of the original design with increasing 
core  factor  (1,  …,  4)  is  shown.  The  performance  remains 
stable for all 4 core variations at 45,44 MHz. This decreases 
the  performance-per-area  factor  (PpA) due  to  the  increased 
number  of  occS.  The  SHP-ed  achieves  a  performance  of 
159,12 MHz on 1927 occS, which results in a PpA of 82,57 
kHz/occS.  This  is  a  PpA increase  of  250% compared  to  a 
single  core  implementation  of  the  original  core.  The  occS 
number of the SHP-ed version includes the design of the TC, 
which consumes just 226 slices of the FPGA.

Further performance tests are not conducted, because they 
heavily depend on how the algorithm can be partitioned into 
multiple  independent  threads.  The  runtime  of  the  original 
program  and  the  runtime  enhancements  when  using  the 
multithreaded SHP-ed version can easily be derived from the 
numbers given in Table 1.

VII. CONCLUSION

This  paper  showed  how  C-Slow  Retiming  (CSR)  and 
parallel  programming  can  be  combined  to  a  new  method 
called System Hyper Pipelining (SHP). SHP benefits from the 
higher  performance  per  area  (PpA)  factor,  which  can  be 
achieved  when  using  CSR.  Additionally,  SHP  offers  also 
flexible  thread  stalling,  bypassing  and  reordering  features 
which  are  used  by  multi-threading  methods  to  improve  the 
system performance.

SHP is applied on a FORTH compatible stack processor. 
This  stringent  transformation  process  can  be  automatically 

accomplished within seconds and results in a multi-threaded 
version of the stack processor. Fig. 4 shows, how the increased 
system performance can be distributed among multiple design 
copies by using a thread controller. Individual threads can run 
at different speeds and can even be completely stalled without 
consuming relevant power anymore. The paper shows how a 
thread controller enables fork-join operations by accessing its 
special  function registers.  Also very large instruction words 
(VLIW) can be executed by running consecutive threads. In 
the  proposed  system  the  VLIW  can  also  have  a  dynamic 
length. 

The system is mapped on an FPGA. The increased system 
performance  though  requires  an  enhanced  memory  access 
method  to  reduce  the  potential  memory  bottleneck.  A 
hardware solution with 12 SDRAM banks is proposed.  The 
time shared memory access works in-line with the time-shared 
mechanism used to duplicate the functionality of the FORTH 
compatible stack processor.
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uCore goes floating point
Klaus.Schleisiek at spacetech-i.com

As every good Forth programmer I despised floating point. Real men use fixed point. Until I was
supposed to compute the following expression in the Merlin project, which needs to stabilise
laser frequencies to 20ppm precision in order to hit the methane absorption maximum. That
implies that the laser temperature has to be stabilised as well, using a peltier element as the actor
and an NTC resistor as the sensor.

Therefore, I was confronted with these equations to
compute the temperature from the resistance and to find
the resistance set point for a certain temperature. (r∞ is a
pre-computable constant.)

At first, I used Matlab to compute a 3rd order polynomial function that fits "reasonably well" in
the temperature range of interest. Nonetheless it was not easy to get the scaling right using */.
The precision was disappointing and to make things worse, the error distribution of the two
functions were inconsistent.

This was the starting point to rething my resistance to floating point. As a motivation, I will
show you what I ended up with to solve the problem:

&3892  float Constant B-factor
-&298  float Constant -T0
&10000 float Constant R0
&27300       Constant 0_degC

B-factor -T0 f/ R0 fln f+ fexp Constant R_lim

: R>T   ( Ohm -- degC*100 )
   float R_lim f/   fln   B-factor swap f/   &100 float f* integer 0_degC -
;
: T>R   ( degC*100 -- Ohm )
   0_degC + float &100 float f/  B-factor swap f/   fexp   R_lim f*   integer
;

That's the code needed for the conversion functions that have fixed point numbers as inputs and
outputs, scaled to Ohm and centidegC. To add even more to the motivation: All the floating
point code needed cross-compiles into just 500 instructions (bytes).

Design principles
uCore has a configurable data word width and of course, the floating point representation must
be able to cope with it. Therefore, IEEE-754 serves as a guideline and interchange format, but
not as an implementation standard.

Nowadays, even on uCore, the data_width is at least 24 bits wide. Therefore, floating point
numbers will fit on the stack. That already saves the code for a separate floating point stack.

Real number string input and output: Having written a floating point package for the RTX-2000
some 20 years ago, I remembered that about a third of the code dealt with proper number input
and output. Not desirable. I have chosen a much simpler solution: integers can be converted to
floating point using FLOAT, floating point numbers to integers using INTEGER. The floating
point numbers can be properly scaled to engineering values using KILO, MEGA, MILLI, and
MICRO in such a way that they properly scale using standard Forth number input and output.
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Floating point representation
Floating point numbers are character-
ised by exp_width, the width of their
exponent field. Whereas data_width
is  a more general parameter that
specifies the native cell size of a
uCore instantiation.

Exponent: I chose to put the exponent at the far right in order to cope with the variable data
width easily. For an exp_width of 8 bits IEEE-854 adds a bias value of $7F to the exponent. That
involves an add. uCore is just flipping the sign of the exponent using $80 xor, which consumes
fewer logic resources.

Mantissa: IEEE-854 stores the mantissa as an absolute value preceeded by its sign. No rational
is given but I suppose it has to do with the representation of + and - zero. It also avoids the
singularity of the most negative number of 2s-complement representation. You don't know what
I mean? - Just do "$80000000 abs u." in any 32-bit Forth. But computing the absolute value also
involves an add and carry propagation and therefore, uCore stores the mantissa in 2s-
complement representation.

I am still not sure whether there are more important reasons for IEEE's choices, but I have not
seen any numerical misbehaviour due to uCore's non-standard representation.

Zero: uCore also has a positive and a negative zero. Given above choices, the positive floating
point number zero is just - zero. Which is nice. When this zero has its sign set, it is a negative
zero, making good use of the $80000000 sigularity. The check for floating zero is simple:

: f0= ( real -- flag )  2* 0= ;

There are only very few situations where the negative zero has to be explicitly handled and
therefore, I believe it is a good choice.

Over/underflow: On overflow, the ovfl status bit will be set, and the largest positive or negative
number will be returned depending on the expected sign of the result. On underflow, the unfl
status bit will be set, and a positive or negative zero will be returned. For simplicity, there are no
NaNs (Not-a-Number).

Hardware support
Four words have been implemented as uCore instructions for speed of execution:
*. ( n u -- n' )

It is used to compute mathematical functions based on polynomial expressions according to
Horner's scheme: (...((cn * x + cn-1) * x + cn-2) * x + ... + c0).
normalize ( man exp -- man' exp' )

The mantissa and the exponent are on the stack, both as 2s-complement numbers. Normalize
shifts the mantissa to the left until only one single "leading" sign bit remains. The exponent is
adjusted accordingly. This instruction can take several cycles depending on the magnitude of the
mantissa. It gave rise to a uCore invention: Interruptible auto repeat instructions, which are
simplifying uCore's instruction set considerably: um/mod, m/mod, um*, m*, sqrt, log2, shift,
ashift can now be implemented as single instructions.
>float ( man exp -- real )

Amalgamates the mantissa and the exponent on the stack into a real taking care of the
configurable floating point format. It also takes care of over/underflows, because the 2s-

S       normalized mantissa        exponent

data_width

exp_width
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complement exponent on the stack may not fit into the exponent field. The leading digit of a
normalized mantissa will be dropped, because by definition its value is the inverted sign bit.
float> ( real -- man exp )

Converts the configurable real number into the mantissa and the exponent, both as full 2s-
complement numbers.

Host support
I want to be able to compute floating point numbers "on the fly" during compilation. Therefore, a
matching set of floating point words must be present on the host gforth system to support the
uCore cross-compiler.

It is implemented in such a way that it takes care of the potential cell size difference of the host
and the target. The host is characterized by constant cell_width, which can be determined
automatically, and the target is characterized by constant data_width.

I have appended the code for gforth in the appendix and it can be downloaded at
http://www.forth-ev.de/repos/microcore/trunk/Microcore/floating_point

Mathematical functions
Some functions can be computed using bit step algorithms: These are - besides multiply and
divide - square root and logarithm (see log2). In principle, the exp2 function could be
computed bit wise as well, but it needs to take the square root in each step and therefore, a
polynomial approximation is more efficient.

The other functions will have to be approximated to sufficient precision. In general, a real
number will be split up into an integer (before the decimal point) and a fractional part (after the
decimal point) after appropriate scaling. Then the fraction will feed the approximation function
and the integer part will be handled in a function specific way. Most functions can be
approximated by polynomials, which are evaluated using Horner's scheme and the *. operator.

My bible for function approximations is "Computer approximations" by John F. Hart,
Wiley&Sons. It discusses the methods needed and presents coefficient sets for different
precisions.

In the implementation for exp2 and sin I have used the original coefficients from Hart and an
on-the-fly scaling scheme to adapt to different data_widths. More functions will be added as the
need arises.

Numerical precision
It is possible to compile the gforth code for different data_width and exp_width settings. Using
: ntc-test ( -- )
   &1000 &50000 bounds DO  cr I . I r>t dup . t>r . &1000 +LOOP ;

we get a good impression how the numerical precision of the fln and fexp code degrades when
cutting down on the data_width. A data_width of 23 and an exp_width of 6 still produces
results, which are far better than the initial integer based 3rd order polynomial approximation.
Smaller data_widths damage the exp2 function, a smaller exp_width can not cope with the
dynamics of the expressions any more.

This is a satisfying result, because in small systems I am usually using a 24 or 27 bit data_width.

Immenstaad, 1-Oct-2015
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Only Forth also definitions

: shift  ( n1 quan -- n2 )   dup 0< IF  abs rshift  EXIT THEN  lshift ;
: ashift ( n1 n2 -- n3 )     dup 0< IF  negate 0 DO 2/ LOOP EXIT THEN  0 ?DO 2* LOOP ;
: u2/    ( u1 -- u2 )        1 rshift ;
: 2**    ( n -- 2**n )       1 swap lshift ;
: m/mod  ( d n -- rem quot ) fm/mod ;
: \\     ( -- )              source-id IF  BEGIN  refill 0= UNTIL  THEN  postpone \ ;

: cell_width ( -- u )  \ cell width of the host Forth system
   0 1 BEGIN  swap 1+ swap  2* ?dup 0= UNTIL
;
&32                         Constant data_width  \ cell width of target system
8                           Constant exp_width   \ width of exponent field
cell_width data_width -     Constant delta_width \ cell width >= data width !

data_width 1- 2**           Constant #signbit
exp_width 2** 1-            Constant #exp_mask
#exp_mask invert            Constant #man_mask
#exp_mask 2/ invert         Constant #exp_min
#exp_mask #exp_min and      Constant #exp_sign
#signbit                    Constant #fzero_neg
0                           Constant #fzero_pos
#signbit #exp_mask or       Constant #fmax_neg
#signbit invert             Constant #fmax_pos
-1 delta_width negate shift Constant #data_mask

Variable underflow  0 underflow !
Variable overflow   0 overflow !

Variable Scale  \ used for optimal scaling of a set of polynomial coefficients
: scaled     ( n -- n' )  s>d data_width 1 - 0 DO  d2*  LOOP Scale @ fm/mod nip ;
: scale_factor  ( n -- )  Scale ! ;

: round   ( dm -- m' )
   over 0< 0= IF  nip  EXIT THEN   \ < 0.5
   swap 2* IF  1+  EXIT THEN       \ > 0.5
   dup 1 and +                     \ = 0.5, round to even
;
: *.  ( n1 u -- n2 )  over 0< IF  swap negate um* round negate  EXIT THEN  um* round ;

: normalized?  ( m -- f )   dup #signbit and swap #signbit u2/ and 2* xor ;

: normalize    ( m e -- m' e' )
   over normalized? ?EXIT
   over 0= IF  drop   #exp_min  EXIT THEN
   BEGIN  dup #exp_min = ?EXIT
          1 -   swap 2* swap   over normalized?
   UNTIL
;
: >float  ( m e -- r )
   overflow off   underflow off
   normalize   swap #man_mask and swap
   over #fzero_neg =   over #exp_min =   and >r
   over #fzero_pos =   r> or
   IF  drop  #exp_mask invert and  EXIT THEN    \ leave floating +/-zero.
                                                \ For +zero irrespective of exponent
   dup #man_mask 2/ and
   dup 0< IF  #man_mask 2/ xor  THEN            \ exponent over/underflow?
   IF  0< IF  underflow on   0< IF  #fzero_neg  EXIT THEN  #fzero_pos  EXIT
        THEN   overflow on   0< IF  #fmax_neg   EXIT THEN  #fmax_pos   EXIT
   THEN
   dup #exp_min =
   IF  drop #man_mask and  EXIT THEN     \ smallest exponent => denormalized
   #exp_mask and   #exp_sign xor   swap  \ flip sign of exponent => bias = #exp_min
   dup 2* [ #signbit invert #exp_mask invert and ] Literal and
   swap 0< IF  #signbit or  THEN  or
;

64



Page 5 of 7

: float>  ( r -- m e )
   dup #exp_mask and   ?dup 0= IF  #exp_min  EXIT THEN   \ de-normalized
   dup #exp_sign and IF  #exp_mask 2/ and
                     ELSE  #exp_mask 2/ invert or
                     THEN  swap                          \ flip sign and extend
   dup 0< IF  #exp_mask 2/ or  2/                        \ add 0.5 for rounding
              [ #signbit #exp_sign or u2/ invert ] Literal and
        ELSE  #man_mask   and u2/                        \ add 0.5 for rounding
              [ #signbit #exp_sign or u2/ ] Literal or
        THEN  swap
;
: int.frac  ( r -- frac int )  \ split float number into integer and fractional part
   float> [ data_width 2 - ] Literal +
   dup 0< IF  invert 0 ?DO  u2/  LOOP  2* 0  EXIT THEN
   0 swap [ delta_width 2 + ] Literal + 0 DO  d2*  LOOP
;
data_width &32 = [IF]

: >ieee ( r -- ieee )  \ only valid for 32-bit data_width
   float> $80 xor $7F + $FF and                   \ exponent
   over 0< IF  $100 or  THEN  &23 shift swap      \ sign
   abs -&7 shift $7FFFFF and or                   \ mantissa
;
: ieee> ( ieee -- r )  \ only valid for 32-bit data_width
   dup   dup 0< IF  negate $7FFFFF and $1000000 or
                ELSE  $7FFFFF and $800000 or
                THEN  7 shift
   swap -&23 shift $7F -  dup $80 and IF  $7F and  ELSE  $7F invert or  THEN  >float
;
[THEN]

: f+   ( r1 r2 -- r3 )
   float>   rot float>   rot 2dup -                                \ m2 m1 e1 e2 e1-e2
   dup 0< IF  swap >r nip  ELSE  rot >r nip >r swap r> negate  THEN \ m> m< diff_e1-e2
   1- dup [ data_width exp_width - negate ] Literal u< IF  drop 0 swap  THEN
   over IF  ashift  ELSE  drop  THEN  swap 2/ +   r> 1+ >float
;
: f*   ( r1 r2 -- r3 )
   float>   rot float>         \ m2 exp2 m1 exp1
   rot + data_width + -rot     \ exp3 m2 m1
   m* delta_width 0 ?DO  d2*  LOOP
   nip swap >float
;
: f/   ( r1 r2 -- r3 )   overflow off
   dup 2* 0= IF  invert xor #signbit and invert  overflow on  EXIT THEN
                                               \ leave +/- largest number on / by zero
   float>   rot float>
   data_width - rot - -rot
   0 swap delta_width 2 +  0 ?DO  d2/  LOOP
   rot m/mod nip   swap 2 + >float
;
: fnegate  ( r -- -r )
   dup 2* IF  float> 1+ swap 2/ invert #exp_sign 2/ + swap >float  EXIT THEN
   0< IF  0  EXIT THEN  #signbit               \ handle + and - zero
;
: fabs    ( r -- |r| )      dup 0< IF  fnegate  THEN ;
: f-      ( r1 r2 -- r3 )   fnegate f+ ;
: f<      ( r1 r2 -- f )    f- 0< ;
: f>      ( r1 r2 -- f )    swap f- 0< ;
: f<=     ( r1 r2 -- f )    f> 0= ;
: f>=     ( r1 r2 -- f )    f< 0= ;
: f0=     ( r -- f )        2* 0= ;
: f0<     ( r -- f )        0< ;
: f2*     ( r1 -- r2 )      float> 1+ >float ;
: f2/     ( r1 -- r2 )      float> swap 2/ swap >float ;

: float   ( n -- r )        0 >float ;
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: integer ( r -- n )
   dup 2* #data_mask and 0= IF  2*  EXIT THEN  \ +/- zero
   1 float f2/ f+                              \ add 0.5 for rounding
   float> ashift
;
: 1/f     ( r1 -- r2 )      1 float swap f/ ;

: fscale  ( r1 n -- f2 )    dup 0< IF  abs float f/  EXIT THEN  float f* ;
: milli   ( r1 -- r2 )      -&1000 fscale ;
: micro   ( r1 -- r2 )      -&1000000 fscale ;
: kilo    ( r1 -- r2 )       &1000 fscale ;
: mega    ( r1 -- r2 )       &1000000 fscale ;

\ ***************************************************************************
\ logarithm, exponential
\ ***************************************************************************

: log2 ( frac -- log2 )   \ Bit-wise Logarithm (K.Schleisiek/U.Lange)
   delta_width 0 ?DO  2*  LOOP
   0   data_width 0
   DO  2* >r   dup um*
      dup 0< IF  r> 1+ >r  ELSE  d2*  THEN     \ correction of 'B(i)' and 'A(i)'
      round   r>                               \ A(i+1):=A(i)*2^(B(i)-1)
   LOOP  nip
;
: ?fzero ( r -- r / rdrop !! )  \ careful: manipulates rstack!
   dup 2* #data_mask and ?EXIT  drop #fmax_neg   overflow on   rdrop ;

: flog2  ( r1 -- r2 )  \ only defined for positive values
   ?fzero float> [ data_width 2 - ] Literal + 0 >float   swap
   abs 2* log2 u2/ [ data_width 1 - negate ] Literal >float f+
;
: exp2  ( ufrac -- uexp2 )
              \ Hart 1042, 23 bit precision, 1 > ufrac > 0, 1 = 2**(cell_width-1)
   [ &001877576 &008989340 + &055826318 +
     &240153617 + &693153073 + &999999925 + scale_factor ]
   >r [ &001877576 scaled ] Literal   r@ *.
      [ &008989340 scaled ] Literal + r@ *.
      [ &055826318 scaled ] Literal + r@ *.
      [ &240153617 scaled ] Literal + r@ *.
      [ &693153073 scaled ] Literal + r> *.
      [ &999999925 scaled ] Literal +
;
: +fexp2 ( r1 -- r2 )
   int.frac 2** float   swap exp2 [ data_width 2 - negate ] Literal >float f*
;
: fexp2  ( r1 -- r2 )   dup f0< IF  fnegate +fexp2 1/f  EXIT THEN  +fexp2 ;

&1442695 float micro Constant log2(e)

: fln  ( r1 -- r2 )  ?fzero flog2 log2(e) f/ ;

: fexp ( r1 -- r2 )  log2(e) f* fexp2 ;

\ ***************************************************************************
\ sine, cosine
\ ***************************************************************************

: sin ( ufrac --- usin )
            \ HART 3341  27 bit precision, pi/2 > frac >= 0, 1 = 2**(cell_width-2)
   [ &000151485 -&004673767 + &079689679 +
     -&645963711 + &1570796318 + 2* scale_factor ]
   dup >r  dup *. >r
   [  &000151485 scaled ] Literal   r@ *.
   [ -&004673767 scaled ] Literal + r@ *.
   [  &079689679 scaled ] Literal + r@ *.
   [ -&645963711 scaled ] Literal + r> *.
   [ &1570796318 scaled ] Literal + r> *.
;
&1570796327 float milli micro Constant fpi/2
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: +fsin  ( r1 -- r2 )
   fpi/2 f/   int.frac >r
   r@ 1 and IF  invert  THEN  sin
   r> 2 and IF  negate  THEN
   [ data_width 2 - negate ] Literal >float
;
: fsin  ( r -- r' )  dup f0< IF  fnegate +fsin fnegate  EXIT THEN  +fsin ;

: fcos  ( r -- r' )  fpi/2 f+ fsin ;

: degree ( fdeg -- frad )   [ fpi/2 &90 float f/ ] Literal f* ;

\ ***************************************************************************
\ Converting NTC resistance to temperature and vice versa
\ ***************************************************************************

&3892  float Constant B-factor
-&298  float Constant -T0
&10000 float Constant R0
&27300       Constant 0_degC

B-factor -T0 f/ R0 fln f+ fexp Constant R_lim

: R>T   ( Ohm -- degC*100 )
   float R_lim f/   fln   B-factor swap f/   &100 float f* integer 0_degC -
;
: T>R   ( degC*100 -- Ohm )
   0_degC + float &100 float f/  B-factor swap f/   fexp   R_lim f*   integer
;
\ : ntc_test  ( -- )   &1000 &50000 bounds DO  cr I . I r>t dup . t>r . &1000 +LOOP ;

67



Components for Certification.
Paul E. Bennett IEng MIET

Systems Engineer, HIDECS Consultancy

Abstract
Even the humble hexagonal nut has a data-sheet that describes its functionality, performance factors, interfaces and 
limits beyond which its continued performance is not guaranteed. Electrical and Electronic Components also have 

data-sheets that describe their functionality, interfaces, performance and limitations. Why should software be any 
different? Yet, much of the software in existence has not carried through providing this useful artefact of the rest of the 

engineering world.

Some consider software as a quite different aspect of creative development and so it has, for many, become a black art 

for devotees of a specific programming language to get to understand the hieroglyphics that they use. Yet software is 
being used in a wider range of products, some of which are becoming even more mission, security or safety critical, and

sometimes, all three aspects simultaneously.

There have been some attempts at Component Oriented Development[3] with artefacts like .NET, and CORBA. Huge 

system modelling tools, built mainly for the software industry, have grown up that will churn out code from the model, 
all without the real feel of whether the model was correct or whether the translation of that model to code was correct. 

In such circumstances it becomes very difficult to be certain about any assessment of the final products fitness for 
purpose and absence of hidden faults.

In this paper we will take a look at what is required for Component Oriented Development that can be proven to be 
fully trustworthy to perform as its data-sheet implies.

 1 What is a component?
[4]

Across all engineering disciplines, the author 
considers that the following features should be 
common to all components. In fact Components

● have a unique reference identifier

● have Surfaces by which other 

components are interfaced.

● have been specified for operation within 

given environmental constraints

● have data-sheets that describe all 

functionality, features, performance and 
limitations of guaranteed performance.

● can be used and re-used many times 

over.

● can be inspected, tested and certified 

individually without impact on other 
components.

● conform to standards relevant to its 

functionality and performance.

● can, once certified, be used without 

being re-certified for every new 
situation, provided the new situation 
does not exceed the expectations of its 
published data-sheet.

However, using a certified component will not 
imply that the whole system is certified just by 
using it. To certify a whole system, the whole 
system needs to be constructed from known 
certified components throughout, have an audit 
trail that has logged all component certification, 
and itself be tested against its own statement of 
requirements.

For software components, there is a need for a 
development environment that allows the easy 
inspection and testing for individual 
components, preferably without having to write 
special test stubs to implement the testing. 
Where test stubs have to be created to perform 

68



the test these should be logged with the 
component for subsequent confirmation testing 
and should receive as much attention to their 
correctness as the component itself.

 2 Component 
Specification

Specifications of components grow out of the 
specification of the system to which they will 
ultimately belong. Such specification will 
mention aspects like the operational 
environment, lifetime expectations, MTBF 
(Mean Time Between Failures), Maximum and 
Minimum expectations of operation, Nominal 
Operating Regions and perhaps some notes on 
intended methods of use. Specifications, 
whether for the entire system or just a single 
component, should always adhere to the precept
that they are Clear, Complete, Concise, 
Coherent, Correct and Confirm-able. Any lesser 
adherence to the principal 6 Cs[5] of 
specification will detract from the ability to 
fully assess the quality and robustness of the 
eventual product.

 3 Component 
Management

Having created a component, all the artefacts, 
such as designs, data-sheets, inspection, test 
reports and other ancillary information relevant 
to the components use (like application notes) 
should be stored in a secure archive for which 
there is strong version control and strict change 
management procedures in place. This ensures 
the longevity of information about the 
component and its inspection and testing.

Regular auditing of the archive ensures that 
versioning and change management processes 
are being carried out properly and that the 
security of the information remains unsullied. 
The version control and change management 
becomes a very important aspect to 

development processes where the expected 
outcome of a development is a safe, secure, 
mission critical product. 

 4 Component Inspection, 
Testing and Certification

The Requirements of High Integrity Systems, 
especially in the Safety Critical[1] world, are:-

Arg1 - the system has been specified to 
be safe - for a given set of Safety 
Criteria, in the stated operational 
environment

Arg2 - the resulting system design 
satisfies the agreed specification

Arg3 - the implementation satisfies the 
system design

In examination in accordance with these three 
arguments, those who inspect the component 
(and system) will need to see robust evidence 
that the material presented is valid. Such 
demonstration is given by provision of:-

Direct evidence - which provides actual 
measures of the attribute of the product (i.e. any 
artefact that represents the system), and is the 
most direct and tangible way of showing that a 
particular assurance objective has been 
achieved.

Backing evidence –which relates to the quality 
of the process by which those measures of the 
product attributes were obtained, and provides 
information about the quality of the direct 
evidence, particularly the amount of confidence 
that can be placed in it.

The references to inspection and testing, above, 
have specific connotations in the light of 
components. For the mechanical world, there 
will be certificates on the material being used to 
assure that it is of the appropriate quality for the
intended purpose. Physical viewing of the 
component to confirm its identity as the right 
component for the task, and measurements of 
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the final component to ensure that it conforms 
to its design data (as in the case of the nut, 
checking all the components dimensions to 
ensure a match to the drawings). There may 
even be a destructive stress test conducted on a 
small sample of the component to ensure the 
design criteria has been met.

For software, whilst we will still need an 
inspection and testing method to ensure that the 
design criteria is met, the methods are slightly 
different. Below, we will cover the three aspects
of inspection and testing, namely the Fagan 
Style Inspection, Functional Testing and Limits 
Testing.

 4.1 Inspection of Software
The author recommends the Fagan Style 
Inspection[2] as the best technique to perform a 
rigorously intense examination of the software 
itself. Getting to the point of inspecting a 
component for certification will have already 
initiated a series of inspections and reviews to 
ensure that the specifications on which the 
specification of this component relies are sound 
in principle and capable of compliance. Aspects 
that need to be observed during this inspection 
are:-

● Each component shall have a full 

statement of specification in which the 
functionality, performance 
characteristics, methods and limitations 
of the software component are fully 
described (references to specific clauses 
in standards or other document relied 
upon for the component are permitted 
but have to be made available to the 
inspection team).

● Any components on which this 

component relies already has 
certification in place as evidenced by the
availability of that components 
certificate of conformity.

● All logical pathways through the code 

are checked individually to ensure that 
there are ways in which all pathways can
be executed, and that the logic used is 
sound. Preferences are for simple 
decision structures or non decisions at 
all.

● The logical pathways in the code 

implement precisely the logic demand 
by its specification. Disparities should 
be recorded in the inspection and test 
report and regarded as a failure.

● The component has exactly one entry 

and one exit point.

● The Cyclomatic complexity is as low as 

is reasonably practical to the intended 
task described in the specification.

As you will detect, a lot of reliance is placed on 
having the specification and code closely allied 
during the inspection process. Fagan Inspections
are, essentially, a style of static analysis but 
conducted with close attention to the details of 
implemented intent.

 4.2 Functional Testing
[6]

Functional testing, for certification, has to 
operate the component in its normal mode 
function but ensure that all logical pathways are 
fully exercised. The requirement is 100% 
logical pathway coverage. Running a functional 
test with a copy of the source code to hand and a
marker to indicate when the pathway is taken 
and under what conditions. The function 
performed should precisely match the 
description in the component specification. Any 
deviation from the functional specification is 
seen as a failure of the functional test and 
should be noted in the test report.

 4.3 Limits Testing
[6]

Much of software may operate without 
encroaching any limitations whatsoever. 
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However theoretical the limitless possibilities 
might be, all implementations of a software 
component will exhibit limits with respect to the
cell-width of the machine on which it will 
operate. So long as such limitations are 
understood by the user of the component there 
is usually no real concern.

However, some software components 
implementing specific algorithms, will exhibit a 
limitation of their accuracy or performance 
outside certain bounds. Hence, the specification 
should make it clear where such limits 
theoretically lie in order that testing against such
limits can be undertaken to ensure the 
component continues remains to remain stable 
despite exceeding such limits (ie: takes the 
appropriate actions when limits are exceeded). 
An example of such a limitation is the divide by
zero error in routines that use division. For such 
errors, an appropriate means of managing the 
error needs to be put in place and tested to 
ensure that in all cases where the limitation is 
achieved, the proper course of action is always 
taken.

Implementing such testing often requires quite 
wild imaginations to accomplish but the 
intention is to actively try and destroy the 
software component, much like you would 
destroy the test sample of a mechanical 
component.

 5 Summary
This paper has been but a brief run-through of 
the Component Oriented approach to software 
development. We have briefly mentioned the 
need for all components to have a data-sheet in 
which its functionality, interfaces, performance 
and limitations are fully described. Additionally,
we have covered a brief overview of the 
necessary inspection and testing regimes by 
which component certification can be 
accomplished. Treating the development of 

software components similarly to the 
development of any hardware component, with 
a specification, inspection, and testing regime 
that is fully explorative of the component 
properties, will improve overall quality of the 
delivered system. Finally, that attention to detail
is beneficial to the outcome and re-usability of 
the components developed by this means.

That the above implies an increase in 
documentation should not be seen as any reason
to reject such an approach, as this increase in 
documentation is substantiated by the ease with 
which certification of components can be 
achieved. 

This usually leads to an eventual saving of 
development costs for those developing the 
higher integrity systems which will ensure our 
continued safety and security.
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Minimal Forth

Peter Knaggs Paul E. Bennett

September 27, 2015

Now that the Forth 2012 document has been pub-
lished, it is time to review the direction on the
standards effort. Both the ’94 standard and the
’12 document are directed at the professional
Forth programmer. Providing a set of expecta-
tions that allows both the programmer and the
program to be portable between different standard
systems.

We argue that it is time to consider the niche mar-
ket where Forth is generally used, that is em-
bedded control systems. Such systems are of-
ten small will little memory and no or limited
user Input/Output. The Core word set includes
many words that are not relevant to such systems
(around 100 words). Such embedded control sys-
tems require a small number of words.

However, even a minimal Forth system would
tend to provide a full implementation of both the
Core and Core-Ext word sets.

The current standard has separated into several
sections within the same document, some of the
words that one would expect in a minimal system
are spread across several different word-sets. To
this end, we would like to start a discussion over
what would be the minimal word-set we would
expect of any Forth. The aims of this discussion
is two-fold:

First, from a professional standpoint for those de-
veloping critical controls, having a small system
footprint that can be fully verified and validated is
beneficial. The workload in knowing you have a
good basis from which to springboard the applica-
tion is reasonably simple as it will not take a long
time to perform certification confirmation efforts.
You can only certify from a know surface (sur-
faces are the interface between lower level and

upper level words).

Second, from an educational standpoint, a Forth
with 400+ words is rather daunting for a those
wanting to learn a new language. Even know-
ing that they do not have to do so all at once
still leaves many confused. Therefore, a less clut-
tered dictionary at the start will help the begin-
ners learning process. This will be especially the
case for someone who has never programmed be-
fore. Table 1 is a comparison of items to lean for
different languages. It shows Forth as being well
out it front with around 100 more items to lean
than other languages, and that assumes the stu-
dent only looks at the core word set.

Both of these aims could be met with a mini-
mal Forth word set provided there is a reasonable
number of useful words to aid in application cre-
ation and debugging. The only question then be-
comes what words and how many?

Frank Sergeant proposed a Forth with just 3 words
(XC@, XC!, and XCALL). However, that is only
useful in umbilical development and probably
only by those who are already well experienced
with creating such systems. Table 1 shows us
that keeping a minimal word set to around 70–
80 words would be acceptable from an educa-
tional standpoint. Staying away from desk-top
aspects, and just sticking to controllers, it is ex-
pected around 50 would be reasonable for use on
smaller controllers and provide a capable enough
basis to grow control applications. At this end
of consideration we are dealing with controllers
the likes of the MSP430 and low end ARM sys-
tems used for embedded control applications and
robotics. Such systems do not tend to have disk or
graphics screens but will usually have a low-tech

1
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Langauge Words keywords operators functions
Forth ’79 129
Forth ’83 131
Forth ’12 182 133 49 450

(core) (core-ext) (overall)
Minimal Forth 69
C 96 32 39 25
Java 85 50 39 —
C# 116 77 39 —
Ada 85 73 12 —

Table 1: Number of “words” in different languages

terminal communications capability and enough
resource to run a minimal Forth system.

Proposal

We propose the standard be reduced to a basic de-
scription of the abstract machine that represents
the language, complete with a limited minimal
word set. The composition of this word set is a
topic of debate, and appendix A gives a list of 69
words that we propose as a starting point for that
debate.

Such a language description would allow people
to grasp the language without being daunted by
the size of the language. It would also allow for a
possible formal description of the language, lead-
ing to certified compilers, and thus confidence in
the program code.

In the description of the abstract machine it may
be useful to allow for a number of more advanced
topics. However, it would not be necessary to in-
clude words to access these functions in the min-
imal word set. Such topics could include:

• exception handling

• interpretation

• Multitasking/threading

The words necessary to access these features can
be given in a number of supplements to the base
description. These supplements may extend the

abstract machine, or simply provide additional
word sets.

A number of proposed supplements include, but
are by no means limited to, the following:

• IEEE Floating Point

• String

• Double numbers

• Local variables

• Heap / User memory

• File access

• Networking / Sockets

• Internationalisation

• Multitasking (cooperate)

• Multitasking (pre-emptive)

• Security (cryptography)

• Exceptions

2
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A Proposed minimal word set

1 Memory Access
6.1.0010 ! store
6.1.0150 , comma
6.1.0650 @ fetch
6.1.0705 ALIGN
6.1.0706 ALIGNED
6.1.0880 CELL+ cell-plus
6.1.0890 CELLS

6.1.0850 C! c-store
6.1.0860 C, c-comma
6.1.0870 C@ c-fetch

CALIGN c-allign
CALIGNED c-alligned

6.1.0897 CHAR+ char-plus
6.1.0898 CHARS chars

2 Arithmetic
6.1.0120 + plus
6.1.0090 * star
6.1.0320 2* two-star
6.1.0110 */MOD star-slash-mod

6.1.0160 - minus
6.1.0230 / slash
6.1.0330 2/ two-slash
6.1.1890 MOD

3 Logic
6.1.0270 0= zero-equals
6.1.0480 < less-than
6.1.0720 AND
6.1.1720 INVERT
6.2.2298 TRUE
6.1.1805 LSHIFT l-shift

6.1.0530 = equals
6.1.0540 > greater-than
6.1.1980 OR
6.1.2490 XOR x-or
6.2.1485 FALSE
6.1.2162 RSHIFT r-shift

4 Stack
6.1.1290 DUP dupe
6.1.2260 SWAP
6.1.0580 >R to-r
6.1.2070 R@ r-fetch

6.1.1260 DROP
6.1.1990 OVER
6.1.2060 R> r-from
6.1.2160 ROT rote

5 Flow Control
6.1.1700 IF
6.1.2270 THEN
6.1.2430 WHILE
6.1.2140 REPEAT
6.1.1240 DO
6.1.1680 I
6.1.0070 ’ tick

6.1.1310 ELSE
6.1.0760 BEGIN
6.2.0700 AGAIN
6.1.2390 UNTIL
6.1.1800 LOOP
6.1.1730 J
6.1.1370 EXECUTE

6 Definitions
6.1.0450 : colon
6.1.0950 CONSTANT
6.1.1000 CREATE

6.1.0460 ; semicolon
6.1.2410 VARIABLE
6.1.1250 DOES> does

7 Device
6.1.1750 KEY
6.1.1320 EMIT

10.6.1.1755 KEY? key-question
6.1.0990 CR c-r

8 Tools
6.1.0080 ( paren
15.6.1.0220 .S dot-s

6.2.2535 \ backslash

3
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12 June 2015 HIDECS Consultancy

Forth in Education – A Report
By Paul E. Bennett IEng MIET

12 June 2015 HIDECS Consultancy

The last year

● Signed up as a STEM Ambassador
● Production of the design of a small board for easy assembly by 

young people. This was based around the MSP430 & Vfx-Forth-
Lite.

● Attending the Peak2015 Scout and Guide Camp for the IET 
“Time of Your Light” activity.

● Preparation for a follow-on meeting with the IET Education Team 
to explain further development proposals.

● Beginning of the development of a simpler means of teaching 
Forth to young people (even without the aid of a computer).

● Considering potentially work with the BBC-Micro:Bit.

12 June 2015 HIDECS Consultancy

STEM Ambassadors

● Approved to work directly with young and vulnerable 
people (Police checks are performed on the applicant).

● Provide career and opportunity advice to young people
● Engender Enthusiasm for learning STEM subjects 

through relating real-world experiences of Engineers, 
Technicians, Scientists and Mathematicians.

● Voluntary Time and Effort contribution needed but some 
expenses may get paid (travel etc if claimed)

12 June 2015 HIDECS Consultancy

Peak 2015 – IET Time of Your Light

● It was the Year of Time so the activity had to do something with 
time in a visibly demonstrable way. 

● We aimed to get more Forth based systems out in the wild
● A Kit of parts, donated by approximately 26 organisations found 

us with plenty of components and PCB's for the activity.
● 457 Scouts and Guides built their own micro-controller board 

complete with a battery supply that they could take home with 
them (Juergen calls this a microbox).

● The board was programmed with Vfx-Forth Lite and is 
accessible by a simple terminal programme (most would 
probably use a USB to serial converter cable like the FTDI one).

12 June 2015 HIDECS Consultancy

Peak 2015 – IET Time of Your Light

● IET TV were present at the event and the three 
most involved in the event organisation (Stephen 
Powley, Juergen Pintaske and myself) were 
interviewed. Forth got prominent mentions during 
the interviews.

● The head of the IET Education group found our 
intention to expand out on the activity of interest 
and a meeting is being held this month between the 
IET and the above three persons to establish 
further promotion prospects and support.

12 June 2015 HIDECS Consultancy

Teaching Forth to the Young

● It does not need a computer to explain the principles. 
Just a few simple props.

● The young people can be in primary education but 
will need, at least, to read with cognition (so mostly 
7+ or some very advanced 5+).

● Role play is seen as key to embedding the principles.
● Fun projects are needed to cultivate enthusiasm.
● We need to rebuild the maker generation.

12 June 2015 HIDECS Consultancy

The BBC Micro:Bit

● Languages the consortium considered were:-
– Logo, Scratch & Python

Sadly Forth was not amongst those considered but that is our poor 
marketing as a community.

Micro:Bit method of programming is a long chain 
of events (see next slide)

The Micro:Bit distribution is currently delayed due 
to technical issues.

12 June 2015 HIDECS Consultancy

BBC Micro:Bit

● Programming Micro:Bit is via a web-based application 
that runs a simulator of the board.

● When the programmer is ready to commit, the program 
is uploaded (via a Micro-soft server) for it to be compiled 
(hence all programmers need a log-in)

● The uploaded programme, once compiled is provided 
back to the programmer via a flash utility to send the 
code to the Micro:Bit.

It could probably do with taking a Forth on-board to enable 
a more direct and simpler means of programming.
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12 June 2015 HIDECS Consultancy

Conclusion

● Getting Forth in the minds of the younger 
generation will take some time and effort

● Becoming a STEM Ambassador and forming 
closer associations with schools and colleges 
will help get the message across here.

● It needs exciting project suggestions to raise 
enthusiasm of the young.
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Recognizers

Why and How

M. Anton Ertl

TU Wien

How to deal with literals

Recognizers

123

$ff

’a’

1.2e3

Parsing Words

s" abc"

H# ff

[char] a

• No way to define new recognizers

• No good way to define parsing words

non-default non-immediate compilation semantics

State-smartness and the like

Not just an implementation problem

• ⇒ user-defined recognizers

1

Ideal

• Recognized literal acts like a normal word

• : 123 123 ;

• Interpret

Compile

Postpone? ]] a 123 b [[ vs. ]] a [[ 123 ]] literal b [[

’?

find

find-name name>string ?

2

How to specify and implement recognizers

• Specify interpret, compile, and postpone actions

Advantage: Optimization possible

Disadvantage: Bugs can hide, especially for postpone

• Specify parse-time, run-time, and data-shifting actions

interpret: parse-time run-time

compile: parse-time shift ]] run-time [[

postpone: parse-time shift ]] shift ]] run-time [[ [[

• Define a temporary word

Advantages: Allows ticking etc.

Conceptual simplicity

Disadvantage: Optimization?

3

Temporary words

• Separate dictionary pointer (like ELF section)

• Should be inlined if compiled. But how?

• Becomes permanent if postponed or ticked

• Other permanent uses need explicit permanence

• Recognized string as name?

Decompiler

name>string

4

Coding example

: usingle ( c-addr u -- f )

0. 2over >number 0= if

drop 2drop 2drop false exit then

drop drop rot rot [’] constant execute-parsing

true ;

5

Inline when compiled

• Require using an intelligent compile,

Quite elegant

But set-opt is unlikely to be standardized

• Or specify parse-time and compile-time action

For compilation, perform these actions

In other cases, build the word

6

Performance with many recognizers

• Linear search through recognizer stack?

• Or fast pre-selection

• Pre-selection may accept invalid strings

but must not reject valid strings

• prefix pre-selectors ⇒ trie

• regexp pre-selectors ⇒ NFA/DFA
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Conclusion

• User-defined words are great!

Let´s also allow user-defined recognizers

• New implementation approach:

Define temporary words

How to inline?

• Pre-Selectors for performance

8
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Radeus 8200 Series 

Antenna Controller

Earth Station 11m Antenna

Ancient History

 Vertex (now General Dynamics) Model 7200

 Developed in the early 1990s

 Simple keypad/display UI

January 2015

January 2015

Antenna Axes

Inputs

 Azimuth Position Transducer

 Elevation Position Transducer

 Resolver (0.01°), Optical encoder (0.001°)

 Polzarization Transducer

 Resolver or optical (0.1°)

 Limit Switches (Both ends of each axis)

 Beacon receiver (power level in dBm)

Azimuth Position Transducer
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Elevation Position Transducer

Azimuth Limit Switch

Outputs

 Azimuth Motor Controls

 On/off, Speed (slew/track), Direction (CCW/CW)

 Elevation Motor Controls

 On/off, Speed (slew/track), Direction (Down/Up)

 Polarizatrion Motor Controls

 On/off, Direction (CCW/CW)

 Alarm (actually “no alarm”)

Motor Controllers

Three Computers

 Transducer Interface (Encoders/Resolvers)

 Cortex-M4, SwiftX-ARM

 Controller (positioner, fault detection)

 Cortex-M4, SwiftX-ARM

 UI (touch-panel PC)

 10.2” Panel PC, Windows 7 Embedded, 

 SwiftForth, SWOOP

User Interface

Touch-Panel PC

Rear Panel (Inside Chassis)
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Standby

Select Target

Acquire Target

Inclined Orbit

Log Data

Test Site

81


	Preface
	Contents
	Ulrich Hoffmann and Andrew Read: Hardware multitasking within a softcore CPU
	Salvatore Gaglio, Giuseppe Lo Re, Gloria Martorella and Daniele Peri: Use of Forth to Enable Distributed Processing on Wireless Sensor Networks
	Sergey Baranov: A Forth-Simulator of Real-Time Multi-Task Applications
	M. Anton Ertl and Bernd Paysan: From exit to set-does> --- A Story of Gforth Re-Implementation
	Nick J. Nelson: A Forth Programmer Jumps Into The Python Pit
	Tobias Strauch: Using System Hyper Pipelining for a Multi-Threaded FORTH Compatible Stack Processor Mapped on an FPGA
	Klaus Schleisiek: microCore and floating point numbers
	Paul E. Bennet: Components for Certification
	Peter Knaggs and Paul E. Bennet: Minimal Forth
	Paul E. Bennet: Forth in Education --- A Report
	M. Anton Ertl: Recognizers --- Why and How
	Leon Wagner: Radeus 8200 Series Antenna Controller

