Simulating Recurrent Neural Networks in Forth
Sergey Baranov
St. Petersburg Institute for Informatics and Auadion of the Russian Academy
of Sciences (SPIIRAS), ITMO University
SNBaranov@gmail.com

Introduction. Recurrent neural networks (RNN) [1] regained diten of researchers as an
instrument for data recognition with a great variet strategies for transmitting information
(usually binary images, video, and audio framespragntheir network layers and ways of
information transformation and processing. Aft@eaain boom in instrument creation a number
of software tools appeared [2, 3] which helped aed®ers to study various aspects of RNN-
based solutions, Matlab [4] probably being amongtigovidespread ones. However, most of
these tools look like "dinosaurs” — they are hugel anflexible for running sophisticated
experiments with carefully carved parameters aatlfes.

An alternative approach based on the "small is tifeluparadigm [5] was successfully
used to overcome some of these hurdles, tools baselde Python language [6, 7] being quite
successful and thus encouraging to try other option

This paper describes a program, called the Asseeiattellectual Machine (AIM) [8], for
simulating the behavior of a multi-layer RNN underparticular scenario of input signals
incoming and the given structure of their furtheygagation among RNN layers. An input signal
considered as a binary image is converted into @ixmaf pulses that propagate through the
RNN and may produce a series of output signaleersame form. AIM is a prototyping tool for
studying the associative memory mechanism modéiedigh such an RNN and establishing its
characteristics (e.g., the precision of recognibbpresented binary images) in comparison with
conventional memory under various space-time sirast for pulse propagation [9]. The
ultimate goal of this preliminary research is tsida an AIM as an analog associative memory
device of the RNN architecture on highly parall@mristors [10] as its base elements.

In the classical McCalloch-Pitts discrete neurdimoek model withN neuronsy; (i=1..N)
(often referred to as the perceptron model) NH®@nary inputsy(t) of each neurom; received at
the time moment are converted into its single binary outgift+1) at the next time mometil
according to the formula:

Yi(t+1) =max0,signungXj=1. n (Wi x Xi(t) + Wig))).

Here w; are the weights of the input synaptic links to treronv; andwi is the so called
threshold value for this neuron.

In a more general Hebb model, the weights of syadipks are updated at each step of the
network functioning, thus performirtgaining of the network:

Wi (t+1) =wi(t) +n x yi(t) x yi(0).
Heren is the so called "training factor" usually selecteom the interval [0.7..0.9]. A number of
different training strategies were proposed; howethrey all comply with the known Widrow-

Hoff rule:
Wi(t+1) =wi(t) + Awy(t+1), Aw(t+1) =x(t) x (di(t+1) —yi(t+1)),

di(t+1) being the expected output value at the nex¢ tmoment+1. After a series of trainings
on the provided set d¥l inputs X={Xy,Xo,..Xu} (Where eachX; is a vector ofN binary values
Xi={x4j,%,...Xnj}) and expected output®={d;,dy,...du} the weights are not changed anymore
and the network continues its performance with thigsined weights of the synaptic links.

In an RNN of the classical Hopfield model the outp(t+1) also serves as an input to all
other neurons at the next time momerk.Thisfeedbackink extends the network capabilities

' This work was partially financially supported by @onment of the Russian Federation, Grant 074-U01.

for training and self-learning of the RNN. In tmwdel pulse propagation is relatively straight
forward (even for recurrent networks) and homogeasdor all constituting neurons.

Existing Forth implementations of neural networkise [11], [12], and [13], follow the
above mentioned classical models of one or morer lagtworks with discrete timing cycles of 1
unit. In contrast to these, AIM uses various timaiedays in pulse (or excitation) propagation and
elaborates further th@utesor pathsof such propagation among the network layers. idheon
layers are split into equal fields and a path ec#ped through enumerating them as they occur
in this path [14]. Neurons in two adjacent fields a pulse propagation path are called
neighboring or twin neurons if they are locatedhie same places in these adjacent fields. While
in general case each RNN neuron is linked to akkioheurons located in the adjacent layers and
thus may receive/send pulses from/to them, thehbeigng neurons have priority in pulse
propagation over other neuron pairs: the effeca plulse between them is much stronger than
that of a pulse between non-twin neurons.

The main distinguishing feature of the AIM is hdwve theuron output and the weight of the
respective synaptic link are recalculated whenlagpaomes through this link, this may change
the neuron potential which is its output and thégiveof the link, both considered as integers.
The new potentidl, (t+At) of a neurorv at the next time momentAt equals to the sum of all
its inputs, not exceeding sorg,ax

Uy(t+At) = Min(Umax, Max0,Uy(t) + Zneyeom (Un(t) — Un(1)) X Wyen))),

where {<n} is a set of all synaptic links connecting neurerendn, andw,..,, is the weight of
this link ve»n which is recalculated accordingly:

Wy (t+HAL) =Wy (t) +f(vm)

wheref is a function of these two neurons which tendseim very fast as the distance between
these neurons increases. It's noteworthy thatftinistion may be programmed with fixed point
arithmetic only (using tables for expressions k&) thus avoiding floating point arithmetic
with related issues and trade-offs. This approasiuraes that weights and potentials are treated
as integers multiplied by some scaling factor (6.@000 for precision of up to 4 digits).

This AIM program was developed in compliance whbk Forth 200x standard [15] on the
VEX Forth for Windows 1A32 [16] platform to be patile and run on any 32-bit Forth system
compliant with Forth 200x, including freeware ptaths like gForth [17]. Its core is an event-
driven engine. AIM allows the user to specify vasacases and combinations of “experiment
parameters”, to specify pulse propagation pathsng delays, etc., and to visualize the obtained
results of RNN behavior simulation as well as tkeeyyrocess of their development in order to
objectively estimate and compare them. Figrdsents a typical AIM consisting of a two-layer
RNN with one propagation path (its projection oe tipper layer is marked with a dotted line).

Fig. 1. A two-layer RNN of 5x6=30 fields with 6x724eurons each

The simulator size is around 2 KLOC in Forth andolrys a simple model of a multi-
layer RNN with a user-defined interface. It rel@sother advanced tools for further analysis and
visualization of simulation results. The AIM sourcede is planned to be uploaded to an
appropriate open-source repository and is curravéylable from the author on request.

To minimize the number of various code patternghi code this Forth implementation
intensively uses iterators, which perform the sgarameterized action on each of homogeneous
elements of a data structure composed by themrim & an array or a vector. They remind the
standard wordRAVERSE-WORDLIST in their effect but rely on user-defined data ctinees, other
than the implementation dependent list of worda Forth vocabulary.

Representing RNN in Forth. The AIM program represents its subject RNN witle@al data
structures and reuses an approach developed gaBiewith a discrete counter of system time
and a list of all simulated everdgentList attached to the time axis with respective timengis
Each neurorv of the network may be in one of two stategcitedor unexcited and is
characterized by the value of its current potertfial0 < U, < Unax Which changes with time. An
unexcited neuron becomes excited when its potenei@@hes some vallignin: 0 <Umin< Umax

Fol0,011Fo[0,1]|Fo[0,2]|Fo[0,3]{Fol0,4]|Fo[0,5] F1[0,0]|F;[0,1]|F;[0,2]|F1[0,3]|F1[0,4]| F1[0,5]

Fo[1,0]1Fol1,1]|Fol1,2]|Fo[1,3]|Fo[1,4]|Fo[1,5] F.[1,0]|F1[1,1]|F4[1,2]|F,[2,3]|F1[1,4]| F1[1,5]

Fol2,011Fol2,1]|Fo[2,2]|Fo[2,3]|Fo[2,4]|Fol2,5] F.[2,0]|F1[2,1]|F1[2,2]|F1[2,3]|F1[2,4]| F1[2,5]

Fol3,01|Fol3,1]|Fo[3,2]|Fol3,3]|Fol3,4]|Fol3,5] F1[3,01|F1[3,1]|F1[3,2]|F1[3,3]|F1[3,4]| F1[3,5]

Fol4,0]1Fol4,1]|Fo[4,2]|Fo[4,3]|Fo[4,4]|Fol4,5] F.[4,0]|F1[4,1]|F1[4,2]|F,[4,3]|F.[4,4]| F1[4,5]
Upper neuron layer #0 Lower neuron layer #1

Fig. 2. Representation of a two-layer RNN of 30dfieas two matrices of 5 x 6 elements

Neurons fornK layersof the same size, represented as a matri &fN fields, each field
being itself a matrix o x n neurons, where € K,M,N,m,n< 32. Thus, the total number of RNN
neurons equals to the prodicx M x N x m x n. This representation of a sample RNN in Fig. 1
is rendered irFig. 2. The above mentioned RNN parametdrdN, m, andn are represented by
Forth variables', n', m, andn: respectively:

VARIABLE m' 5 m' ! \ The number of rows in the field layer matrix
VARIABLE n' 6 n' ! \ The number of columns in the field layer matrix
VARIABLE m 6 m ! \ The number of rows in a neuron field matrix
VARIABLE n 7 n ! \ The number of columns in a neuron field matrix

Fields within a layer with the numbk(0 < | <K-1) are numbered as elements of the matrix
Fi[i,j], 0<i<M-1, 0<j<N-1, all numbering starting from zero as is commoRarth; neurons
inside each field, in their turn, are numbered lasnents of the matriNedi,j], 0 <i < m-1,

0 <) < n-1. Thus, the full address of a neuron consist itdms (5 bits each) packed in one cell
value: its layer number, 2 indices of the neur@fdfin this layer, and 2 indices of the neuron in
this field. Fields reside in their layer matrix mlents. Due to the above constraints on the index
values, the described neuron address may be packee integer of the cell size which requires
5 x 5 = 25 bits; that's why a 32-bit Forth platfasranticipated for this AIM implementation.

Neurons are represented with data structur@subnsize cells each, fields are just vectors
of neurons, and layers are vectors of fields. Upjaese words are standard Forth words, while
words with low shift characters are the user-defimerds of this implementation.

5 CELLS CONSTANT NeuronSize \ The size of the data structure for a neuron
BEGIN-STRUCTURE Neuron
CELL +FIELD Neuron.ID \ Unique ID of the neuron
CELL +FIELD Neuron.State \ Current status of the neuron: 1 excited, © unexcited
CELL +FIELD Neuron.Potential \ Current potential multiplied by scaling factor
CELL +FIELD Neuron.SynDn \ Address of a vector of references to the upward layer
CELL +FIELD Neuron.SynUp \ Address of a vector of references to the downward layer
END-STRUCTURE

Iterators simplify performing a particular actiopan each neuron in a field:

: IterNeuField (fieldaddr,cfa--) \ Iterator on all neurons of this field

{: Action :} \ Action to be executed for each neuron
(fieldaddr) DUP n @ m @ * NeuronSize * + (NeuFirstAddr,NeuLastAddr) SWAP
DO

I (NeuAddr) Action EXECUTE NeuronSize

+LOOP ;

E.g., in order to unexcite all neurons of a patéictdield (i.e., to assign zero to the neuron
status stored in the second cell of the neuromtsire) with the wordinexcite one may write:

: Unexcite (NeuAddr--) Neuron.State @! ; \ Unexcite this neuron

. (...,fieldaddr) ['] Unexcite IterNeuField (...) ...

The address of the given field is placed on theksfaior to this code and the iterator
enumerates all neurons of this field executinguiecite word for each such neuron. Iterator
on each field within a layer is defined in a similgay with the only difference that the field size
Is represented as a variable rather than a consemaiuse it depends on the actual number of
neurons in a field.

VARIABLE FieldSize m @ n @ * NeuronSize * CELL 2* + FieldSize !

: IterFieldLayer (l#,cfa--) \ Iterator on all fields of this layer
{: Action :} \ Action to be executed for each field
CELL * Layers + @ CELL+ CELL+ (fieldooaddr)
DUP (fielde@®addr,fielde@addr)
m'" @n' @ * FieldSize @ * + SWAP
DO
I (FieldJIaddr) Action EXECUTE FieldSize @
+LOOP ;

As the field structure starts with two auxiliaryllsethat's whyceLL+ CELL+ is needed to
obtain the address of the first fighg0,0] in this vector. E.g., one may print out therent status
of the RNN under simulation with the worehn defined as follows:

: .RNN (--) \ Print-out the RNN status
#Layers @ ©
DO
CR ." Layer " I .
I (1#) ['] .Field IterFieldLayer

LOOP ;

Here#Layers is a variable which stores the number of layerthhénRNN and.Field is a
word which prints out a field which address is pded to it on the stack.

Data flow (in form of pulse or excitation propageis) in an RNN occurs between its
layers, as each neuron in a layer is connectedl tiheer neurons in adjacent layers via special
channels called synapses. Thus, the total numbsyrapses: — 1) x M x N x m x n)? is
rather large.However, it may be reduced with the notion syinapse lengtldefined as the
distance between its two neurons considered asspioim 3D space. A two-way synapsen is
established between neuronandn from adjacent layers (considered as points in &3&xe), if
and only if the distance,fdbetween them (i.e., the length of the synapse)) does not exceed
some predefined constabfax This distance is calculated as:

A =D %D X (=l + e [X0 (=yl + ey [xm)?),
where D,, and Dy, are scaling factors specified while configuring@ tAIM program and sub-
indicesF and F* refer to coordinates of the respective field asedement of a layer matrix.
However, for twin neurons the distance is equé@tand thus is the shortest possible. In order to
minimize run-time computations, all these distararesstored as their squared values.

Each synapse is rendered with a 4 cell data steictuhich stores references to its both
neurons in two adjacent layers (the upward and e@&th ones), the synapse length and weight.
The last serves as the RNN memory and may chantieeiprocess of RNN functioning if the
respective flagrraining is turnedTtrue (such updates of synapse weights realize the $edcal
"unsupervised training" of the RNN). Positive wdigheans storing data and negative weight
means erasing (forgetting) it. Further researateeded to better control this "forgetting” feature
of the AIM [19]. Each neuron refers to 2 sets afisgyses connecting it to other neurons in the
upward and downward adjacent layers (the upmost Riy&F has no upward neighbor, as well
as the RNN bottom layer has no downward one), impleged as vectors of references to
respective synapse structures.

4 CELLS CONSTANT SynapseSize \ The size of the data structure for a synapse
BEGIN-STRUCTURE Synapse
CELL +FIELD Synapse.Weight \ The current weight multiplied by scaling factor
CELL +FIELD Synapse.Length \ Synapse length squared
CELL +FIELD Synapse.NeuUp \ Reference to one neuron of the two
CELL +FIELD Synapse.NeuDn \ Reference to the other neuron
END-STRUCTURE

Each vector starts with a cell containing the nundféts elements. A respective iterator is
used to perform a particular action on each elemedatred to by such vector:

: IterRefVect (VectRefAddr/NULL,cfa--) \ Iterator on all elements referred to

{: Action :} \ Action to be executed for each vector element
(VectRefAddr/NULL) ?DUP \ Check for the NULL parameter
IF (VectRefAddr)

DUP @ CELL * (VectRefAddr,VectLen) OVER + SWAP

?DO \ The vector may have zero elements

I CELL+ @ (RefAddr) Action EXECUTE CELL

+LOOP

THEN ;

As was mentioned before, thus defined iterators sam@lar to the Forth 200x word
TRAVERSE-WORDLIST in its semantics, but rely on different user-dedirdata structures in the AIM.

To reduce the number of colon definitions used anige in the respective iterator, one
may use mechanism similar to quotations [20] omtbed : NonaME Of the Forth 200x standard.

With iterators, basic operations on neurons lookegatraight-forward and transparent
demonstrating the flexibility and power of ForthgE passing excitation from an excited neuron
to all unexcited neurons connected to it via syaapgoks as:

: PassNeuExcit (neu-addr--) \ Excite the neuron if its potential is high
\ and recalculate potentials of all neurons connected to it by synapses
DUP Neuron.State 2@ (neu-addr,potential,state) ©= SWAP Umin @ >= AND
IF (NeuAddr) \ The neuron is unexcited and its potential is high
DUP Neuron.State 1+! \ Excite this neuron!
DUP Neuron.SynDn @ ['] PulseDn IterRefVect
DUP Neuron.SynUp @ ['] PulseUp IterRefVect
(neu-addr)
THEN (neu-addr)
Neuron.State @ IF #ExcitedNeurons 1+! THEN ;

Words PulseDn and PulseUp propagate excitation through the synapse, passddein as an
address on stack, downward or upward respectiuglpg a common subroutim@lsebn/Up :

: PulseDn (SynAddr--) \ Propagate pulse downward through the synapse
DUP Synapse.NeuUp 2@ (SynAddr,NeuDnAddr,NeuUpAddr) PulseDn/Up ;

: PulseUp (SynAddr--) \ Propagate pulse upward through the synapse
DUP Synapse.NeuUp 2@ (SynAddr,NeuDnAddr,NeuUpAddr) SWAP PulseDn/Up ;

An RNN pulse propagation path is specified throngh-recursive enumeration of RNN
fields, each two adjacent elements in this lisbbging to adjacent layers (in case of a two-layer

RNN this means alternating). The first elementtos$ st is its entry — it may accept signals
from the RNN environment in form of an input unjtamage (1Ul) which is a matrix aih x n
binary values; each bit being mapped to a neurdhdrentry field with the same matrix indices.
If this neuron is unexcited, then it accepts th&peetive binary signal which may result in a
change of the neuron potential. If the neuron pgaieaccumulated from all synapses incoming
to it reaches the valuédn, it becomes excited for a period of time equaddmeAteycie (during
that period the neuron accepts no other signald)atinexcited neurons of the input field pass
their excitation to other neurons and the proceserates.

A number of paths should be specified in a configan file to determine the routes for
excitation to propagate among the RNN layers. Thisstitutes a distinguishing feature of the
AIM. As An XML-like technique is used for that whicemploys a pair of wordsrath> and
</Path> to frame a particular path, while words> and </F> frame coordinates of each
particular field in this path the respective ord@eld coordinates consist of three integers: the
layer number (O or more), the row numberND= 1) in and the column number (0~ 1) this
layer; e.g.:

0@ <Path> \ Specify a path number ©

<F> @ 0 0 </F> <F> 1 0 0 </F> <F> 0 0 1 </F> <F> 10 1 </F> <F> 9 0 2 </F> <F> 10 2 </F>
<F> @ 0 3 </F> <F> 1 0 3 </F> <F> 0 0 4 </F> <F> 10 4 </F> <F> 9 0 5 </F> <F> 10 5 </F>
<F> @ 1 5 </F> <F> 1 15 «</F><F>014«</F><F>114«</F><F>013«</F><F>113«/F>
<F> @0 2 </F> <F> 1 1 2</F><F>0 11«</F><F>111K«/F><F>0180</F><F>1180«</F>
<F> @ 2 0 </F> <F> 1 2 0 </F> <F> 0 2 1 </F> <F> 12 1 </F> <F> 0 2 2 </F> <F> 12 2</F>
<F> @ 2 3 </F> <F> 1 2 3 </F> <F> 0 2 4 </F> <F> 1 2 4 </F> <F> © 2 5 </F> <F> 1 2 5 </F>
<F> @ 3 5 </F> <F> 1 3 5 </F> <F> 0 3 4 </F> <F> 13 4 </F> <F> 0 3 3 </F> <F> 1 3 3 </F>
<F> @ 3 2 </F> <F> 1 3 2 </F> <F> 0 3 1 </F> <F> 13 1 </F> <F> 0 3 0 </F> <F> 1 3 0 </F>
<F> 0 4 0 </F> <F> 1 4 @ </F> <F> 0 4 1 </F> <F> 14 1</F><F> 0 4 2 </F><F>142</F>
<F> @0 4 3 </F> <F> 1 4 3 </F> <F> 0 4 4 </F> <F> 1 4 4 </F> <F> 0 4 5 </F> <F> 14 5 </F>
</Path>

This path alternatively enumerates all fields e ®NN inFig. 2, starting from the field
Fo[0,0] (the input field) and terminating with theslid F,[4,5] (the output field). When excitation
reaches the output field, the ultimate potentidist® neurons are converted in OUI (output
unitary images), similar to 1UI, and transmittedtih® RNN environment as the result of RNN
functioning. As mentioned before, adjacent fieldsipath are the closest: the distance between
their two neurons with the same coordinates is mahiirrespectively of the actual distance
between them in a 3D space. Thus, different patipsct the RNN behavior differently.

Similarly, a scenario of input signals is specifiedh the pair of wordsimages> and
</Images> which frame the scenario, while wordls and</I> frame each separate input matrix
within it. The word<I> is preceded by two integers: the moment of théesysime when this
image enters the RNN and the path number. Bingmyesentations of the rows of the given
image reside betweem- and</1> (leading zeros may be omitted). The number of flements
should be equal ton. E.g., the following scenario specifies that 1@ges:

00011007 11110007 1111111} 101111107 111000117 (00011007 1111111y 11111107 1100011y (0111110
0010110| [1100100{ [1001100| |1100011 1010111 0010110 1001100 1100011 1100011 1100011
|0100011||1111100||00011oo||1100011||1001011 0100011 0001100 1100011 1100011 1100000
l1111111 'l1100110 ’l0001100| 1100011 [[1001011|

1000011 1100011 10001100 (1100011 1000011
10000114 t11111104 t0OO11004 LtO1111104 L1000011

1000011| |0001100] [{1100000((1100011| |1100011
10000114 to001100- 11000004 £11000114 L0111110

enter the input field=o[0,0] of the path number O which starts in the uptrleft corner of the
layer Lo at the time moments 1, 72, 148, 232, 321, 414, 625, 745, and 868 in this order.

1111111| [0001100| [111111o| l1111111

[1100000|

<Images>

1 0 <I> 0001100 0010110 0100011 1111111 1000011 1000011 </I>
72 0 <I> 1111000 1100100 1111100 1100110 1100011 1111110 </I>
148 0 <I> 1111111 1001100 0001100 0001100 0001100 0001100 </I>
232 0 <I> 0111110 1100011 1100011 1100011 1100011 0111110 </I>
321 0 <I> 1100011 0010110 1001011 1001011 1000011 1000011 </I>
414 0 <I> 0001100 0010110 0100011 1111111 1000011 1000011 </I>

515 © <I> 1111111 1001100 0001100 0001100 0001100 0001100 </I>
625 0 <I> 1111110 1100011 1100011 1111110 1100000 1100000 </I>
745 0 <I> 1100011 1100011 1100011 1111111 1100011 1100011 </I>
868 0 <I> 0111110 1100011 1100000 1100000 1100011 0111110 </I>
</Images>

Running an experiment with the specified RNN partamseand scenario is initiated by the
commandsimulate.

Output Data. AIM produces three outputs: the log, an output filgh OUls, and an
auxiliary file with additional data used for debugg and further analysis of the AIM behavior.
However, other outputs may be easily added. Ake¢hautputs are plain texts and may be further
processed by other tools; e.g., MS Excel or otHérs. 3 visualizes how the number of excited
neurons changes with time. The diagram was bulxicel directly from the log data.

900

800

700 | L] I L

<o 1L I 1

coo L LI LI o AT

w0 LI |

<00 LTI TR T T |

oo LRI T T e

oo LT e
s T M miEEmEmnpnH PDoOPP

0
O AN O N AN AT ANNO N ANNNOTSTANCANASINO WO MmO O W mOo
N O o < O 0O AN ~NANNMWMOoO AN OO dMnN < O N A O NN N
A A A N ANANOOON T NN NN O O MNMNOGOOOKNOO D

Fig. 3. The number of excited neurons vs. time sample RNN

Specialized tools and libraries allow for dynammenaation of the RNN functioning. A
surface of a 3D manifold represents current paastf neurons and the neuron is state rendered
with the color — blue for unexcited and red foried ones. Fig. 4 presents such an image for a
frame #8 which corresponds to ttime=41 of the above mentioned example. The left-hand
chart represents the upper layer #0 and the rightttone represents the bottom layer #1.

I 10 I 10

5 =3

10y
0 o

= 30

Fig. 4. A snapshot of the RNN in progress at ai@agr moment

The respective mapping of the output data was wbtafrom data generated by the AIM
simulator in a plain text format with the NumPy kage [21] and the Matplotlib library [22] (by
the courtesy of my colleague Dr.Sergey Podkorytdtese packages allow to form a video file
from a series of such images in the mp4 formatels w

The Simulator. The AIM simulator reuses the RTMT architecture][&8th a different set of
events. Its overall workflow is presented in FHg.

Four types of events are considered in this mddg2): Receive/Send an image from/to the
external environment; 3) propagate excitement fexuited neurons of the given field to all
unexcited neurons connected with them through sempand excite these neurons if the
accumulated potential is high enough; and 4) unexati excited neurons of the given field.

As already mentioned above, the simulation progsssontrolled by a list of events
EventList ordered w.r.t. their time stamps: 1, t,, t3,... and assembled into same-time event
groups. The main simulation loop consists in adiwanthe system time counter to the nearest
time stamp of the events in this list and procegsire events of this group one after another,
which may produce new events with the same or tater stamp.

Start: Configure The AIM Simulator
EventList:

A 4
—>| Change parameters |

Same-time

Same-time Same-time
events events
@,
y ,. o

events

gap; gaps |

T 1 T T :
time=0 time=t; time=t, time=t;
Advance time Events:
Process events Receive: input an 1Ul to the entry field F
Send: output an OUI from the exit field F
Pass: propagate excitement from field F further

| Output results |4— Unexcite: all excited neurons of the field F
become unexcited

Fig. 5. The overall workflow of the AIM simulator

The main loop reiterates until the list of evereedimes exhausted or the overall time limit
for system time is reached, or a fatal error waentered.

Conclusions. The described simulator is a relatively simple potverful tool for studying
various RNN structures and various combinationspafse propagation paths and RNN
parameters under various circumstances. It allovesasily specify the respective user interfaces
and interoperate with other powerful tools for elated representing and visualization of
experimental results.

The described programming solution based on thetdist structure turned out to be both
effective and efficient, so it's worth for reuse ather applications or subject domains. The
described simple system log allows for relativelsye detecting violations and errors in the
simulation process and helps in debugging of thmiksitor and its input data.

The simulator demonstrated acceptable performanca cegular laptop with relatively
small RNNs of up to one million of synapses. Itsf@@nance can be even further improved with
the assembler option offered by most Forth systemmsch allows for direct programming of
performance critical words in assembler, thus enguthe most efficient realization of such
critical data structures and respective processiegns.

The application area of the AIM program is R&D akaciative memory mechanisms for
development of the respective hardware with impdoeharacteristics and reliability. Future
work will be focused on developing a variety oferfaces and typical solutions, as well as
accumulating and analyzing the results of expertsaith various RNN structures and data.

References.

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

Haykin, S.S., et al. Neural Networks and Learningckines, vol. 3., Upper Saddle River:
Pearson Education, (2009)

Brette, R., et al. Simulation of Networks of SpixiNeurons: a Review of Tools and
Strategies. Journal of Computational NeuroscieR8e3, pp. 349-398 (2007)

Zell, A., et al. SNNS (Stuttgart Neural Network Sillaitor). Neural Network Simulation
Environments, Springer US, pp. 165-18 (1994)

. Demuth, H., Beale, M. Neural Network Toolbox forddsith MATLAB, The MathWorks,

Natick, MA (1998)

. ElIman J.L. Learning and Development in Neural Neksothe Importance of Starting Small.

Cognition, 48, pp. 71-99, (1993)

. Goodman D., Brette R. Brian: a simulator for spgkireural networks in Python. Frontiers in

Neuroinformatic, vol. 2, article 5, webttp://www.frontiersin.org(2008)

. Davison A. et al. PyNN: a common interface for rm@a network simulators. Frontiers in

Neuroinformatic, vol. 2, art. 11, webttp://www.frontiersin.org2009)

. Osipov V.Yu. Associative Intellectual Machine withree Signaling Systems.

Informatsionno-upravliaiushchie sistemy (Informatend Control Systems), vol. 5, pp.12-17,
web: http://i-us.ru/en/article888in Russian) (2014)

. Osipov V.Yu. Space-Time Structures of RecurrentridieNetworks with Controlled

Synapses. Advances in Neural Networks — ISNN 281%pringer International Publishing,
2016, LNCS 9719, pp.177-184, wetitp://link.springer.com/chapter/10.1007/978-3-319-
40663-3 212016)

Jo, Sung Hyun, et al. Nanoscale Memristor Devicgyampse in Neuromorphic Systems.
Nano Letters 10.4 (2010): 1297-1301, wietip://web.eecs.umich.edu/~mazum/PAPERS-
MAZUM/92_ MemristorSynapse.p@2010)

Frenger P. A Forth-Based Hybrid Neuron for NeuratdNProc. of the Second and Third
Annual Workshops on Forth. — ACM, 1991. — pp.99;10&b:
http://dl.acm.org/citation.cfm?id=2600q2991)

Dress W.B. Alternative Knowledge Acquisition: Dewping A Pulse-Coded Neural Network.
— Journal of Forth Application and Research, 1988yme 5, number 3, pp.397-406, web:
http://soton.mpeforth.com/flag/jfar/vol5/no3/ara@l.pdf (1989)

Hendrix M. Forth: Neural Net Programs, wéklip://home.iae.nl/users/mhx/programs.htmi
(1993)

Baranov S.N. A Practical Simulator of Associatiagellectual Machine. Advances in Neural
Networks — ISNN 2016. — Springer International ksibhg, 2016, LNCS 9719, pp.185-195,
web: http://link.springer.com/chapter/10.1007/978-3-31#%H63-3 _272016)

Forth 200x, webhttp://www.forth200x.org/forth200x.htn{R016)

VFEX Forth for Windows. User manual. Manual revis#iiO, 19 August 2014. —
Southampton: MPE Ltd, 2014. — 429 p., wétbtp://www.mpeforth.com(2014)

gForth. Free Software Foundation, Inc., wélbtps://www.gnu.org/software/gfort(2016)
Baranov S.N. A Forth-Simulator of Real-Time Mul@3k Applications. 31th EuroForth
Conference, October 2-4, 2015, Pratts Hotel, Batigland, pp.33-40, web:
www.complang.tuwien.ac.at/anton/euroforth/ef15/pafpeoceedings.pdf2015)

Osipov V. Yu. Erase Outdated Information in Asstiealntelligent Systems. Mekhatronika,
avtomatizatsiya, upravleniye (Mechatronics, AutaorgtControl), vol. 3, pp.16-20, web:
http://novtex.ru/mech/mech2012/annot03.htifith Russian) (2012)

Request for Discussion: Quotations, wiethp://www.forth200x.org/quotations.t¥2016)
NumPy — Package for Scientific Computing with Pytheveb:http://www.numpy.org(2016)
Matplotib — Python 2D Plotting Library, wehttp://matplotlib.org{2016)

