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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 32nd EuroForth
finds us on Reichenau Island on Lake Constance for the first time. The two
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Bath, England (2015). Information on earlier conferences can be found at the
EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there were two submissions to the refereed track, and both were accepted (100%
acceptance rate). For more meaningful statistics, I include the numbers since
2006: 21 submissions, 14 accepts, 67% acceptance rate. Each paper was sent to
three program committee members for review, and they all produced reviews.
The reviews of all papers are anonymous to the authors. I thank the authors
for their papers and the reviewers and program committee for their service.

Several papers were submitted to the non-refereed track in time to be in-
cluded in the printed proceedings. Late papers will be included in the online
proceedings (http://www.euroforth.org/ef16/papers/).

Workshops and social events complement the program. This year’s Euro-
Forth is organized by Klaus Schleisiek

Anton Ertl
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A synchronous FORTH framework for hard real-time control

Ulrich Ho�mann (FH Wedel University of Applied Sciences), Andrew Read

June 2016

uh@fh-wedel.de, andrew81244@outlook.com

Abstract

Forth control programs are typically written in an event triggered style: events that take place in the
environment interrupt the main control program. The interrupt handler either handles the event completely
on its own (if that's simple enough or timing requires it) or it triggers a task from an underlying multitasking
system to take care of the event (in a non timing critical way). Most Forth multitasking systems are cooperative
thus o�ering high reliability and predictable timing behavior. The framework described here uses a synchronous
approach to meet hard real-time requirements. The approach borrows from di�erent sources, most notably from
synchronous hardware design, where signals are updated at a �xed cycle rate, and program logic is implemented
via �nite state machines. Despite the fact that applications built with this framework follow hard real time
constraints they may still retain interactivity through a FORTH interpreter. This is accomplished by means of
an optional high level threaded code interpreter which can be executed in a step-wise way and will only progress
as fast as necessary to still be within the real-time boundaries. The only requirement for this framework is a
single free-running counter/timer with a known clock period. All other functionality is expressed in standard
Forth and is thus portable to di�erent standard systems.

1 Introduction

The outline of this paper is as follows: we �rst brie�y review synchronous digital logic and �nite state machines.
Through this review we identify the essential concepts that we wish to abstract for our software framework. We then
consider related work, most notably time triggered architectures for embedded systems and �nite state machines
in FORTH. Our synchronous FORTH framework for hard real-time control is then presented in a top-down fashion
beginning with a conceptual overview and leading to implementation details. We go on to explain the general
requirements for the implementation of this framework on a FORTH system and describe our speci�c implementa-
tion on a Texas Instruments Tiva-C development board using Mecrisp Forth. We present test measurements that
we obtained on the Tiva-C board. Finally we discuss the potential advantages and limitations of our framework
and suggest possible applications.

2 Synchronous digital logic

2.1 Background

The essential characteristic of synchronous digital logic is a clock to which all signal transitions are synchronized.
By contrast, asynchronous signals update in their own time (�g. 1). Most commonly, signal transitions are
synchronized to the rising edge of the clock although in dual data rate (DDR) interfaces signal transitions occur
on both clock edges.

Synchronous digital logic is implemented in hardware using �ip-�ops, referred to from a logic design perspective as
registers. A typical D-type �ip-�op will have an input port, a clock port, an output port and a reset port (�g. 2).
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Figure 1: An example of asynchronous and synchronous signals. A and B update in their own time without
reference to CLK. C and D update synchronously with each other and with the rising edge of CLK.

Whilst all signal transitions are conceptually synchronous to the rising edge of a clock, in reality certain timing
constraints must be met if the physical devices are to operate correctly (�g. 3). Firstly the input signal must become
stable some minimum time before the rising edge transition of the clock. This is the set-up time constraint. The
input signal must also be held stable for some minimum time after the clock transition - the hold time constraint.
Lastly, the output signal will not transition until some time after the clock transition. This is the clock output
time constraint.

2.2 Multiple clock domains

A complex digital logic design is likely to have more than one clock domain (�g. 4), often because di�erent
peripheral interfaces must be clocked at di�erent rates. A single design may also have clocks that run at the same
frequency but at a �xed phase o�set, for example to register data arriving from external peripherals with a phase
delay.

2.3 Essential concepts for a software framework

The relative bene�ts of synchronous and asynchronous circuits continues to be debated, but in the present era
the most common central processing units (CPU's) and peripheral integrated circuits used in real-time control
applications are based on synchronous logic. A noteworthy exception is the asynchronous GreenArrays G144 Forth
processor [1].

We do not attempt to reevaluate the merits of the synchronous and asynchronous approaches in this paper but
summarize some simple notes as follows.

Metastability is a breakdown of the digital logic abstraction that allows signals (which are actually potential
di�erences with respect to electronic ground) to be considered as exclusively 'high' or 'low'. The synchronous
design approach deals with issues such as race-conditions and signal metastability by means of objective timing
requirements that are validated during the place and route stage of circuit implementation. These timing constraints
also impose a limitation on the overall circuit size. Asynchronous circuits may be arbitrarily large provided
appropriate mechanisms are in place for completion detection, but logic still needs to be synchronized at the circuit
borders in any application with deterministic timing requirements.

Digital logic circuits are expressed in hardware design languages (the most common being VHDL and Verilog) that
synthesis tools translate into the physical layout of an integrated circuit. The framework that we present in this
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Figure 2: A schematic of a D-type �ip-�op. The signal at input D is registered on the rising edge of CLK. The
registered signal subsequently appears on outputs Q and inverted Q and hold steady until the next rising edge of
CLK. Set (S) and reset (R) inputs are available to drive Q high and low respectively irrespective of D.

CLK

D

D

Q

tSetup

tHold

tClock_output

Figure 3: Timing characteristics of a D-type �ip-�op. The data signal must be stable tSetup before the leading edge
of the clock. The data signal must remain stable tHold after the leading edge of the clock. The output signal is
updates tClock_Output after the leading edge of the clock.
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CLK-A

CLK-2x
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CLK-B

Figure 4: An illustration of multiple clock domains. Clock-A is the reference clock. Clock-90 has the same period
as Clock-A but is retarded 90 degrees in phase. Clock-2x has twice the period of Clock-A but is in phase. Clock-B
has a period somewhere between Clock-A and Clock-2x and does not have a �xed phase relationship with either

paper is a software approach that provides similar functionality to a hardware design language such as VHDL: that
is the ability to read inputs, write outputs and update internal signals synchronously with one or more free-running
clocks.

In addition to synchronous signal update and multiple clock domains, our framework requires a suitable model for
the computation. The natural choice is the �nite state machine (FSM), arguably the most common computation
device in digital logic design and a familiar construct in software applications [2].

3 Finite state machines

Finite state machines need little or no introduction in this paper. Proponents of the FSM approach argue that
the FSM model provides a systematic approach for designing computations that lead to optimal or near-optimal
implementations [2]. Essentially a �nite state machine is a device that must always in one of a �nite number of
prede�ned states. Transitions between states occur according to the rules of a state transition diagram. The next
state is always a function of the current state and of the FSM inputs (which may include internal registers such
as counters). In the most simple �nite state machines outputs are a function of only the current state (Moore
Machines). Alternatively outputs may be a function of the current state and of the inputs (Mealy Machines).
Finally, in recursive �nite state machine designs outputs may also be a function of state transition and output
history since reset [2].

4 Review of related work

Many embedded systems are developed in an event triggered architecture style: whenever an external asynchronous
event occurs the embedded system is interrupted and a handler is invoked to take care of the event. Once the
handling is completed the embedded system continues its previous work. Depending on the number of di�erent
external events and their timing properties it might be quite di�cult to build reliable real time systems this way,
especially when events can occur simultaneously or while the handling of other events is underway.

An alternative approach for real time system design is time triggered architecture: handling of external events takes
place at regular intervals. Michael Pont [4] developed a time triggered architecture and implemented it for LPC-1769
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arm processors based on a single timer interrupt. In [13] Kopetz and Bauer give a comprehensive summary of their
research on time triggered architectures with an exhaustive bibliography on the topic. Event triggered and time
triggered architectures are also described in Peter Hintenaus book on embedded system engineering [5]. He also
discusses implementing real time systems with multiple clock domains and �nite state machine implementations in
soft- and hardware.

Our approach is also a time triggered architecture, but we avoid interrupts completely and synchronize multiple
clock domains by means of a free running counter. (If one is not directly provided in hardware, a timer interrupt
can be used for a straightforward implementation.)

Finite state machines are a contemporary way to model system behavior that is especially popular in hardware
design as �nite state machines are easy to de�ne and �t well to synchronous system architectures [2]. In their book
�Structure and Interpretation of Signals and System� [6]Lee and Varaiya describe the use of �nite state machines
for system design and implementation from a computational point of view. They discuss how to combine state
machines in order to model complex systems and de�ne so called linear time-invariant systems as special state
machines with bene�cial signal processing properties.

There have been numerous Forth implementations of �nite state machines, only few of them were published: Basile
[7] gives a short implementation in Forth-79, Rawson[8]- in polyForth. Nijhof [12] calls his implementation �Goto
in Forth�. Starling [11] discusses a state machine hard/software co-design and the processing of external events
with Forth. Carter [10] describes Forth implemented FSMs for robotics. The most elaborated discussion of state
machines in Forth has been done by Noble [9]. These approaches focus on Forth as sequential language and
make use of its extensibility to add new state machine de�ning structures that allow for easy de�nition. However,
real-time considerations are not either not taken into account or else they are not well-documented.

Embedding a slow pace Forth inner interpreter into real-time applications has been best practice for many years
with Microchip �eld engineers.

Our work reuses elements, including those cited above, that have been commonplace in embedded programming for
many years. What we present in this paper is a di�erent combination in a novel framework. We avoid interrupts,
we implement �nite state machines and multiple clock domains in software, we retain the interactivity of FORTH,
and bring everything together in a systematic framework with an elegant syntax borrowed from digital logic design.

5 FORTH framework

5.1 Overview

The Forth framework is illustrated in �gure 5. The framework comprises �ve entity types: CLOCKs (or clock
domains), SIGNALs, INs, and OUTs and FSMs (�nite state machines) together with an operational loop.

The �rst step in establishing an application is to de�ne one or more clock domains. If there is only a single clock
domain then the only parameter that needs to be speci�ed is the clock period. If more than one clock domain
is in use then phase o�set between each is also speci�ed. Signals are added to each clock domain. A signal is
e�ectively a value-type variable but with an important distinction. A signal can be updated at any time during a
clock cycle, but it will not assume its new value until the following clock cycle. All signals within a clock domain
are updated synchronously at each clock cycle. A signal may be updated directly by the application logic or,
alternatively, they it may be connected to an IN port. An IN port speci�es a memory address (which may be a
memory-mapped register) that provides the value with which to update the signal at each clock cycle. A signal
may also be connected to an OUT port. An OUT port provides a memory address to which the value of a signal
is written at each clock cycle. Finally, a single �nite state machine which reads and updates signals at each cycle
in accordance with the application requirements is associated with each clock domain.

As a high-level illustration, the following Forth listing gives an example of the establishment of a clock domain and
related entities. More complete explanations of the framework entities are given throughout the remainder of this
section. The discussion of usage and applications continues at a higher level in the next section.

FCPU \ FCPU is the CPU frequency

10000 \ desired clock domain frequency in Hz

/ \ number of CPU cycles in a clock domain period

5
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SIGNAL A

SIGNAL BIN B&1

SIGNAL C OUT C &2

SIGNAL DIN D OUT D&3 &4

Clock domains

Finite state machine (FSM)

Figure 5: Schematic overview of the FORTH framework. Entities are organized within CLOCK domains that have a
de�ned frequency and phase. Within each CLOCK domain the primary construct is a SIGNAL which is essentially
a variable with clock-synchronous update. IN's link memory-mapped addresses to signals with a synchronous read
relationship. OUT's link memory-mapped addresses to SIGNALs with a synchronous write relationship. There is
a single �nite state machine (FSM) within each clock domain that contains the FORTH code to inspect and update
all SIGNALS each clock cycle.

0 \ example phase offset

CLOCK 10kHz \ define a new clock domain labeled '10kHz '

10kHz 0 SIGNAL s0 \ add a signal named 's0' with a reset value of 0 to the clock domain

10kHz 0 SIGNAL s1 \ add another signal 's1'

10kHz $1000 IN s0 \ tie the input of signal s0 to memory address $1000

10kHz $2000 OUT s1 \ tie the output of signal s1 to memory address $2000

: our -code \ a simple (single -state) FSM

s0 not => s1 \ invert s0 and update s1 with the result each clock cycle

;

' our -code 10kHz FSM \ attach the FSM to this clock domain

5.2 Framework requirements

The framework is written entirely in ANSI Forth. The only requirement of the underlying hardware is a free-
running timer counter of known clock period accessible through Forth. The framework expects the following two
words to be available.

: CPU -time ( -- n) ;

\ return the value of the free -running timer counter

\ assumed to be unsigned and full -cell width (e.g. 32 bits in a 32-bit cell)

: init -CPU -time ( --) ;

\ the framework calls this word (which may be empty) at initialization
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List link

Current value

Next value
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List link
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SIGNAL link

List link

Address

SIGNAL link

SIGNALIN OUT

Figure 6: Structure of the SIGNAL, IN and OUT entities. Each entity type is organized within a linked list

5.3 SIGNAL, IN, and OUT entity structures

Figure 6 illustrates the structures of the signal, in and out entities. All of the entities are organized as linked lists
with the anchor node in the clock data structure (see section 5.5). The SIGNAL entity reserves space for three
values, each of cell size: the current value, the next value that will be assumed at the following clock cycle, and
a reset value that was established when the signal was de�ned. The IN and OUT entities each hold a memory
address and a link to the SIGNAL to which they are attached to.

5.4 Programmed and synchronous updates

Figure 7 illustrates the mechanisms by which a SIGNAL is used and updated. 'Programmed', refers to usage of
the signal within the �nite state machine. At any time when the signal is read the current value �eld is returned.
If the signal is written to within the �nite state machine, the next value �eld is updated. The framework itself
synchronously updates all SIGNALS once each clock domain cycle. This synchronous update copies the next-value
�eld to the current-value �eld. The application may also instruct a reset, in which case the reset-value �eld will be
copied to the current-value �eld

Figure 8 illustrates the update relationship between SIGNALs, INs and OUTs. The framework follows the following
sequence when a clock domain is triggered to perform a synchronous update. Firstly the INs are processed in turn.
The memory address speci�ed by each IN is read and the value is written to the next value �eld of its associated
signal. Next the SIGNALs are processed in turn. As described above, the next value �eld of each signal is copied
to its current value �eld. Finally the OUT's are processed. In each case the current value of the associated signal
is written to the memory address.

5.5 CLOCK entity structure

Figure 9 illustrates the structure of the CLOCK domain entity. An application may de�ne multiple clocks and they
are organized in a linked list. For each clock its phase and period are speci�ed. The period is the number of CPU
clock cycles (as returned by the free-running counter timer CPU-time) between each round of synchronous updates
of within the clock domain. The phase is also speci�ed in the number of CPU clock cycles. If an application
includes multiple clock domains then the phase parameters may be used to specify a phase relationship between
the clock domains. The clock entity also anchors the linked list of SIGNALs, INs, and OUTs that have been de�ned
for that clock domain. The execution token of the �nite state machine associated with the clock domain is held in
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Figure 7: Schematic of the programmed and synchronous update of SIGNAL's
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List link
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SIGNAL link

List link

Address

SIGNAL link

Synchronous
1 read address to next value
2 write current value to address

1 2

SIGNALIN OUT

Figure 8: Schematic of the synchronous updates of IN's and OUT's
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the XT �eld of the CLOCK domain entity. The due and �ags �elds are used by the framework during operation
(see the next section).

5.6 Timing framework

Figure 10 presents a �owchart of the timing framework that acts to coordinate the clock domains and their respective
elements. It comprises an outer loop (super-loop) and two routines (check-clocks and run-FSMs).

First we examine check-clocks. This routine proceeds once through the linked list of all clock domains. For each
clock domain the number of CPU cycles until that clock domain is due to update synchronously is computed. This
is done by reference to the due �eld and a call to CPU-time. If the CPU-cycles-until-due value is zero or negative
then the clock domain proceeds to a synchronous update in the manner described above. All of the INs, SIGNALs
and OUTs in that clock domain are updated in turn. The clock-domain's due-�eld is updated by an increment
equal to the 'period' and a �ag is set to indicate that the FSM of that clock domain is also now due for execution.
The FSM is not executed at this point. Regardless of whether a clock domain proceeds through a synchronous
update, the value of 'least-slack' is examined and potentially revised. For each clock domain, the 'slack' is the
number of CPU cycles until that domain is due for a synchronous update. The 'least-slack' is the number of CPU
cycles until the earliest of the clock domains is due to update. If the 'least-slack' is below the 'minimum-slack'
threshold, then FSM processing is skipped in favor of synchronous update.

Returning to super-loop, after check-clocks has been run the �nal value of 'least-slack' is compared with the
value of 'minimum-slack', which provides a threshold as described below. If the 'least-slack' exceeds the 'minimum-
slack' then execution proceeds to run-FSMs. If not then check-clocks is run again until 'least-slack' exceeds the
threshold. run-FSMs proceeds through each clock domain in turn. If the ready-to-execute �ag has been set by
check-clocks then the FSM is executed at this time by calling its XT and the ready-to-execute �ag is cleared.

Figure 11 presents two examples of the operation of the framework with a single clock domain. In both cases the
clock domain is due for synchronous updates at t0 and t1. Consider �rst case A. The period labeled CLK-A indicates
the time during which the entities of this clock domain are being updated (this occurs within check-clocks when
the due time is reached). During this period the updating of SIGNALS and OUTS leads to the update of OUT-A.
After CLK-A has been completed the read-to-execute �ag will have been set for this clock domain. When run-FSMs

is called the FSM of this clock domain is executed. For illustration purposes we present a simple device in which the
only action of FSM-A is to invert the SIGNAL driving OUT-A, so that OUT-A toggles between logical high and
low levels and produces a square wave of twice the period of the clock domain. In case B there is a problem. The
run time duration of the FSM-B is too long for the speci�ed clock domain period and execution is not completed
in time for the synchronous update expected at t1. This constraint places a practical lower limit on the period
that may be speci�ed for a clock domain that depends on the underlying hardware and the host Forth platform.

5.7 Multiple clock domains

If an application de�nes only a single clock domain then the 'minimum-slack' threshold has no impact on the
operation of the framework and the default value of zero applies. Where an application has more than one clock
domain then the 'minimum-slack' threshold in�uences the sequence of operations, as illustrated in �gure 12. In this
example clock domain A is assumed to have twice the frequency of clock domain B and the two clock domains are
(approximately) in phase. Here the 'minimum-slack' parameter was set to some non-zero value. After CLK-A has
proceeded through a signal update at t0, super-loop (�gure 10) computes that 'least-slack' is less than 'minimum-
slack' and so the �ow of execution returns to check-clocks rather than proceeding to run-FSMs. As a result
CLK-B is able to proceed to a signal update immediately following CLK-A. Subsequently the FSMs of both clock
domains are called and the cycle repeats at t1.

The bene�t of using the 'minimum-slack' mechanism is that it enables priority to be given to the synchronous signal
update process (which is assumed to be hard real-time critical since it drives the OUT signals) at the expense of
the FSM calls, which are not time critical, subject to each FSM completing execution at some time before the next
synchronous update is due.

We have not analyzed the e�ect of 'minimum-slack' from a theoretical standpoint and leave it to be engineered
on the application basis. There naturally is a trade-o� in setting the value of 'minimum-slack' since if a value is
speci�ed that is too high then execution of the FSM may be unnecessarily delayed and a failure case may result as
illustrated in �gure 11 (case B).
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Figure 9: Structure of the CLOCK domain entity
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Figure 10: Flowchart of the FORTH software for the framework.
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CLK-A FSM-A

OUT-A

CLK-A FSM-A

CLK-B FSM-B

OUT-B

CLK-B FSM-B

t0 t1

Figure 11: Timeline diagram of the timing framework in operation. A and B are separate cases and are presented
on the same diagram only for comparison purposes. Case A illustrates typical operation of the framework with a
single clock domain. Case B illustrates that there is a practical lower limit that can be speci�ed for the period of
a clock domain and that the computation requirement for the FSM computation is a relevant factor to be taken
into account

CLK-A

t0 t1

CLK-B FSM-A FSM-B

OUT-B

CLK-A FSM-A

OUT-A

Min slack

Figure 12: Multiclock timeline. In this example it is assumed that clock domain A has exactly half the period of
clock domain B and that the two clock domains are (approximately) in phase.

12
16



5.8 Finite state machine logic

Argued by analogy with typical digital logic design practices, �nite state machines are a natural complement to
the synchronous logic entities that we present within our framework. However our framework does not insist that
the executable attached to each CLOCK domain be a �nite state machine. It could be arbitrary FORTH code,
but in that case the system will no longer be within the scope of this paper. In particular the success of the design
in meeting timing requirements will be implementation dependent.

The SIGNAL construct itself also provides a simple mechanism to implement a �nite state machine in Forth, as
illustrated in the following listing. The bene�t of using a SIGNAL as the FSM state variable is that it may be
updated at any point in the program �ow, but the next value will not take e�ect until the time of the synchronous
update which is guaranteed to be after completion of the entire FSM executable. Hence next state and output
calculation logic may be cleanly divided between control structures.

0 constant state_init

1 constant state_A

2 constant state_B

1kHZ state_init SIGNAL state

1kHZ 0 SIGNAL s0

: my-fsm

\ next state logic

state CASE

state_init OF state_A => state ENDOF

state_A OF ( some next state logic) ENDOF

state_B OF ( some next state logic) ENDOF

ENDCASE

\ output logic

state CASE

state_init OF 0 => s0 ENDOF

state_A OF ( some output logic) ENDOF

state_B OF ( some output logic) ENDOF

ENDCASE

;

\ add this FSM to the clock domain

' my-fsm 1kHz FSM \ attach the FSM to this clock domain

5.9 Interactivity via an additional interpreter

One of the advantages of embedded programming in Forth is the interactive use of the interpreter during devel-
opment. We have retained this facility without compromising our framework by implementing a threaded code
Forth interpreter as a �nite state machine. The interpreter is activated by setting up a new clock domain with
a suitable time period and attaching to it the interpreter's �nite state machine. With the interpreter in place,
the usual debugging capabilities such as inspecting variables or memory locations, making interventions in stored
values, running diagnostic routines, etc. are all available. In addition the interpreter can be used to make on-the-�y
changes to clock domains and their associated �nite state machines.

The interpreter is described in a separate technical report [14] by Ulrich Ho�mann so here we give just a rough
overview of its working principles.

Whereas many of today's Forth systems compile de�nitions to machine code, traditionally Forth has been imple-
mented by means of an address interpreter (the so called inner interpreter to contrast it with the source code
analyzing text (outer) interpreter). For this, the systems implement a small interpreter loop usually named NEXT

that is highly optimized for overall system speed (and thus often no longer recognizable as a loop).

The interpreter loop can certainly also be implemented in high-level Forth. The current implementation adheres
to ANSI Forth. It manages an instruction pointer that traverses arrays of execution tokens. Words are executed
by invoking these execution tokens. Special primitives for instruction pointer manipulation (control structure
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primitives) are de�ned. This address interpreter is the basis of an entire new Forth system (including a text
interpreter of its own), the Guest system. It shares some functionality with the surrounding Host system but can
be di�erent in any aspect. De�ned words of the Host System are primitives of the Guest system.

The Guest has the bene�cial property that its address interpreter can be invoked to just carry out a single inter-
pretation step and then transfer control back to the caller. This allows to implement the Guest as a state machine
where each transition performs just a single address interpreter step. Choosing an appropriate clock domain allows
to �ne tune the Guest execution speed. The Guest is much slower than the Host as its NEXT is not optimized for
speed, but it can use Host primitives. We found the interpreter to be fast enough for reasonable interactive use.
So here we have a slow but interactively usable Forth systems that �ts our framework.

6 Implementation on speci�c platforms

We now discuss the practical issues arising from the implementation of this framework on a number of Forth
platforms

6.1 General considerations

As mentioned, we sought the widest applicability of our framework by minimizing the requirements of the underlying
system. Our framework expects only ANSI Forth and a free-running timer counter. It has been successfully
implemented and tested in VFX Forth, G-Forth and Mecrisp on the Texas Instruments Tiva-C.

All of the above platforms allow the Forth dictionary to be hosted entirely in RAM as opposed to FLASH. Having
the dictionary entirely in RAM freed us from needing to consider any implications that would arise from the
separation of the dictionary into executable elements and dynamic data elements. The framework code would
require modi�cation on systems where the dictionary is not entirely hosted in RAM. Our preliminary analysis has
convinced us that the changes required to deal with a mixed FLASH/RAM dictionary structure would not be
major. However we prefer to omit further discussion of that issue in the current paper as we consider it to be a
side topic relevant to certain implementations only.

6.2 VFX Forth

Implementation on VFX Forth was very straightforward since we could rely on full ANSI Forth compatibility. We
de�ned the necessary support words as follows

: CPU -time ( -- n)

ticks \ 1ms increments

;

: init -CPU -time ( --) ;

6.3 G-FORTH

Implementation on G-FORTH was likewise straightforward.

: CPU -time ( -- n)

ntime drop 10 / \ 10ns scale - increments will be larger

;

: init -CPU -time ( --) ;
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Parameter Result Notes

Jitter 1.75% Relative standard deviation of the period of the generated square wave

tClock_Output 10 microseconds Incremental time delay for each additional OUT to be updated

fmax 5 kHz Highest CLOCK period achieved using an illustrative synthetic test

Table 1: Summary of results on the Tiva-C at 16MHz with Mecrisp Forth

6.4 Mecrisp on the Tiva-C

We were very pleased to have the Mecrisp platform available on the Texas Instruments Tiva-C to implement our
framework and conduct real time measurements in hardware. Mecrisp is not a completely ANSI compatible system,
as a result we prepared an ANSI compatibility layer to support our framework. Otherwise implementation on the
Mecrisp was also straightforward. Rather than present a detailed report of our ANSI compatibility layer within
this paper we intend to make our notes available as a separate technical report.

7 Measurements

Following implementation on the Mecrisp Tiva-C platform we conducted a number of practical investigations using
the framework. We used the generation of a square wave by SIGNALs within a CLOCK domain as our synthetic
test for measurement purposes. This synthetic test has the merits of simplicity and convenience and we intend
it only for illustration purposes. We recognize that a square wave would likely generated microcontroller PWM
(pulse wave modulation) facilities in an actual application.

Table 1 summarizes the quantitative measurements. These and additional qualitative tests are described in the
following sections.

7.1 Jitter

Jitter is commonly de�ned as the deviation of our synchronous signal updates from true periodicity. We measured
the period of 30 individual square wave periods using a PC oscilloscope and determined the standard deviation of
the clock period expressed as a percentage of the mean. This is the relative standard deviation, which we measured
at 1.75%. Figure 13 is an oscilloscope trace of the actual output measured on the Tiva-C. The �le jitter.fs in the
test listing section shows the code used to generate it.

7.2 tClock_Output

We examined the delay that our framework requires to �synchronously� update each additional OUT signal in a clock
domain after the �rst OUT signal (�g. 14). In a digital logic design, parallel logic elements would be responsible
for updating all outputs simultaneously, but with a software framework outputs are necessarily updated one by
one. We de�ne the delay to be the incremental tClock_Output times of our framework (i.e. the marginal delay for
each additional OUT signal). It was measured at approximately 10 microseconds.

7.3 Multiple clock domains

We conducted qualitative tests to assess the ability of our system to support multiple clock domains (�gs. 15, 16).
Although we did not make speci�c measurements we observed that the signals from two clock domain appeared to
be stable over a period of approximately six hours.
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Figure 13: Measurement of jitter. A single square wave is being generated. The duration of each cycle from
rising-edge to rising-edge was measured using the on-screen cursor of a PC oscilloscope. In all 30 cycles were
measured.

Figure 14: Measurement of tClock_Output. A series of signals have been generated. The lowest signal is taken as
the leading edge of the clock and the delay in the output of the other signals was measured.
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Figure 15: Two synchronous clock domains. The lower signal is a 1 kHz square wave (generated in a 2 kHz clock
domain that inverts the output each cycle). The upper signal is a 0.5 kHz square wave speci�ed with no phase
o�set to the lower signal. The transition edges of both signals should theoretically coincide exactly along the time
axis, but there is an o�set due to the inherent limitation of using a single CPU to generate both outputs.

Figure 16: Two asynchronous clock domains. In this case the lower signal is a 1 kHz square wave and the upper
signal is a 0.75 kHz square wave. The two clock domains are asynchronous in the sense that their transition edges
can occur at any point relative to the phase of the other. Visual inspection of the signals in the above �gure
and over a period of several hours with our live oscilloscope trace con�rmed that the framework produced stable
outputs in spite of the changing phase relationships.
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8 Discussion

8.1 Postulated advantages of this approach

This article presents a novel framework for real-time control in FORTH. At this stage we have evaluated the
framework on the Mecrisp platform with various test measurements but we have not implemented an actual
application. Nevertheless we postulate some advantages compared to traditional multitasking based approaches.

Firstly, whilst the �nite state machine methodology is a more constrained programming model than synchronous
processes, it renders the system capable of being conceptualized at a more abstract level and, in principle, systematic
techniques suitable for the evaluation of FSMs can be applied to this framework. The SIGNAL construct itself
provides a convenient approach for implementing FSMs in Forth.

Secondly, because our framework separates the reading and writing of external registers from the computational
code and application control �ow, we are able to specify the timing of signal updates more predictably and also
come closer to a true synchronous system.

Thirdly, because our framework is running on a single CPU, there are no meta-stability issues with the signals of
di�erent clock domains, since signal update is e�ectively atomic from the perspective of the FSM logic.

Finally, compared to other time-triggered architectures that focus in the main just on the timing of code execution,
we argue that our framework is possibly a more complete approach because it adds SIGNALS, INS and OUTS as
well as CLOCK domains for triggering events.

8.2 Limitations

We naturally also recognize a number of limitations to our framework.

Firstly, not all embedded systems developers are attracted to develop applications using the construct of �nite state
machines. This is a matter of programming model preference. Our framework imposes the additional constraint on
the FSM design since in order to meet the timing requirements of a certain clock frequency the FSM update logic
must complete within a limited amount of time (or the FSM must be split into simpler sub-units of computation).

Secondly, any layer that sits between application code and the CPU will naturally consume resources and limit
maximum performance compared to the potential performance of hand-crafted assembler. We achieved a maximum
CLOCK frequency of 5kHz on the 16MHz Tiva-C microcontroller board in our synthetic test.

On a related note, the use of a single CPU rather than true parallel logic also introduces latency into the update
of output signals. We measured a 10us delay between the update of consecutive signals. By comparison, with logic
circuits implements in commonly available FPGA's, we would expect that such latencies could easily be constrained
within half a clock cycle.

Perhaps most seriously of all we do not o�er any method for computing whether an application will be able to meet
hard real time requirements using our framework [3]. Allied to this point we do not o�er a systematic procedure
for setting the min_slack, which is critical to the operation of multiple clock domains. Instead it is left for trial
and error tuning during application testing.

As a next step it might be useful to instrument the FSM engine to track the actual number of CPU cycles spent
in run-FSM and record the incidence of timing glitches such as those illustrated in case B of �gure 11.

8.3 Possible applications

At present our framework has been presented at a conceptual level with a small number of trial implementations and
synthetic measurements o�ered as evidence of practical feasibility. To be properly relevant to embedded systems
developers our framework would prove its worth in a real-world application. We are considering possible robotics
applications in this regard.

Within the �eld of test and measurement our framework could also be a platform for the rapid development of an
FSM-based system aided by the interactivity provided by the FORTH terminal prior to translation into FPGA's
or ASIC's.
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9 Proposal for an alternative implementation approach

One of our objectives in developing this framework was to minimize the requirements that we demand from the
underlying system. Hence our choice to require only a free-running timer counter from the underlying system and
use what is e�ectively a busy loop to schedule synchronous updates. The disadvantage of this approach is the
lesser precision of a busy-loop in calling the synchronous updates as compared with a timer-driven interrupt. For
completeness we present an interrupt driven model for framework operation in �gure 17. At the present time we
have not implemented this model and o�er it as a proposal for next steps.

10 Conclusion

We have presented a novel framework using Forth in applications with hard real-time requirements. Our framework
is directly inspired by the methods of synchronous digital logic design and we have introduced constructs inten-
tionally borrowed from VHDL, such as clock domains, SIGNALs, INs and OUTs. Our framework is compatible
with any ANSI Forth system that includes a free running timer/counter. We have implemented the framework in
VFX Forth, GForth and Mecrisp on the Texas Instruments Tiva-C. We devised some synthetic tests on the Tiva-C
platform and made some measurements to give a qualitative sense of the performance of our framework and o�er
evidence of its practical feasibility. For our framework to become relevant to embedded developers we recognize
that its e�ectiveness in real world applications would need to be demonstrated. Nevertheless we suggest a number
of advantages to the use of our system in hard real time applications. In essence our framework moves applica-
tion design along the spectrum from the relative freedom of a pure software approach to the more constrained
(and therefore arguably more reliable) approach of synchronous digital logic design. We are currently considering
possible applications, potentially in robotics.

The authors are grateful to Matthias Koch for the availability of the Mecrisp platform and his assistance to us
during discussions, and to the anonymous academic reviewers for their helpful comments.
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Source code listing

1 : field:

2 \ Create and use fields in a structure

3 Create ( offset size -- offset ' )

4 over , \ save the current value of the offset

5 + \ increment the offset by this field 's size

6 Does > ( structure -base -- field -address)

7 @ + \ add this field 's offset to the structure -base

8 ;

9

10 \ CLOCK domain data structure

11 0

12 1 cells field: >link \ link field to prior CLOCK or zero if the first CLOCK

13 1 cells field: >phase \ relative phase offset of this CLOCK in CPU clock cycles

14 1 cells field: >period \ period of this CLOCK in CPU clock cycles

15 1 cells field: >signal -link \ linked list of signals operated by this CLOCK

16 1 cells field: >in -link \ linked list of IN's operated by this CLOCK

17 1 cells field: >out -link \ linked list of IN's operated by this CLOCK

18 1 cells field: >xt \ execution token of this CLOCK 's FSM

19 1 cells field: >due \ count in CPU clock cycles when this CLOCK is next due to

execute

20 1 cells field: >flags \ boolean flags bit0: 1 = alive , 0 = sleeping

21 drop

22

23 \ SIGNAL data structure

24 1 cells \ >link \ link field to prior signal or zero if the first signal in this

clock domain

25 1 cells field: >current \ current signal value

26 1 cells field: >next \ becomes this value at UPDATE

27 1 cells field: >reset \ becomes this value at RESET

28 drop

29

30 \ IN port / OUT port data structure

31 1 cells \ >link \ link field to prior IN or zero if the first IN in this clock

domain

32 1 cells field: >addr \ memory mapped register referenced by this IN

33 1 cells field: >signal \ signal referenced by this IN

34 drop

35

36 variable clock -link 0 clock -link ! \ pointer to linked list of CLOCK domains

37

38 : {nothing} ( --)

39 \ dummy FSM

40 ;

41

42 : CLOCK

43 \ create a new clock domain

44 Create ( period phase <NAME > --)

45 here clock -link @ , \ link

46 clock -link ! \ save this clock 's location to the global clock -link

variable

47 , \ phase

48 , \ period

49 0 , \ signal -link

50 0 , \ in-link

51 0 , \ out -link

52 ['] {nothing} , \ XT

53 0 , \ due

54 0 , \ flags

55 Does > ( -- structure -base)

56 \ return the address of the clock structure

57 ;

58

59 : FSM ( XT clock -domain --)

60 \ set the finite state machine associated with a clock -domain

61 >xt ! ;

62

63 : SIGNAL

64 \ create a new signal

65 Create ( clock -domain default -value <NAME > --)

66 swap here swap ( default -value structure -base clock -domain)

67 >signal -link dup @ ( default -value structure -base signal -link last -signal)
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68 , ( default -value structure -base signal -link) \ link

69 ! ( default -value) \ save this signal 's location to signal -link

70 dup , \ current

71 dup , \ next

72 , \ reset

73 Does > ( -- current value)

74 >current @ \ return the current value of the signal

75 ;

76

77 : IN ( clock -domain addr <SIGNAL > --)

78 \ create a new IN port

79 swap here swap ( addr structure -base clock -domain)

80 >in-link dup @ ( addr structure -base in-link last -in)

81 , ( addr structure -base in -link)

82 ! ( addr)

83 , \ addr

84 ' >body , \ signal

85 ;

86

87 : OUT ( clock -domain addr <SIGNAL > --)

88 \ create a new OUT port

89 swap here swap ( addr structure -base clock -domain)

90 >out -link dup @ ( addr structure -base in-link last -in)

91 , ( addr structure -base in -link)

92 ! ( addr)

93 , \ addr

94 ' >body , \ signal

95 ;

96

97 : => ( n <name > -- )

98 \ store a value in the next field of a SIGNAL (better not to redefine TO?)

99 ' >body >next state @ IF postpone literal postpone ! EXIT THEN ! ; immediate

100

101 : {update -signal} ( 'signal -- )

102 \ update a signal to its next value

103 dup >next @ swap >current ! ;

104

105 : {reset -signal} ( 'signal -- )

106 \ update a signal to its default value

107 dup >reset @ swap 2dup >current ! >next ! ;

108

109 : {update -in} ( 'in -- )

110 \ read an IN port and write to the >next field of its SIGNAL

111 dup >addr @ @ swap >signal @ >next ! ;

112

113 : {update -out} ( 'out -- )

114 \ write to an OUT port , the >current field of its SIGNAL

115 dup >signal @ >current @ swap >addr @ ! ;

116

117 : do-list ( xt link -- )

118 BEGIN ( xt link)

119 @ dup ( xt 'item)

120 WHILE ( xt 'item)

121 over over >r >r swap ( 'item xt)

122 execute ( --)

123 r> r> ( -- xt 'item)

124 REPEAT

125 drop drop ;

126

127 : do-clocks ( xt --)

128 \ apply XT to all clocks in turn

129 \ XT must have signature (i*x 'clock -- j*x)

130 clock -link do -list ;

131

132 : do-signals ( i*x clock -domain xt -- j*x )

133 \ apply XT to each signal in turn in a given clock -domain

134 swap >signal -link do-list ;

135

136 : do-ins ( i*x clock -domain xt -- j*x )

137 \ apply XT to each IN in turn in a given clock -domain

138 swap >in -link do-list ;

139

140 : do-outs ( i*x clock -domain xt -- j*x )

22
26



141 \ apply XT to each IN in turn in a given clock -domain

142 swap >out -link do -list ;

143

144 : UPDATE -SIGNALS ( clock -domain -- )

145 \ update all signals synchronously to their next values

146 ['] {update -signal} do -signals ;

147

148 : RESET -SIGNALS ( clock -domain -- )

149 \ update all signals synchronously to their default values

150 ['] {reset -signal} do -signals ;

151

152 : UPDATE -INS ( clock -domain -- )

153 \ read all IN addresses and write to the >next fields of their associated signals

154 ['] {update -in} do-ins ;

155

156 : UPDATE -OUTS ( clock -domain -- )

157 \ read all IN addresses and write to the >next fields of their associated signals

158 ['] {update -out} do-outs ;

159

160 : .clock ( 'clock --)

161 \ print the fields of a clock

162 ." [CLOCK@" dup 0 u.r

163 ." name=" dup body > >name .name

164 ." , link=" dup >link @ 0 u.r

165 ." , phase=" dup >phase @ 0 u.r

166 ." , period =" dup >period @ 0 u.r

167 ." , signal -link=" dup >signal -link @ 0 u.r

168 ." , XT=" dup >xt @ 0 u.r

169 ." , due=" dup >due @ 0 u.r

170 ." , flags=" >flags @ 0 u.r ." ]" cr

171 ;

172

173 : .signal ( 'signal --)

174 \ print the fields of a signal

175 ." [SIGNAL@" dup 0 u.r

176 ." name=" dup body > >name .name

177 ." , link=" dup >link @ 0 u.r

178 ." , current =" dup >current @ 0 u.r

179 ." , next=" dup >period @ 0 u.r

180 ." , reset=" >reset @ 0 u.r ." ]" cr

181 ;

182

183 : .in ( 'in --)

184 \ print the fields of an in

185 ." [IN@" dup 0 u.r

186 ." , addr=" dup >addr @ 0 u.r

187 ." , signal =" >signal @ 0 u.r ." ]" cr

188 ;

189

190 : .out ( 'in --)

191 \ print the fields of an in

192 ." [OUT@" dup 0 u.r

193 ." , addr=" dup >addr @ 0 u.r

194 ." , signal =" >signal @ 0 u.r ." ]" cr

195 ;

196

197 : .signals ( clock -domain --)

198 \ print all of the signals in a clock domain

199 cr

200 ['] .signal do-signals

201 ;

202

203 : .clocks ( --)

204 \ print all of the clock domains

205 cr

206 ['] .clock do-clocks

207 ;

208

209 : .ins ( clock -domain)

210 \ print all of the IN 's in a clock domain

211 cr

212 ['] .in do -ins

213 ;
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214

215 : .outs ( clock -domain)

216 \ print all of the IN 's in a clock domain

217 cr

218 ['] .out do -outs

219 ;

220

221

222 variable slack

223 \ slack is updated by check -clocks , it contains the number of CPU cycles until the next clock

domain due time

224

225 variable min -slack 0 min -slack !

226 \ min -slack is fine -tuned by the designer. If slack < min -slack then super -loop will wait

227 \ for the next clock rather than proceed with FSM execution

228

229 : {initialize -clock} ( t0 'clock -- t0)

230 \ initialize a clock given the t0 value of CPU -time

231 >R dup R@ >period @ R@ >phase @ + + R@ >due ! \ set due time

232 0 R@ >flags ! \ clear flags

233 R> reset -signals \ reset all signals

234 ;

235

236 : initialize -clocks ( --)

237 \ initialize all clock domains

238 CPU -time ['] {initialize -clock} do-clocks drop ;

239

240

241 : {check -clock} ( 'clock --)

242 \ check if this CLOCK is due and if so update the SIGNALS , set flags = alive , and schedule the

next clock

243 dup >due @ ( 'clock due)

244 CPU -time - ( 'clock cycles -until -due)

245 dup 0 <= IF ( 'clock cycles -until -due)

246 drop ( 'clock)

247 dup update -ins \ all IN's, SIGNALs and OUTs now update synchronously

248 dup update -signals

249 dup update -outs

250 dup >flags dup @ ( 'clock 'flags flags)

251 1 OR swap ! \ set flags so to indicate that the FSM is due to run

252 dup >period @ dup >R ( 'clock period R:period)

253 over >due @ ( 'clock period last -due R:period)

254 + ( 'clock next -due R:period)

255 over >due ! \ determine and save the next due time

256 R> ( 'clock period)

257 THEN ( 'clock cycles -until -due/period)

258 slack @ MIN slack ! drop \ update the slack

259 ;

260

261 : check -clocks ( -- slack)

262 \ check all clocks , update SIGNALS and flags where clocks are due , and update slack

263 100000000 slack ! \ initial dummy value

264 ['] {check -clock} do-clocks

265 slack @

266 ;

267

268 : {run -FSM} ( 'clock --)

269 \ check if this clock is now active to run and if so , run the FSM

270 dup >flags @ ( 'clock flags)

271 1 AND IF ( 'clock )

272 \ run the FSM logic

273 dup >r >xt @ execute r>

274 \ set flags so that this task will now sleep)

275 dup >flags dup @ ( 'clock 'flags flags)

276 254 AND swap ! ( 'clock)

277 THEN

278 drop

279 ;

280

281 : run -FSMs ( --)

282 ['] {run -FSM} do -clocks ;

283

284 : super -loop
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285 BEGIN

286 BEGIN

287 check -clocks ( slack)

288 min -slack @ > ( flag)

289 UNTIL

290 run -FSMs

291

292 key? drop \ VFX FORTH needs this to facilitate Windows refresh

293 AGAIN

294 ;

295

296 : main ( -- )

297 reset \ threaded code interpreter

298 initialize -clocks

299 super -loop

300 ;

Test listings

1 jitter.fs

2

3 erase -clocks

4

5 FCPU 2000 / 0 CLOCK 2kHz

6

7 2kHz 0 SIGNAL s0

8

9 : toggle

10 s0 not => s0

11 ;

12

13 ' toggle 2KHz FSM

14

15 2KHz LOGIC0 OUT s0

16

17 : test

18 main

19 ;

1 max_freq.fs

2

3 erase -clocks

4

5 10000 constant freq \ frequency in Hz

6

7 FCPU freq / 0 CLOCK CLK

8 CLK 0 SIGNAL s0

9

10 0 variable t0

11

12 : toggle

13 s0 not => s0

14 100 0 DO i t0 ! LOOP

15 ;

16

17 ' toggle CLK FSM

18

19 CLK LOGIC0 OUT s0

20

21 : test

22 main

23 ;

25
29



     

                                                                                                                                           

 

Simulating Recurrent Neural Networks in Forth 
Sergey Baranov 

 St. Petersburg Institute for Informatics and Automation of the Russian Academy 
of Sciences (SPIIRAS), ITMO University1 

SNBaranov@gmail.com 
 

Introduction. Recurrent neural networks (RNN) [1] regained attention of researchers as an 
instrument for data recognition with a great variety of strategies for transmitting information 
(usually binary images, video, and audio frames) among their network layers and ways of 
information transformation and processing. After a certain boom in instrument creation a number 
of software tools appeared [2, 3] which helped researchers to study various aspects of RNN-
based solutions, Matlab [4] probably being among mostly widespread ones. However, most of 
these tools look like "dinosaurs" – they are huge and inflexible for running sophisticated 
experiments with carefully carved parameters and features. 

An alternative approach based on the "small is beautiful" paradigm [5] was successfully 
used to overcome some of these hurdles, tools based on the Python language [6, 7] being quite 
successful and thus encouraging to try other options. 

This paper describes a program, called the Associative Intellectual Machine (AIM) [8], for 
simulating the behavior of a multi-layer RNN under a particular scenario of input signals 
incoming and the given structure of their further propagation among RNN layers. An input signal 
considered as a binary image is converted into a matrix of pulses that propagate through the 
RNN and may produce a series of output signals in the same form. AIM is a prototyping tool for 
studying the associative memory mechanism modeled through such an RNN and establishing its 
characteristics (e.g., the precision of recognition of presented binary images) in comparison with 
conventional memory under various space-time structures for pulse propagation [9]. The 
ultimate goal of this preliminary research is to design an AIM as an analog associative memory 
device of the RNN architecture on highly parallel memristors [10] as its base elements. 

In the classical McCalloch-Pitts discrete neural network model with N neurons νi (i=1..N) 
(often referred to as the perceptron model), the N binary inputs xj(t) of each neuron νi received at 
the time moment t are converted into its single binary output yi(t+1) at the next time moment t+1 
according to the formula:  

yi(t+1) = max(0,signum(Σj=1..N (wij × xj(t) + wi0))). 

Here wij are the weights of the input synaptic links to the neuron νi and wi0 is the so called 
threshold value for this neuron.  

In a more general Hebb model, the weights of synaptic links are updated at each step of the 
network functioning, thus performing training of the network:  

wij(t+1) = wij(t) + η × yi(t) × yj(t). 

Here η is the so called "training factor" usually selected from the interval [0.7..0.9]. A number of 
different training strategies were proposed; however, they all comply with the known Widrow-
Hoff rule:  

wij(t+1) = wij(t) + Δwij(t+1),   Δwij(t+1) = xj(t) × (di(t+1) – yi(t+1)), 

di(t+1) being the expected output value at the next time moment t+1. After a series of trainings 
on the provided set of M inputs X={X1,X2,...XM} (where each Xj is a vector of N binary values 
Xj={x1j,x2j,...,xNj}) and expected outputs D={d1,d2,...dM} the weights are not changed anymore 
and the network continues its performance with thus obtained weights of the synaptic links.  

In an RNN of the classical Hopfield model the output yi(t+1) also serves as an input to all 
other neurons at the next time moment t+1.This feedback link extends the network capabilities 
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for training and self-learning of the RNN. In this model pulse propagation is relatively straight 
forward (even for recurrent networks) and homogeneous for all constituting neurons. 

Existing Forth implementations of neural networks, like [11], [12], and [13], follow the 
above mentioned classical models of one or more layer networks with discrete timing cycles of 1 
unit. In contrast to these, AIM uses various timing delays in pulse (or excitation) propagation and 
elaborates further the routes or paths of such propagation among the network layers. The neuron 
layers are split into equal fields and a path is specified through enumerating them as they occur 
in this path [14]. Neurons in two adjacent fields of a pulse propagation path are called 
neighboring or twin neurons if they are located in the same places in these adjacent fields. While 
in general case each RNN neuron is linked to all other neurons located in the adjacent layers and 
thus may receive/send pulses from/to them, the neighboring neurons have priority in pulse 
propagation over other neuron pairs: the effect of a pulse between them is much stronger than 
that of a pulse between non-twin neurons.   

The main distinguishing feature of the AIM is how the neuron output and the weight of the 
respective synaptic link are recalculated when a pulse comes through this link, this may change 
the neuron potential which is its output and the weight of the link, both considered as integers. 
The new potential Uν (t+Δt) of a neuron ν at the next time moment t+Δt equals to the sum of all 
its inputs, not exceeding some Umax:  

Uν(t+Δt) = min(Umax , max(0,Uν(t) + Ση∊{ ν↔η}(Uν(t) – Uη(t)) × wν↔η))), 

where {ν↔η} is a set of all synaptic links connecting neurons ν and η, and wν↔η is the weight of 
this link ν↔η which is recalculated accordingly:  

wν↔η(t+Δt) = wν↔η(t) + f(ν,η) 

where f is a function of these two neurons which tends to zero very fast as the distance between 
these neurons increases. It's noteworthy that this function may be programmed with fixed point 
arithmetic only (using tables for expressions like y=e–x) thus avoiding floating point arithmetic 
with related issues and trade-offs. This approach assumes that weights and potentials are treated 
as integers multiplied by some scaling factor (e.g., 10000 for precision of up to 4 digits).  

This AIM program was developed in compliance with the Forth 200x standard [15] on the 
VFX Forth for Windows IA32 [16] platform to be portable and run on any 32-bit Forth system 
compliant with Forth 200x, including freeware platforms like gForth [17]. Its core is an event-
driven engine. AIM allows the user to specify various cases and combinations of “experiment 
parameters”, to specify pulse propagation paths, timing delays, etc., and to visualize the obtained 
results of RNN behavior simulation as well as the very process of their development in order to 
objectively estimate and compare them. Fig. 1 presents a typical AIM consisting of a two-layer 
RNN with one propagation path (its projection on the upper layer is marked with a dotted line).  

 
Fig. 1. A two-layer RNN of 5×6=30 fields with 6×7=42 neurons each 
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The simulator size is around 2 KLOC in Forth and employs a simple model of a multi-
layer RNN with a user-defined interface. It relies on other advanced tools for further analysis and 
visualization of simulation results. The AIM source code is planned to be uploaded to an 
appropriate open-source repository and is currently available from the author on request. 

To minimize the number of various code patterns in the code this Forth implementation 
intensively uses iterators, which perform the same parameterized action on each of homogeneous 
elements of a data structure composed by them in form of an array or a vector. They remind the 
standard word TRAVERSE-WORDLIST in their effect but rely on user-defined data structures, other 
than the implementation dependent list of words in a Forth vocabulary.  

Representing RNN in Forth. The AIM program represents its subject RNN with special data 
structures and reuses an approach developed earlier [18] with a discrete counter of system time 
and a list of all simulated events EventList attached to the time axis with respective time-stamps.  

Each neuron ν of the network may be in one of two states: excited or unexcited, and is 
characterized by the value of its current potential Uν: 0 ≤ Uν ≤ Umax which changes with time. An 
unexcited neuron becomes excited when its potential reaches some value Umin:  0 < Umin ≤ Umax.  

F0[0,0] F0[0,1] F0[0,2] F0[0,3] F0[0,4] F0[0,5]   F1[0,0] F1[0,1] F1[0,2] F1[0,3] F1[0,4] F1[0,5] 

F0[1,0] F0[1,1] F0[1,2] F0[1,3] F0[1,4] F0[1,5]   F1[1,0] F1[1,1] F1[1,2] F1[1,3] F1[1,4] F1[1,5] 

F0[2,0] F0[2,1] F0[2,2] F0[2,3] F0[2,4] F0[2,5]   F1[2,0] F1[2,1] F1[2,2] F1[2,3] F1[2,4] F1[2,5] 

F0[3,0] F0[3,1] F0[3,2] F0[3,3] F0[3,4] F0[3,5]   F1[3,0] F1[3,1] F1[3,2] F1[3,3] F1[3,4] F1[3,5] 

F0[4,0] F0[4,1] F0[4,2] F0[4,3] F0[4,4] F0[4,5]   F1[4,0] F1[4,1] F1[4,2] F1[4,3] F1[4,4] F1[4,5] 

Upper neuron layer #0  Lower neuron layer #1 

Fig. 2. Representation of a two-layer RNN of 30 fields as two matrices of 5 × 6  elements 

Neurons form K layers of the same size, represented as a matrix of M × N fields, each field 
being itself a matrix of m × n neurons, where 1 ≤ K,M,N,m,n ≤ 32. Thus, the total number of RNN 
neurons equals to the product K × M × N × m × n. This representation of a sample RNN in Fig. 1 
is rendered in Fig. 2. The above mentioned RNN parameters M, N, m, and n are represented by 
Forth variables m', n', m, and n: respectively: 

VARIABLE m' 5 m' ! \ The number of rows in the field layer matrix 

VARIABLE n' 6 n' ! \ The number of columns in the field layer matrix 

VARIABLE m  6 m !  \ The number of rows in a neuron field matrix 

VARIABLE n  7 n !  \ The number of columns in a neuron field matrix 

Fields within a layer with the number l (0 ≤ l ≤K–1) are numbered as elements of the matrix 
Fl[i,j],  0 ≤ i ≤ M–1, 0 ≤ j ≤ N–1, all numbering starting from zero as is common in Forth; neurons 
inside each field, in their turn, are numbered as elements of the matrix Neu[i,j], 0 ≤ i ≤ m–1,         
0 ≤j ≤ n–1. Thus, the full address of a neuron consists of 5 items (5 bits each) packed in one cell 
value: its layer number, 2 indices of the neuron field in this layer, and 2 indices of the neuron in 
this field. Fields reside in their layer matrix elements. Due to the above constraints on the index 
values, the described neuron address may be packed in one integer of  the cell size which requires 
5 × 5 = 25 bits; that's why a 32-bit Forth platform is anticipated for this AIM implementation. 

Neurons are represented with data structures of NeuronSize cells each, fields are just vectors 
of neurons, and layers are vectors of fields. Upper case words are standard Forth words, while 
words with low shift characters are the user-defined words of this implementation.  

5 CELLS CONSTANT NeuronSize \ The size of the data structure for a neuron 
BEGIN-STRUCTURE Neuron  

 CELL +FIELD Neuron.ID \ Unique ID of the neuron 

 CELL +FIELD Neuron.State \ Current status of the neuron: 1 excited, 0 unexcited 

 CELL +FIELD Neuron.Potential \ Current potential multiplied by scaling factor 

 CELL +FIELD Neuron.SynDn \ Address of a vector of references to the upward layer 

 CELL +FIELD Neuron.SynUp \ Address of a vector of references to the downward layer 
END-STRUCTURE 
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Iterators simplify performing a particular action upon each neuron in a field: 

: IterNeuField ( fieldaddr,cfa--) \ Iterator on all neurons of this field 
 {: Action :}            \ Action to be executed for each neuron 

 ( fieldaddr) DUP n @ m @ * NeuronSize * + ( NeuFirstAddr,NeuLastAddr) SWAP 

 DO  

  I ( NeuAddr) Action EXECUTE  NeuronSize 

 +LOOP ; 

E.g., in order to unexcite all neurons of a particular field (i.e., to assign zero to the neuron 
status stored in the second cell of the neuron structure) with the word Unexcite one may write:  

: Unexcite ( NeuAddr--) Neuron.State 0! ; \ Unexcite this neuron 

... ( ...,fieldaddr) ['] Unexcite  IterNeuField ( ...) ... 

The address of the given field is placed on the stack prior to this code and the iterator 
enumerates all neurons of this field executing the Unexcite word  for each such neuron. Iterator 
on each field within a layer is defined in a similar way with the only difference that the field size 
is represented as a variable rather than a constant because it depends on the actual number of 
neurons in a field.   

VARIABLE FieldSize   m @ n @ * NeuronSize * CELL 2* + FieldSize ! 

: IterFieldLayer ( l#,cfa--) \ Iterator on all fields of this layer 
 {: Action :}          \ Action to be executed for each field 

 CELL * Layers + @ CELL+ CELL+ ( field00addr) 

 DUP ( field00addr,field00addr) 

 m' @ n' @ *  FieldSize @ * + SWAP     

 DO  

  I ( FieldJIaddr) Action EXECUTE  FieldSize @ 
 +LOOP ; 

As the field structure starts with two auxiliary cells; that's why CELL+ CELL+ is needed to 
obtain the address of the first field Fl[0,0] in this vector. E.g., one may print out the current status 
of the RNN under simulation with the word .RNN defined as follows: 

: .RNN ( --) \ Print-out the RNN status 

 #Layers @ 0  

 DO  

  CR ." Layer "  I . 

  I ( l#) ['] .Field IterFieldLayer  

 LOOP ; 

Here #Layers is a variable which stores the number of layers in the RNN and .Field is a 
word which prints out a field which address is provided to it on the stack. 

Data flow (in form of pulse or excitation propagations) in an RNN occurs between its 
layers, as each neuron in a layer is connected to all other neurons in adjacent layers via special 
channels called synapses. Thus, the total number of synapses: (K – 1) × (M × N × m × n)2 is 
rather large. However, it may be reduced with the notion of synapse length defined as the 
distance between its two neurons considered as points in a 3D space. A two-way synapse ν↔η is 
established between neurons ν and η from adjacent layers (considered as points in a 3D space), if 
and only if the distance dνη between them (i.e., the length of the synapse ν↔η) does not exceed 
some predefined constant Dmax. This distance is calculated as:  

d2
νη=D2

z+D2
xy×((|xν–xη|+|xF–xF* |×n)2+( |yν–yη|+|yF–yF* |×m)2), 

where Dz, and Dxy are scaling factors specified while configuring the AIM program and sub-
indices F and F* refer to coordinates of the respective field as an element of a layer matrix. 
However, for twin neurons the distance is equal to Dz and thus is the shortest possible. In order to 
minimize run-time computations, all these distances are stored as their squared values. 
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Each synapse is rendered with a 4 cell data structure, which stores references to its both 
neurons in two adjacent layers (the upward and downward ones), the synapse length and weight. 
The last serves as the RNN memory and may change in the process of RNN functioning if the 
respective flag Training is turned TRUE (such updates of synapse weights realize the so called 
"unsupervised training" of the RNN). Positive weight means storing data and negative weight 
means erasing (forgetting) it. Further research is needed to better control this "forgetting" feature 
of the AIM [19]. Each neuron refers to 2 sets of synapses connecting it to other neurons in the 
upward and downward adjacent layers (the upmost RNN layer has no upward neighbor, as well 
as the RNN bottom layer has no downward one), implemented as vectors of references to 
respective synapse structures.  

4 CELLS CONSTANT SynapseSize \ The size of the data structure for a synapse 
BEGIN-STRUCTURE Synapse 

 CELL +FIELD Synapse.Weight \ The current weight multiplied by scaling factor 

 CELL +FIELD Synapse.Length \ Synapse length squared 

 CELL +FIELD Synapse.NeuUp  \ Reference to one neuron of the two 

 CELL +FIELD Synapse.NeuDn  \ Reference to the other neuron 
END-STRUCTURE 

Each vector starts with a cell containing the number of its elements. A respective iterator is 
used to perform a particular action on each element referred to by such vector: 

: IterRefVect ( VectRefAddr/NULL,cfa--) \ Iterator on all elements referred to 
 {: Action :}  \ Action to be executed for each vector element 

 ( VectRefAddr/NULL) ?DUP \ Check for the NULL parameter 

 IF ( VectRefAddr)  

  DUP @ CELL * ( VectRefAddr,VectLen) OVER + SWAP 

  ?DO                \ The vector may have zero elements 

   I CELL+ @ ( RefAddr) Action EXECUTE  CELL 
  +LOOP 

 THEN ; 

As was mentioned before, thus defined iterators are similar to the Forth 200x word 
TRAVERSE-WORDLIST in its semantics, but rely on different user-defined data structures in the AIM.  

To reduce the number of colon definitions used only once in the respective iterator, one 
may use mechanism similar to quotations [20] or the word :NONAME of the Forth 200x standard. 

With iterators, basic operations on neurons look quite straight-forward and transparent 
demonstrating the flexibility and power of Forth. E.g., passing excitation from an excited neuron 
to all unexcited neurons connected to it via synapses looks as: 

: PassNeuExcit ( neu-addr--) \ Excite the neuron if its potential is high 

\ and recalculate potentials of all neurons connected to it by synapses 

 DUP Neuron.State 2@ ( neu-addr,potential,state) 0= SWAP Umin @ >= AND 

 IF ( NeuAddr) \ The neuron is unexcited and its potential is high  
  DUP Neuron.State 1+! \ Excite this neuron! 

  DUP Neuron.SynDn @ ['] PulseDn IterRefVect  

  DUP Neuron.SynUp @ ['] PulseUp IterRefVect 

  ( neu-addr) 

 THEN ( neu-addr)  

 Neuron.State @ IF #ExcitedNeurons 1+! THEN ; 

Words PulseDn and PulseUp propagate excitation through the synapse, passed to them as an 
address on stack, downward or upward respectively, using a common subroutine PulseDn/Up : 

: PulseDn ( SynAddr--) \ Propagate pulse downward through the synapse 

      DUP Synapse.NeuUp 2@ ( SynAddr,NeuDnAddr,NeuUpAddr) PulseDn/Up ; 

: PulseUp ( SynAddr--) \ Propagate pulse upward through the synapse 

      DUP Synapse.NeuUp 2@ ( SynAddr,NeuDnAddr,NeuUpAddr) SWAP PulseDn/Up ; 

An RNN pulse propagation path is specified through non-recursive enumeration of RNN 
fields, each two adjacent elements in this list belonging to adjacent layers (in case of a two-layer 
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RNN this means alternating). The first element of this list is its entry – it may accept signals 
from the RNN environment in form of an input unitary image (IUI) which is a matrix of m × n 
binary values; each bit being mapped to a neuron in the entry field with the same matrix indices. 
If this neuron is unexcited, then it accepts the respective binary signal which may result in a 
change of the neuron potential. If the neuron potential accumulated from all synapses incoming 
to it reaches the value Umin, it becomes excited for a period of time equal to some Δtexcite (during 
that period the neuron accepts no other signals) and all excited neurons of the input field pass 
their excitation to other neurons and the process reiterates. 

A number of paths should be specified in a configuration file to determine the routes for 
excitation to propagate among the RNN layers. This constitutes a distinguishing feature of the 
AIM. As An XML-like technique is used for that which employs a pair of words <Path> and 
</Path> to frame a particular path, while words <F> and </F> frame coordinates of each 
particular field in this path the respective order. Field coordinates consist of three integers: the 
layer number (0 or more), the row number (0..M – 1) in and the column number (0..N – 1) this 
layer; e.g.:  

0 <Path> \ Specify a path number 0  
<F> 0 0 0 </F> <F> 1 0 0 </F> <F> 0 0 1 </F> <F> 1 0 1 </F> <F> 0 0 2 </F> <F> 1 0 2 </F>  

<F> 0 0 3 </F> <F> 1 0 3 </F> <F> 0 0 4 </F> <F> 1 0 4 </F> <F> 0 0 5 </F> <F> 1 0 5 </F> 

<F> 0 1 5 </F> <F> 1 1 5 </F> <F> 0 1 4 </F> <F> 1 1 4 </F> <F> 0 1 3 </F> <F> 1 1 3 </F>  

<F> 0 0 2 </F> <F> 1 1 2 </F> <F> 0 1 1 </F> <F> 1 1 1 </F> <F> 0 1 0 </F> <F> 1 1 0 </F> 

<F> 0 2 0 </F> <F> 1 2 0 </F> <F> 0 2 1 </F> <F> 1 2 1 </F> <F> 0 2 2 </F> <F> 1 2 2 </F>  
<F> 0 2 3 </F> <F> 1 2 3 </F> <F> 0 2 4 </F> <F> 1 2 4 </F> <F> 0 2 5 </F> <F> 1 2 5 </F> 

<F> 0 3 5 </F> <F> 1 3 5 </F> <F> 0 3 4 </F> <F> 1 3 4 </F> <F> 0 3 3 </F> <F> 1 3 3 </F>  

<F> 0 3 2 </F> <F> 1 3 2 </F> <F> 0 3 1 </F> <F> 1 3 1 </F> <F> 0 3 0 </F> <F> 1 3 0 </F> 

<F> 0 4 0 </F> <F> 1 4 0 </F> <F> 0 4 1 </F> <F> 1 4 1 </F> <F> 0 4 2 </F> <F> 1 4 2 </F>  

<F> 0 4 3 </F> <F> 1 4 3 </F> <F> 0 4 4 </F> <F> 1 4 4 </F> <F> 0 4 5 </F> <F> 1 4 5 </F>  

</Path> 

This path alternatively enumerates all fields of the RNN in Fig. 2, starting from the field 
F0[0,0] (the input field) and terminating with the field F1[4,5] (the output field). When excitation 
reaches the output field, the ultimate potentials of its neurons are converted in OUI (output 
unitary images), similar to IUI, and transmitted to the RNN environment as the result of RNN 
functioning. As mentioned before, adjacent fields in a path are the closest: the distance between 
their two neurons with the same coordinates is minimal irrespectively of the actual distance 
between them in a 3D space. Thus, different paths impact the RNN behavior differently. 

Similarly, a scenario of input signals is specified with the pair of words <Images> and 
</Images> which frame the scenario, while words <I> and </I> frame each separate input matrix 
within it. The word <I> is preceded by two integers: the moment of the system time when this 
image enters the RNN and the path number. Binary representations of the rows of the given 
image reside between <I> and </I> (leading zeros may be omitted). The number of such elements 
should be equal to m. E.g., the following scenario specifies that 10 images:  
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enter the input field F0[0,0] of the path number 0 which starts in the upmost left corner of the 
layer  L0 at the time moments 1, 72, 148, 232, 321, 414, 515, 625, 745, and 868 in this order. 

<Images> 

1   0 <I> 0001100 0010110 0100011 1111111 1000011 1000011 </I>  

72  0 <I> 1111000 1100100 1111100 1100110 1100011 1111110 </I>  

148 0 <I> 1111111 1001100 0001100 0001100 0001100 0001100 </I>  

232 0 <I> 0111110 1100011 1100011 1100011 1100011 0111110 </I>  
321 0 <I> 1100011 0010110 1001011 1001011 1000011 1000011 </I>  

414 0 <I> 0001100 0010110 0100011 1111111 1000011 1000011 </I>  
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515 0 <I> 1111111 1001100 0001100 0001100 0001100 0001100 </I>  
625 0 <I> 1111110 1100011 1100011 1111110 1100000 1100000 </I>  

745 0 <I> 1100011 1100011 1100011 1111111 1100011 1100011 </I>  

868 0 <I> 0111110 1100011 1100000 1100000 1100011 0111110 </I>  

</Images> 

Running an experiment with the specified RNN parameters and scenario is initiated by the 
command Simulate. 

Output Data. AIM produces three outputs: the log, an output file with OUIs, and an 
auxiliary file with additional data used for debugging and further analysis of the AIM behavior. 
However, other outputs may be easily added. All these outputs are plain texts and may be further 
processed by other tools; e.g., MS Excel or others. Fig. 3 visualizes how the number of excited 
neurons changes with time. The diagram was built in Excel directly from the log data. 

 
Fig. 3. The number of excited neurons vs. time in a sample RNN 

Specialized tools and libraries allow for dynamic animation of the RNN functioning. A 
surface of a 3D manifold represents current potentials of neurons and the neuron is state rendered 
with the color – blue for unexcited and red for excited ones. Fig. 4 presents such an image for a 
frame #8 which corresponds to the time=41 of the above mentioned example.  The left-hand 
chart represents the upper layer #0 and the right-hand one represents the bottom layer #1. 

 
Fig. 4. A snapshot of the RNN in progress at a particular moment 

The respective mapping of the output data was obtained from data generated by the AIM 
simulator in a plain text format with the NumPy package [21] and the Matplotlib library [22] (by 
the courtesy of my colleague Dr.Sergey Podkorytov). These packages allow to form a video file 
from a series of such images in the mp4 format as well.   
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The Simulator. The AIM simulator reuses the RTMT architecture [18] with a different set of 
events. Its overall workflow is presented in  Fig. 5.  

Four types of events are considered in this model: 1/2) Receive/Send an image from/to the 
external environment; 3) propagate excitement from excited neurons of the given field to all 
unexcited neurons connected with them through synapses, and excite these neurons if the 
accumulated potential is high enough; and 4) unexcite all excited neurons of the given field. 

As already mentioned above, the simulation process is controlled by a list of events 
EventList ordered w.r.t. their time stamps: 0, t1, t2, t3,... and assembled into same-time event 
groups. The main simulation loop consists in advancing the system time counter to the nearest 
time stamp of the events in this list and processing the events of this group one after another, 
which may produce new events with the same or later time stamp.  

 
Fig. 5. The overall workflow of the AIM simulator 

The main loop reiterates until the list of events becomes exhausted or the overall time limit 
for system time is reached, or a fatal error was encountered.  

Conclusions. The described simulator is a relatively simple but powerful tool for studying 
various RNN structures and various combinations of pulse propagation paths and RNN 
parameters under various circumstances. It allows to easily specify the respective user interfaces 
and interoperate with other powerful tools for elaborated representing and visualization of 
experimental results.  

The described programming solution based on the event list structure turned out to be both 
effective and efficient, so it's worth for reuse in other applications or subject domains.  The 
described simple system log allows for relatively easy detecting violations and errors in the 
simulation process and helps in debugging of the simulator and its input data. 

The simulator demonstrated acceptable performance on a regular laptop with relatively 
small RNNs of up to one million of synapses. Its performance can be even further improved with 
the assembler option offered by most Forth systems, which allows for direct programming of 
performance critical words in assembler, thus ensuring the most efficient realization of such 
critical data structures and respective processing means. 

The application area of the AIM program is R&D of associative memory mechanisms for 
development of the respective hardware with improved characteristics and reliability. Future 
work will be focused on developing a variety of interfaces and typical solutions, as well as 
accumulating and analyzing the results of experiments with various RNN structures and data. 
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Abstract

An industrial control system written in Forth is described, using multiple techniques 
introduced in previous Euroforth presentations.

1. Introduction

Commercial laundering is possibly the largest industry to be almost invisible. Have 
any of you ever considered how clean sheets miraculously appear on your hotel bed 
every morning? There are a lot of hotel beds, even in a small place like Reichenau. To
wash all those sheets, one needs a serious washing machine. The machine in your 
back kitchen perhaps takes a 5kg load, every 90 minutes. A real washing machine 
takes a 100kg load, every 90 seconds. If you'd like to buy a new one, you won't get 
much change from €1m.

2. Economics

Buying a new washing machine is a major investment. To make a return on that 
investment, you need to keep the machine in continuous operation over a period of 
many years. The machines are therefore made of high quality materials, and arranged 
so that parts that wear out, such as bearings, can be easily replaced. The machines use
large quantities of energy, water and chemicals, which means that a sophisticated 
control system is needed to minimise costs and maximise profitability. 

The mechanical life of a high quality machine can be 20 years or more. But the rapid 
improvements in automation technology in the past ten years, means that control 
systems of older machines have become obsolete, and spare parts are very hard to 
source. This has created a lively market for automation system upgrades.
Option a) Buy a new machine for up to €1,000,000
Option b) Keep your old machine and buy an automation upgrade for €30,000
This is a compelling economic argument.

Tunnel Vision - EuroForth 2016 Page 1 of 6
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3. Machine description

A typical CBW - this is a 50kg 14 compartment model, capable of washing up to 35 tonnes per day

Most modern high-throughput washing machines are Continuous Batch Washers 
(CBWs) - commonly known as "Tunnel" washers. They essentially consist of a long 
cylindrical tube containing a mechanism similar in action to an Archimidean screw. 
The screw oscillates  for a period, to give the washing action, then performs a 
complete rotation to transfer the wash load from one section to another. Various 
valves enter the cylinder in places, to supply and drain water, introduce chemicals, 
and inject steam for heating. 

An array of pumps move water between various sections, and a high proportion of 
water is recycled. There may be water level sensors, temperature sensors and possibly
pH sensors. 

Soiled washing is delivered to the machine from an overhead rail conveyor system. 
Clean washing is passed to a press or centrifuge, then to an array a large tumble 
dryers. 

The normal operation of the entire installation is completely automated.

Tunnel Vision - EuroForth 2016 Page 2 of 6
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4. Traditional automation solution

All the actuators and sensors are connected to a programmable logic controller 
(PLC). All machine control is carried out by the PLC, which is programmed in one of
the IEC 61131-3 family of languages. A Human-Machine Interface (HMI) display is 
used to show information to the operator, and to enable wash program parameters to 
be entered. The HMI is typically programmed in a vendor-specific WYSIWYG 
environment in which display elements are directly linked to PLC registers.

5. Limitations of the traditional solution

All washing machines are different, according to original manufacturer, capacity, 
water flow diagram, sensor requirements, and inlet / outlet interfaces. Therefore, a 
certain amount of new software is required for every machine, and software 
productivity is therefore an essential consideration for an economical automation 
solution. A PLC is clearly necessary for the physical connection of sensors and 
actuators - but it has been demonstrated that programming in IEC 61131-3 is 
extremely inefficient when compared to a highly flexible language such as Forth. The
HMI programming method is highly restrictive in both style and content.

6. A better automation solution

From a software point of view, the only advantage of programming in the PLC, is that
it is "hard" real time. But for an application like a tunnel washing machine, only a 
very small number of functions require hard real time, and these can be standardised. 
For all other functions, "soft" real time is adequate. This includes all the most 
complex functions such as selection and calculation of chemical proportions, and all 
functions that might need different treatment for different machines. All these 
functions can be handled much more easily in Forth. 

Therefore, instead of using a vendor-specific HMI display unit, we opted for a 
functionally standard PC. Although the PCs we use are fairly standard from a 
programmer's perspective, they are in fact specialised industrial PCs, which are 
rugged, fanless, and have multiple connectivity options. A standard touchscreen is 
also used. 

The actual machine control (except for the few critical hard real time functions) all 
takes place within a high priority thread within the same applications program as the 
main display. This technique has been proven over many years in a Windows 
environment. However, in the past few years, it has become increasingly difficult to 
structure reliable automation programs in Windows. Recent favourable experience 
with Linux (but for display only programs) prompted us to make a bold decision, to 
use Linux for the first time in a mission-critical automation environment.

Tunnel Vision - EuroForth 2016 Page 3 of 6
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7. Program structure

8. How to program a CBW (it's simple!)

Tunnel Vision - EuroForth 2016 Page 4 of 6

: (MAIN-LOOP)
  LEVELTIMERS \ Service water level timers
  MACHINE \ Overall machine control
  PUMP1 \ Control pump 1 (fresh water in)
  PUMP2 \ Control pump 2 (flush water into compartment 1)
  PUMP3 \ Control pump 3 (tank 2 to compartment 8)
  PUMP4 \ Control pump 4 (tank 2 to tank 1)
  PUMP5 \ Control pump 5 (tank 3 to tank 1)
  PUMP6 \ Control pump 6 (tank 4 to compartment 12)
  LINTMOTOR \ Control lint motor
  WEIRBOXES \ Control weir boxes
  REFRESH12 \ Control fresh water to tanks 1 & 2
  RINSE12 \ Control compartment 12 rinse water
  RINSE13 \ Control compartment 13 rinse water
  RINSE11 \ Control compartment 11 rinse water
  DOSING \ Control dosing
  ROTATION \ Control rotation
  LOADING \ Control loading
  PRESS \ Control press
  STEAM \ Control steam  
  ALARMCANCEL \ Control alarm cancel
  TRACKING \ Track loads through shuttle and tumblers
  RAILCOMS \ Monitor rail comunications
; ASSIGN (MAIN-LOOP) TO-DO MAIN-LOOP
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9. Result and conclusion

a) Soft real time control is not only feasible in Linux, it is actually much more stable 
than it is in Windows.
b) Moving the control elements from the PLC to the PC greatly simplifies the 
communications, removing the barrier between control and visualisation.
c) It is much quicker and more efficient to program the machine control in Forth than 
it is in IEC 61131-3.
d) The look and feel of the visualisation received much more favourable comments 
from the customer and the operators, when compared with standard HMIs.

Tunnel Vision - EuroForth 2016 Page 5 of 6
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Abstract

Forth can be used to formulate a simpli�ed but fully general state-

ment of the halting problem and to formulate a short and simple proof.

Keywords: Forth, halting problem, proof

1 Introduction

In his 1936 paper �On Computable Numbers�, Alan Turing formulated the
idea of a Turing machine and its tape as a way of describing �e�ective proce-
dure� and showed that there were some limitations in such machines. A slight
variation in the limitations that Turing demonstrated gave us the �Halting
Problem". This phrase may ha�rst have appeared in the 1958 textbook Com-

putability and Unsolvability by Martin Davis, but the problem is generally
attributed to Turing due to its closeness to the material in his paper. It
shows that no Turing machine can exist such that, if supplied with the de-
scription of another arbitrary Turing machine S and its data (tape) D, would
be able to predict whether S would eventually come to a halt if activated on
D. Given that we recognise Turing machines as representing computations
in a general sense, it tells us that no program can be written which can take
another program S and data D as input and reliably tell us whether S will
halt when executed on data D.

In this paper we �rst formulate a slight simpli�cation of the halting problem
in Forth. We then discuss what the mathematical implications would be if
a solution to the halting problem, in the form of some program H, did exist,
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showing that this would provide a e�ective procedure for demonstrating the
truth of mathematical propositions.

We then give a Forth based proof of the halting problem, and set a variation
of the problem as an exercise.

2 Describing the halting problem in Forth

When a Forth program is executed from the keyboard it either comes back
with an �ok� response, or exhibits some pathological behaviour such as re-
porting an error, not responding because it is in a n in�nite loop, or crashing
the whole system. We classify the �ok� response as what we mean by �halt-
ing�.

We specify a putative Forth program H by its stack e�ect:

xt → f , f will be true if and only if execution of xt from the current state
would halt.

Note that we do not talk about the application of a program to its data, but
it is implicit that there is a stack where any data required by the execution
of xt may be found.

Were H to exist, we could use it as follows:

4 2 ′ /H .

�−1 ok
4 0 ′ /H .

�

0 ok

3 Implications of the existence of H

Fermat's last theorem states that for any integer n > 2 there are no integers
a, b, c such that:

an + bn = cn

Fermat died leaving a note in the margin of his notebook saying he had found
a truly marvellous proof of his theorem, but this proof was never found. All
subsequent attempts proof failed until 1995, when Andrew Wiles produced
a proof 150 pages long.

However, with the aid of our program H we could have investigated Fermat's
last theorem by providing a Forth program FERMAT which searches ex-
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haustively for a counter example and halts when it �nds one. Then we could
have proved the theorem by the execution:

′ FERMAT H .

�

0 ok

This tells us the program FERMAT does not halt, implying that the search
for a counter example will continue forever, in other words that no counter
example exists and the theorem is therefore true.

In the same way we could explore any mathematical conjecture by writing
a program to search exhaustively over the variables of the conjecture until a
counter example is found. Then use H to determine if the program fails to
halt, in which case there is no counter example, and the conjecture is proved.

4 A proof of the halting problem in Forth

Traditional proofs of the halting problem and friends rely on a diagonalisation
argument - see �8 of Turing's paper. We will permit ourselves a more direct
approach.

We assume a program H exists with stack e�ect xt → f where f will be
true if execution of xt halts, and false otherwise.

We specify a program IH ( xt → ) which inverts the halting behaviour of
xt , i.e. it halts if execution of xt would fail to halt, and it fails to halt if
execution of xt would halt. We can de�ne this program by:

: IH ( xt → ) DUP H IF BEGIN AGAIN THEN ;

We then consider whether ′ IH IH will halt.

When we execute ′ IH IH the invocation of H within IH �nds ′ IH ′ IH on
the stack, so it will report whether ′ IH IH will halt.

If we assume H returns true, reporting that ′ IH IH will halt, then IH will
enter a non-terminating loop, so we must discard this assumption.

If we assume H returns false, reporting that ′ IH IH will not halt, the in-
vocation of H in IH must have yielded false, which would yield immediate
termination. Again we must discard this assumption.

So we are forced to reject our assumption that the program H exists.
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5 A similar non-existence proof for the zero

test program - exercise

Turing considered a the analysis of a slightly di�erent machine, one supposed
to tell whether a Turing machine with a given tape will ever output a speci�c
symbol, say a zero, to that tape.

We adapt this to Forth by investigating whether a program Z could exist
with this speci�cation:

xt → f , f will be true if an only if execution of xt leaves a zero at the top
of the stack.

Exercise: Prove that no such program Z can exist.

6 Conclusion

To demonstrate the halting problem in Forth we assume the existence of a
program H xt → f , f is true if and only if execution of xt halts. We then
use H to de�ne a program:

: IH ( xt → ) DUP H IF BEGIN AGAIN ;

and we show IH cannot exist by a reductio ad absurdum obtained from
considering execution of ′ IH IH .

This approach is very uncluttered, due to the minimalism of Forth, but also
di�ers from other approaches to the halting problem in that it does not
require formulation in terms of a program acting on given data - with our
approach, using a stack, the presence of any data required for our arguments
can be left implicit.
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An Axiomatic Approach to Forth 

 

 

1. Introduction 
 

Forth has traditionally been implemented by writing a certain number 

of code words in assembly language, out of which the remainder of the 

Forth dictionary is built up.  Forth virtual machines may implement 

code words in C or another high level language.  Forth processors may 

offer instructions that correspond directly to code words. 

 

Traditionally there have been few constraints on code words.  ANSI 

Forth defines the behaviour of high level Forth words and leave 

implementation details to the system designer.  This approach has its 

benefits, but also leads to certain practical problems. 

 
Firstly, mature Forth systems that are ANSI compliant may actually 

behave differently, especially when programmed at a “technical” 

level.  

 

Secondly, implementers of new FORTH systems, virtual machines or 

Forth processors have to “make it up from scratch” every time. 

Whether the resulting Forth systems are truly ANSI compliant cannot 

be tested until after completion. 

 

Thirdly, there is no straightforward way of porting mature Forth 

implementations to new targets. Each time new, machine specific, code 

words must be written and somehow tested before the porting of Forth 

itself can begin. 

 

2. A conceptual viewpoint 

 

A conceptual objection may also be made: Forth has been long proven 

to “work” as a programming language, but because the code words upon 
which the implementation of every Forth system depends are arbitrary, 

there is not a certain foundation to the language. 

 

On the other hand, there is an opportunity here: Forth has no syntax 

so the behaviour of Forth words can be completely defined in terms of 

their effects, irrespective of the context in which they occur. So it 
should be possible to determine a completely deductive chain of logic 

from the most fundamental underlying elements of Forth through to 

ANSI Forth words, via a well-defined set of code words. 
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3. Objectives of the project 

 

This project aims to take a deductive approach to the definition of 
Forth from conceptual underpinnings. There are four stages 

 

(A) Elemental structures (“structures”) 

 

Identify and document the elemental structures of Forth at a 

conceptual level.  
 

“Structures” in this context means something akin to “physical 

entity”, or perhaps “mechanical entity”, rather than just data 

structures in the traditional sense. Hopefully the intended meaning 

may become clearer through the following discussion. 

 

Some structures are explicit in Forth (e.g. the parameter stack), 

while others are implicit (e.g. the program counter, system memory, 

or the locus of arithmetic logic). Yet others may require more 

careful thought. For example, is the return stack a single elemental 

structure or is it actually the mapping of multiple conceptual 

elements (a LIFO store accessed with >R and R> and a subroutine 
return program counter store) to a single implementation entity?  

What kind of structure is the Forth dictionary itself? 

 

The objective of this stage will be to “find” all of the elemental 

structures that underlie what we commonly understand as Forth, to 

properly separate them, and to describe them concisely and 

rigorously. 

 

(B) Elemental operators (“operators”) 

 

Identify the elemental operators which act on the structures and 

document them by stating their effects. 

 

Again some elemental operators make themselves very evident and in 

fact are cognates with Forth words. For example, “+” is an operator 

that acts on the parameter stack, the locus of arithmetic logic, and 

on the parameter stack again.  

 
Other operators are less obvious, for example is there an operator 

“BNE”, that acts on the program counter conditionally depending on 

the value held at the top of the parameter stack? 

 

The objective of this stage will be to find all of the elemental 

operators that we believe comprise Forth and document them in the 
form of a table that shows their impact on the elemental structures. 

 

This stage is likely to be highly iterative with the identification 

of elemental structures.  For example, when we consider “BNE”, if it 
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is an operator, does it imply there is also a structure that is the 

locus of logical comparison? 

 
Referring to the title of this RFC, the elemental structures and 

operators might loosely be considered a set of “axioms” for Forth. 

 

(C) Code words 

 

The next stage of the project is to bring together the structures and 
the operators into a suitable set of Forth words from which a 

complete Forth implementation can be developed. 

 

The code words serve as the abstraction layer to provide “Forth-like” 

access to the elemental structures and operators.   

 

Some code words may map directly onto individual operators (perhaps 

“+” for example).  Others code words will be combinations of 

operators, acting serially or in parallel. 

 

The code words will need to take account that there may be 

differences between the data width of the Forth system (e.g. 32 bits) 
and the data width of the underlying structures (e.g. 16 bits or 8 

bits).  This project does not intend to prescribe any expected data 

width at either the structure or the Forth system level. 

 

From a practical perspective, code words may be implemented in a 

machine-dependant manner in the language of the underlying system, as 

has always been the case.  (That language might be C for a Forth 

virtual machine, assembly language, or the primitives of a Forth 

processor.)  However, the implementation of the code words will no 

longer be arbitrary because (i) the set of code words will be 

explicitly defined and (ii) the function of each code word will be 

completely specified in term of the fundamental structures and 

operators. 

 

This stage of the project is likely to be rather judgmental.  The 

optimally chosen set of code words is unlikely to be the minimal set 

(for example there is actually no need of “+”, provided we have “0” 

and “-”, but is this a sensible economy?).   
 

A staging post of this phase in the project is likely to be the 

articulation of a set of policies or guidelines for deciding which 

words should be defined in terms of the fundamental structures and 

operators (the code words) and which in terms of other Forth words 

(the remainder of the dictionary). 
 

(D) Forth implementation 

 

Finally, the code words can be leveraged to develop an ANSI Forth 

implementation. 
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4. Working approach 

 
(A) Relative weighting of effort 

 

I anticipate that the first two stages, finding the elemental 

structures and operators likely represents 60% of the effort that 

would be required.  Although a first draft can no doubt be drawn up 

quickly, consideration of subtle points and generally iterating and 
polishing the thinking will take much more time.  The third stage, 

the code worlds is perhaps 25% of the effort, and much of that spent 

on consideration of words at the boundary between “the code” and the 

rest of the dictionary.  The final ANSI Forth implementation, whilst 

probably the greatest number of written lines, may only be 15% of the 

effort if the Forth implementation is limited to the CORE wordset and 

a few others, and good advantage is taken of readily available prior 

work. 

 

(B) Verification 

 

It will be necessary to verify the results of each stage.  A number 
of possible approaches exist and the actual verification approach 

adopted will depend on the preference of the project participants. 

 

Firstly, there is the possibility of using some sort of “logical 

calculus” to prove results in a manner similar to pure mathematics.  

Although this approach has been adopted before, particularly in 

relation to verifying stack operations, experience suggests that such 

an approach is likely to prove unwieldy in practice and that the 

difficulty of developing the “calculus” in the first place will 

probably exceed its benefit. 

 

Secondly, there is the use of informed debate to discuss critical 

decisions, not just in terms of functionality but also from the 

perspectives of desirable aesthetics and symmetry. We can call this 

the “philosophical” approach.  Hoc tam ars quam scientia est.  

Examination from an aesthetic perspective will be invaluable to for 

an elegant result. 

 
Thirdly, there is the mechanical approach.  By explicitly simulating 

(perhaps with pencil and paper at first) the structures, operators 

and code words it should be possible to verify the effect of any 

sequence of operations.  The mechanical approach needs to be alert to 

“corner cases”, and here again there is a role for informed debate as 

a source of suitable challenge. 
 

Finally, and this is really an extension of the mechanical approach, 

a working Forth system built on these foundations will help to 

convince that the foundations are satisfactory. 
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5. Uses and benefits 

 

It is intended that the four components that will be developed in 
this project (the structures, operator, code words and ANSI Forth 

implementation) may serve as an “axiomatic” reference model that 

enhances and clarifies the Forth language.  It is not intended that 

they should be advocated as “standard”, or that they should proscribe 

other approaches.  If the reference model is intellectually appealing 

and helpful in itself, that will be justification enough for the 
effort expended. 

 

The root of my own interest in this project is my experience of 

developing an instruction set and Forth system for the N.I.G.E. 

Machine.  In the last few years I have become interested in how Forth 

constructs can be visualized as structures and then taken from 

software into hardware. This approach has allowed exception handling 

and multitasking to be implemented as atomic machine language 

instructions in the N.I.G.E. Machine. 

 

Ulli Hoffmann mentioned to me some time ago how a Forth meta-compiler 

could be used to “make seamless” the Forth held in RAM and that 
included from source files on SD-card.  I now wish to extend the 

Forth system software and before doing so it would be expedient to 

migrate the N.I.G.E. Machine to a meta-compiled system.  At the same 

time, I would like to re-examine and potentially reconfigure the 

N.I.G.E. Machine instruction set.  Both of these aims will be better 

accomplished in the light of a conceptually rigorous approach to the 

fundamental structure of Forth.  Hence my wish for a reference model 

with axiomatic foundations. 

 

I believe the reference model could also be interesting to anyone 

working with Forth virtual machines, since there is really very 

little difference between a Forth processor in hardware and a Forth 

virtual machine in software. 

 

The reference model might be helpful to anyone who wishes to use 

Forth on the multitude of new microprocessor-based development boards 

since consistent system behaviour will be assured. In addition, 

perennial practical difficulties such as efficient Forth file 
transfer can potentially be addressed at a low level by defining 

interfaces at the level of elemental Forth structures and building 

suitable operators for their handling deep into the language. 
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I described the first version of Holon in the paper "Not Screens nor Files but Words" 
at EuroFORML 1989 in the village Forth near Nuremberg. Holon was warmly 
received, and I naively expected the concept to spread in the community and spawn 
an evolution of similar systems. That did not happen. Instead, Holon began its long, 
exciting non­standard voyage around the Forth galaxy.  
 
Please join me for a visit to planet Holonforth and a look at the results of a little 
refactoring of Moore's classical Forth system.  
 
The main change concerned the rôles of editor and compiler regarding the 
dictionary. In Holon, the editor creates the dictionary, whereas the compiler 
concentrates on compiling and optimizing and merely adds the code pointer.  
 
In Holon86, a Smalltalk­inspired fully integrated Forth IDE, the source is handled in a 
structured browser, with immediate access to and change of every word in the target 
program, including its code. The target resides in a separate code space 
independent of the development system and is controlled by an umbilical connection.  
 
As a particularly useful feature, the permanently available dictionary allows selective 
loading of only the code that is used in the target. Which, by the way, lets you use 
Holon86 as a Literate Programming system with intrinsic TANGLE.   
 
HolonS is a multi­platform source code management system that uses a real 
database to implement the Holon dictionary structure and browser. The source is 
presented in a book structure of chapters, sections, and unit pages. The chapters 
are copied to external files, and the files are updated with every change in the 
browser. Thus you have the source stored in a database ­ with all the pleasant 
features that I want to illustrate ­ yet constantly available in source files for code 
production.  
 
For a closer inspection of planet Holonforth, see www.holonforth.com. 
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Abstract

A section is a contiguous region of memory, to which
data or code can be appended (like the Forth dic-
tionary). Assembly languages and linkers have sup-
ported multiple sections for a long time. This paper
describes the benefits of supporting multiple sec-
tions in Forth, interfaces and implementation tech-
niques.

1 Introduction

A section is a contiguous memory area, to which
new data can be appended at the end; the Forth
dictionary is a section. Assemblers and linkers
have supported multiple sections or segments for
many decades [Lev00]. In contrast, Forth tradition-
ally has had only one section; some systems have
had separated headers (another section), and cross-
compilers have uninitialized memory for buffer:,
but by and large, Forth systems have made do
with just one section: the dictionary. With mul-
tiple sections, each section has it’s own start, dic-
tionary pointer (what here reads), and end (used
in unused, but otherwise not used much).

This paper presents various uses of sections and
why they are better than the current workarounds
(Section 2), presents a programming interface (Sec-
tion 3), and discusses various implementation ap-
proaches (Section 4).

2 Uses

2.1 Nested structures

You often build one structure A in memory, and in
the middle of that, have to build some out-of-line
part B, and afterwards continue building A. If you
have two sections, that is easy: you put A in one
section, and B in the other section. In Forth, you
traditionally use one of the workarounds:

• You select a representation for A that does not
require contiguity.

∗Correspondence Address: Institut für Computer-
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• You put B in allocated memory. Unfortu-
nately, that usually means that B does not sur-
vive a savesystem, and it’s also cumbersome
if B is a growable structure.

A particular instance of this problem is when A
is a colon definition under construction, and B is
the data for a string or floating-point literal. Forth
compilers traditionally work around this by not re-
quiring contiguity.
A typical solution is to call a word such as (s")

or flit, and follow that with the inline data. These
words get the return address from the return stack,
use that to push the relevant data on the data/FP
stack, then increment the return address to skip
over the data, and then either return to the changed
return address or jump to it. Both ways are very ex-
pensive on modern CPUs, because they cause mis-
predictions from the hardware return stack1: If the
changed address is returned from, the return incurs
a branch misprediction (about 20 cycles on a mod-
ern Intel or AMD CPU); if the changed address is
jumped to, the jump has a chance to predict cor-
rectly, but all outer returns will mispredict once (at
about 20 cycles per misprediction).
A faster approach is to jump across the data, and

then let some code push the data on the data/FP
stack. This does not cause significant mispredic-
tions, but the code is bigger (jump plus inlined lit-
eral code).
Finally, if you put the data elsewhere (i.e., a dif-

ferent section), you get fewer mispredictions, and
you save the space for the jump around the data.
As an example of the benefit of putting the

data out-of-line, consider the following micro-
benchmark:

\ inline variant

: foo1 123e f+ ;

\ out-of-line simulation

123e fconstant x

: foo2 x f+ ;

defer foo

: bench 0e 100000000 0 do foo loop f. cr ;

1The hardware return stack is not the Forth return stack;
it is a hardware branch predictor that predicts that returns
will return right behind the corresponding calls).
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With VFX2 4.71 on a Core i3-3227U (Ivy Bridge),
the foo1 version takes 48 cycles, 11 instructions
and 1 branch misprediction per iteration, while the
foo2 version takes 6.5 cycles, 7 instructions, and 0
branch mispredictions per iteration. If VFX would
put the floating-point number in foo1 in a separate
section instead of inline, it could achieve the same
performance as foo2.

Quotations are another case of having to build
something else in the middle of a colon definition;
in this case the “something else” is a colon defini-
tion itself. Again, the usual implementation is to
jump around it (used in, e.g., Gforth), and putting
the quotation in a separate section can save that
overhead. In this case, however, two sections are
not sufficient, as quotations can be nested arbitrar-
ily deeply, so you need a whole stack of sections.

Locals are another case where you have to build
some additional stuff (in this case, headers) in the
middle of a colon definition; the headers are no
longer needed at the end of the colon definition and
their space can be reclaimed, so the usual inline-
and-skip approach is particularly inefficient here.
Locals in Gforth were developed before sections,
and the code for dealing with that problem is com-
plicated; we foresee it becoming much simpler once
we take advantage of sections, but we have not made
these changes yet.

One way of implementing recognizers is to create
a temporary word for each recognized string, then
treat the temporary word like an ordinary word
(i.e., execute or compile, it), and finally, delete
the temporary if no longer needed [Ert16]. With
sections, this is relatively straightforward to imple-
ment (especially the case when you cannot delete
the “temporary” and have to make it permanent).

2.2 Separate code and data

Most Forth systems still put code and data in the
dictionary in an interleaved way. Since the Pen-
tium (1993) and its separate instruction and data
caches, this interleaving has been a performance
problem on Intel and AMD CPUs (e.g., ). Forth
systems have tried to mitigate this problem by at
least not putting code and data in the same cache
line (by inserting appropriate padding); e.g., VFX
aligns data to 32-byte boundaries, but apparently
64-byte alignment is necessary on recent Intel CPUs
to achieve the desired effect. And in some cases an
important padding is missing, resulting in 350–500
cycles per iteration in VFX and SwiftForth:

0 value x

2I use VFX for the performance results in this paper,
because it is a high-performance system, where one would
expect good performance also for the micro-benchmarks I
present.

: foo 10000000 0 do 1 x +! loop ;

here to x 0 ,

foo

With sections, the data can just stay in the or-
dinary dictionary section, and the code can have a
separate section (or a stack of them, for quotations),
thus separating code and data for good. Moreover,
systems can get rid of all the padding they insert at
the moment to work around this problem.

2.3 Further uses

The uses above are not an exhaustive list. When I
presented sections to other Gforth developers, they
came up with uses I had not thought of during de-
velopment (e.g., simplifying the locals implementa-
tion).

3 Progamming interface

In the following, “switching a section” means that
the dictionary pointer (what here reports, and
where allot allocates) is now the dictionary pointer
of the switched-to section.
The words for working with sections are:

.sections ( -- )

display all sections

next-section ( -- )

switch the current section to the next section
in the stack, creating it if necessary

previous-section ( -- )

switch the current section to previous section
(the next section still exists afterwards).

extra-section ( size "name" -- )

create a named section stack name.
name execution: ( xt -- )

switch the current section to the first section of
name if there is no outer call to name, or the
next section if there is; execute xt, and switch
the current section back on leaving name.

For multi-tasking, the dictionary and the named
section stacks should have per-task instances that
are instantiated on-demand.
Currently the section implementation in Gforth

only supports the dictionary as a section stack,
named sections without stack, and no proper han-
dling of per-task section stacks, yet.

4 Implementation

The implementation of sections for use within a ses-
sion is pretty straightforward: Just a data struc-
ture with start, end, and section-dp per section,
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and ways to manage named sections and a stack
of sections.
Things get more interesting when it comes to im-

plementing savesystem. There are two basic op-
tions:

• Keep all the sections, and preserve them into
the next session.

• Collapse all the sections into one (the dictio-
nary), and start the next session with just the
dictionary, and with empty named sections.

The current implementation in Gforth takes the
collapsing approach. One advantage is that the
loader (which does not know about sections) does
not need to be changed.
Traditionally, Gforth creates a relocatable image

by running Gforth twice and doing the same things,
and finally saving one non-relocatable image per
run; the non-relocatable images are for different ad-
dresses, and by comparing them, we can tell if a
cell is an address (then they differ by the difference
in image start addresses), or something else (then
they do not differ); if they differ, but by a different
amount (e.g., because the cell contains the address
of an allocated piece of memory), the process out-
puts a warning.
With sections, this process had to be enhanced

as follows: When saving an image, first the dictio-
nary is written, then the other sections, and sec-
tions meta-data last. The sections meta-data con-
tains the length and the original start address of
each section, and also allows us to determine where
in the non-relocatable image the sections are. If two
cells differ, the comparison program looks for each
image, whether the value of the cell, interpreted as
address points into one of the sections, and com-
putes the offset into the collapsed image from that;
if, for both images, this gives the same offset o, then
the cell is a relocatable address, with value image-
start+o, and that’s what the comparator stores in
the relocatable image. I.e., in the relocatable image,
the original section structure is no longer present.
Of course, that is not the only option. E.g., a

system without relocatable images could just save
each section as ELF or COFF section with a fixed
virtual start address. The OS loader would then
load all the sections where they belong (untested).

5 Conclusion

Supporting multiple sections in a Forth system pro-
vides a number of benefits. Forth systems have used
workarounds to deal with the absence of sections,
but these workarounds have a cost both in complex-
ity and sometimes also in performance that can be
eliminated by adding sections.

The interface for working with sections is simple,
consisting of just a few words.
The implementation is not that complex, either.

Dealing with sections across savesystem does take
some additional effort, however.
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Abstract

The Forth text interpreter processes words and
numbers. Currently the set of words can be ex-
tended by programmers, but not the recognized
numbers. User-defined recognizers allow to extend
the number-recognizer part, too. This paper shows
the benefits of recognizers and discusses counterar-
guments. It also discusses several design decisions:
Whether to define temporary words, or a set of in-
terpretation, compilation, and postponing actions;
and whether to hook the recognizers inside find or
in the text interpreter.

1 Introduction

A strength of Forth is its extensibility. You can
define new words to build an application-specific
language, and then program in that language (or
at least that’s a frequently-told tale). However, the
text interpreter conists of two parts: dealing with
dictionary words and dealing with numbers; and
while the former is extensible, the latter is not (in
standard programs).
A recognizer tries to recognize a class of strings

(e.g., numbers), and, if successful, provides the nec-
essary information for text-interpreting it in the rec-
ognized sense; e.g., push the value of the number
during interpretation or (for compilation) at run-
time.
In this paper, we first look at the benefits of in-

troducing recognizers (Section 2), then discuss some
counterarguments (Section 3. We also look at two
design decisions: Whether to let the recognizers de-
fine temporary words or or a set of interpretation,
compilation, and postponing actions (Section 4),
and where recognizers should hook in (Section 5).
Finally, we look at the history of recognizers (Sec-
tion 7).

2 Benefits and Uses

This section describes some benefits of implement-
ing recognizers, in particular some uses.
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2.1 Factoring of numbers

Gforth’s (integer) number parsing has been a hor-
rible mess. A long time ago I tried to refactor it to
be less horrible, but the result was not much bet-
ter; I particularly dislike the words with variable
stack effects due to the words handling both single-
cell and double-cell numbers. Other Forth systems
have similar horrors in this area. This failure is
probably due to my shying away from refactoring
the text interpreter itself.

Recognizers provide an easy way to solve the vari-
able stack-effect problem: Have one recognizer for
single-cell numbers and one for double-cell numbers.
Of course this kind of factoring is also possible with-
out support for user-defined recognizers, but the
implementation difference to also supporting user-
defined recognizers would be small.

That being said, the current implementation in
Gforth (by Bernd Paysan) uses one number recog-
nizer that calls the not-much-better-factored words,
but now that is easy to change.

2.2 Floating-point numbers

Standard floating-point numbers require a recog-
nizer for the FP numbers. Most Forth systems
initially just support the (integer) number recog-
nizer, and add the FP recognizer at a later point in
time (sometimes only after user intervention); they
typically use a hook for this that is used for this
particular purpose. User-defined recognizers are a
generalization of this principle.

2.3 Other literals

SwiftForth supports various non-standard ways
to write doubles, such as 2016-09-07, 9/7/2016,
7.9.2016, which is supposedly good for writing dates
or telephone numbers, but, as you can see from
these examples, where we get three different dou-
bles for the same date, the technique has significant
limitations. A full-blown recognizer for dates (or
three, one for each date syntax) will interpret the
correct fields as year, month, and day, depening on
the separator character, and also perform the con-
version into an appropriate format.
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2.4 Parsing words

In the absence of user-defined recognizers, people
have written parsing words as a workaround, e.g.

char a \ made unnecessary by ’a’

[char] a \ made unnecessary by ’a’

’ word

[’] word

s" some string"

Some people have even claimed that the pars-
ing words are the Forth way to do such things, but
the fact that Forth originally had a (non-extensible)
number recognizer and no s" is counterevidence to
this claim.
s" has the problem of surprising behaviour in

some corner cases in many systems (e.g., due to
state-smartness [Ert98] or because the replace-
ment of state-smartness in some implementations
does not cover all corner cases, either).
’/[’] does not have corner-case problems, but

it has the problem that the frequent case of cut-
ting and pasting code between interpreted code and
compiled code requires changing the code.
By adding a recognizer for "some string", we

get rid of the corner cases. One unusual thing here
is that the recognized string can extend across a
white space; while recognizers get a parse-name-
parsed string as parameter, they can do their own
parsing. However, that parsing is always done
at text-interpret time, avoiding the problems of
state-smartness etc.
Likewise, we can add a recognizer that recognizes

’word and produces the xt of word, and it will work
like ’ word interpretively, and like [’] word while
compiling.

2.5 to

Parsing words are not just used for literals; to is
also a parsing word that has the same problems as
s" (except that the corner cases are ambiguous con-
ditions in the standard), and recognizers can also
be used to replace to. Gforth has a recogizer that
recognizes ->x , and that is equivalent to to x (for
locals, values etc.) and is x (for deferred words).

2.6 Dot-Notation Parser

One problem that Forth has had is the naming of
structure and object fields. Frequent field names are
next, count, val, left, right, but you normally
don’t want to define them more than once (and, in
the case of count, the name is already taken).
One workaround has been to include the struc-

ture name in the name, e.g. list-next, but
with inheritance of fields in object-oriented pro-
gramming, this does not work so well: e.g.,

you would have intlist-val for the val field,
but intlist-next would not be defined (instead,
list-next). Some object-oriented systems (in par-
ticular, objects.fs [Ert97]) work around this prob-
lem by putting the fields in class-specific wordlists
and changing the search order appropriately, but
that restricts field access to only the current object
(or at least the current class).
Therefore, a desired and missing feature in Forth

has been to change the search order for one word
only, in order to use the right field word (among a
number of such words with the same name) with-
out too much ado. One example of this desire is
the Prelude concept [Mah98]; another is the dot-
notation parser of ClassVfx OOP [MPE16, Section
29.11]. In the dot notation, if you have a type Point
with field x and an instance MyPoint of type Point,
you can access the field x either with MyPoint.x or
with MyPoint Point.x.
A dot-notation parser can be implemented as a

recognizer.

2.7 Postpone, ’, and [’]

In standard code, when you want to postpone a lit-
eral, you cannot do it directly, but have to find a
workaround. E.g., write 5 postpone literal in-
stead of postpone 5; that’s also true for literals
produced by parsing words: instead of postpone

s" bla", you have to write s" bla" postpone

sliteral.
And it’s also true for other things you do with

parsing words: when you want to postpone to

this, you cannot do it directly, but have to define

: to-this to this ;

and then postpone to-this.1

Recognizers (as proposed in the RfD) support
postponeing recognized strings. One benefit is that
this feature allows writing smaller and easier-to-
read code, but the main benefit is that it closes
the hole that made the workarounds necessary.
One recognizer approach (Section 4.1) also sup-

ports ticking recognized strings, so one could write
’15 instead of having to define

15 constant fifteen

first and then writing ’fifteen.

3 Counterarguments

There have been quite a number of negative reac-
tions to the proposal for user-defined recognizers.
They are generally not technical, but nevertheless,
let’s examine some of the arguments.

1If you think that this is a contrived problem, you are
wrong. This problem and this solution occur in objects.fs

[Ert97].
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3.1 Recognizers are not needed

As Section 2 shows, there is a need, e.g., adding
a floating point recognizer or a dot-notation parser.
Currently systems add these things through system-
specific hooks; standardized recognizers would
make it possible to do such things portably, and
define and use them in portable libraries.
You may not see a need for all the features men-

tioned in Section 2, but if there is just one you need
and that your vendor does not provide, the recog-
nizers have paid off for you and for the vendor (who
does not have to develop and maintain the feature
himself).

3.2 People could misuse recognizers

People can already misuse a lot of things in Forth
(e.g., : 0 1 ;), but Forth is not a nanny language.
Forth design centers around responsible program-
mers, so while we will see some cases that most
will consider misuses, it is much more important
whether we will see some good uses. While not ev-
eryone will see all the uses mentioned above as good
uses, as long as there are some that are considered
good uses, it’s a good reason to standardize rec-
ognizers. After a period of experimentation, there
will be a rough consensus on what are good uses of
recognizers and what aren’t.

3.3 Recognizers are an attempt to
make Forth more like C

C does not have a way to extend literals in a user-
defined way, so, in a way, recognizers make Forth
less like C. One could use recognizers to recognize
some C lexical or small syntactic elements, and one
can see the dot-notation recognizer as going in that
direction. But note that people have been doing
that even without standardized recognizers (in a
non-standard way); also note that various people,
including Chuck Moore, Julian Noble, and Andrew
Haley have implemented infix notation or infix pro-
gramming languages in Forth (something that rec-
ognizers do not facilitate), so if a Forth programmer
is determined to go there, leaving recognizers away
won’t stop him.

3.4 Use parsing words! It’s more
Forth-like

Technically, parsing words cause problems: Either
when trying to cut-and-paste between interpreta-
tion and compilation, such as ’/[’], or in corner
cases, such as s". Recognizers avoid these prob-
lems and are therefore preferable. Indeed, one of
the big advantages of recognizers is that they pro-
vide a long-term perspective for eliminating these

problems.

As for Forth-like, recognizers for integers (singles
and doubles) were part of Forth from the start. And
simple ways to allow inputting dates and telephone
numbers were part of the number recognizers of
Forth, Inc. The only thing that was missing was
the possibility to add user-defined recognizers; the
use of parsing words, such as s", is a workaround
for this shortcoming, not a virtue.

4 Implementing a recognizer

This section looks at different implementation ap-
proaches for defining a recognizer. The outside
interface of these implementation approaches can
be made compatible, so these implementation tech-
niques can both be used in the same system if de-
sired.

4.1 Temporary words

A recognized string should behave like a word, so
one way to implement a recognizer is to actually let
it define a word when recognizing a string; e.g., for
a string 123, there is a temporary definition (not in
any wordlist, name not important):

123 constant #123

and the xt of this word is executed in interpretation
state, or compile,d in compile state, like a regular
word. It can also be postponed or ticked.

However, one problem is that, in some of these
uses, the word must be preserved and cannot be
just temporary. After executeing the word, we
no longer need it and can reclaim the memory it
uses; for compile,, it depends on how that is imple-
mented. The classic threaded-code implementation
(just ,) would require that the word is preserved;
however, many modern compilers have an intelli-
gent compile, that compiles constants to literals,
without reference to the compiled word, and there-
fore there is no need to preserve the word in that
case. For postpone and ticking, the word must gen-
erally be preserved.

These words can be created in a separate section
[Ert16], with the space reclaimed if the word does
not need to be preserved.

There remains the problem of knowing whether
the word needs to be preserved when the word is
compile,d. The defining word could leave a flag in
the defined word (or maybe a global flag) that in-
dicates whether the word leaves a reference to itself
when it is compile,d.

As a simple example, the core of a recognizer for
unsigned single numbers looks as follows:
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: (single-rec) ( c-addr u -- nt )

0. 2swap >number 0= if \ it is a number

2drop noname constant lastxt exit then

2drop drop r:fail ;

>Number is used to check and convert the string,
and if successful (0 unconverted characters), an un-
named constant is created and it’s name token (nt)
is returned; if unsuccessful, it returns a failure indi-
cator (r:fail).
There is also a need to switch sections and

perform other management tasks; these are al-
ways the same, so they are factored into a word
rec2-wrapper ( c-addr u xt -- nt ), and the
full recognizer is:

: single-recognizer ( c-addr u -- nt|0 )

[’] (single-rec) rec2-wrapper ;

and this recognizer is added to the recognizer stack
in the second position with:

get-recognizers

’ single-recognizer -rot 1+ set-recognizers

4.2 RfD approach

The temporary word approach is relatively easy to
understand and write, but it puts quite a number
of demands on the system: The system needs to
support another section2, it must be able to cre-
ate words in the middle of another word, possibly
nameless or with their name coming from the stack,
and ideally it should inline the code for that word
when compile,ing it.
While most modern systems have these features

or can add them without too much trouble, for
standardization we may prefer an approach that
puts fewer demands on systems and that does
not require standardizing all the features that the
temporary-word approach requires. The Recognizer
RfD [Tru15] proposes such an approach.
Let’s look at our example of a recognizer for un-

signed single numbers again.

: comp-lit postpone literal ;

’ noop \ interpretation

’ comp-lit \ compilation

’ comp-lit \ part of postponing

recognizer: r:single

: single-rec ( c-addr u -- u2 rec | r:fail)

0. 2swap >number 0= if \ it is a number

2drop r:single exit then

2drop drop r:fail ;

2If only interpretation and compilation of recognizers is
supported, and compilation of the word created by the rec-
ognizer does not leave a reference to that word, then a buffer
for one word instead of a full section is sufficient.

get-recognizers

’ single-rec -rot 1+ set-recognizers

The recognizer single-rec3 looks very similar
to (single-rec) in the temporary word approach,
but instead of putting the number in a newly-
created word and returning that, the number is left
on the stack and in addition r:single is pushed.

R:single is a word defined with recognizer: as
a handle for the three actions, and the text inter-
preter (and postpone) access the actions they need
through r:single:

• When interpreting, just leave u2 on the stack
by executeing noop.

• When compiling, compile u2 as a literal by
executeing comp-lit.

• When postponing, the final compile also hap-
pens with the compilation action, but one level
later, so the compilation action comp-lit is
compile,d. That requires that the data is
transfered from the time when the recognizer
runs to the time when the compilation ac-
tion runs; to achieve that, the postponing part
comp-lit is executed before compile,ing the
compilation action.

For literals, the usual pattern of the actions
is noop for interpretation and the appropriate
literal variant for both compilation and postpon-
ing.

The option for deviating from this pattern is use-
ful for other applications of recognizers, such as re-
placing to.

The RfD does not specify the representation of
r:single. In the current version of Gforth, this is
implemented in a way that is compatible with the
temporary-word approach: r:single returns the nt
of a word, and you can get the interpretation action
with name>interpret; you get the compilation ac-
tion with name>compile; and there is also a field
>vtlit, for the postpone-part action.

5 Recognizers where?

Recognizers can recognize words as well as numbers,
so where should they hook in? There are at least
three answers:

5.1 In find

(or its modern replacement, e.g., find-name). The
benefits of this approach are:

3Matthias Trute would call it rec:single, but I find the
presence of both ”r:...” and ”rec:...” confusing.
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• It’s a very natural fit for the temporary-word
approach: Find returns a word, and so do
temporary-word-creating recognizers.

• Find already has a way to add or remove things
to be recognized: the search order. So rec-
ognizers could be added or removed from the
search order, like wordlists, avoiding an addi-
tional mechanism. However existing code deal-
ing with the search order may not be designed
to deal with various recognizers on the search
order.

The disadvantages are:

• Existing users of find (e.g., cross-compilers)
would be surprised by find recognizing num-
bers, and the user’s own number handling
would be shadowed. That could be worked
around by changing the search order appropri-
ately when calling such users.

• For the RfD approach, the fit is not so great. In
particular, we would now have a find that can
generate additional values in addition to the xt
(or nt for find-name) that it should produce.
In many cases that is probably not a problem,
but in some cases, it would be.

• Also, depending on the way words like
r:single are implemented, and the actual
find replacement that we want to hook in,
there may be a mismatch; viewed differently,
the implementation options for recognizer:

would be restricted (but that is not necessarily
a disadvantage).

5.2 In the text interpreter

The classical text interpreter first tries find and
then tries numbers. In the current Gforth im-
plementation, and in the text interpreter example
given in the RfD, the find and number-handling
parts are replaced by a recognizer-handling part.
The search order search is performed by a word rec-
ognizer in the recognizer stack.
The advantages and disadvantages are the con-

verse of those for the find-hooking approach:
Advantages: find users are unaffected, and the

implementation of recognizers has fewer restric-
tions.
Disadvantages: We need the recognizer stack in

addition to the search order (but don’t need to
worry about existing programs doing bad things to
it).

5.3 As text interpreter hook

Instead of replacing the text interpreter the recog-
nizer handling is added as a hook to the existing

text interpreter. This would make the text inter-
preter more complex and reduce the options avail-
able to the programmer, so it offers only disadvan-
tages, except that some consider it advantageous to
reduce the options available to the programmer.

6 Other design decisions

There are some other design decisions where the
right decision is not obvious, in particular: How to
deal with recognizer stacks; whether to use r:fail,
0, or an exception as a failure indication. These and
other design decisions are discussed at length in the
RfD, which is recommended reading [Tru15].

7 History

System-specific hooks in the text interpreter have
existed for a long time.
In 2003, Josh Fuller used recognizer in the sense

used here, and proposed doing things like recog-
nizing dates and (something like) dot notation by
adding new recognizers4; the ensuing discussion
points out that many systems have mechanisms for
adding new recognizers. In that discussion, Jonah
Thomas considered ways to deal with multiple rec-
ognizers, but not how to deal with interpretation,
compilation, etc. in that context.

In 2007, in a discussion about number parsing
hooks, I sketched some ideas about recognizers
news:<2007Aug4.093801@mips.complang.tuwien.ac.at>

news:<2007Aug4.161609@mips.complang.tuwien.ac.at>.
I did not pursue this idea further at the
time, but Matthias Trute picked it up
and proposed using it for a dot-parser
<0dgjs6-h4e.ln1@wolf.stein.zeit>, and imple-
mented them in amForth [Tru11]. Subsequently,
they were also implemented in Win32Forth,
Bernd Paysan implemented them in Gforth
[Pay12a, Pay12b], and Matthias Trute made a
Forth 200x RfD [Tru15] proposing standardization.

8 Conclusion

User-defined recognizers generalize the Forth num-
ber recognizer and various system-specific hooks in
the text interpreter. They allow to replace parsing
words and their problems (e.g., state-smartness),
write a dot-notation parser, and have other bene-
fits. While a number of people have argued against
user-defined recognizers, I have not seen a technical
argument against them yet.
For implementing a recognizer, we look at two op-

tions: Creating a temporary word is a little easier

4http://compgroups.net/comp.lang.forth/additional-recognizers/734676
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to understand, and you get correct postpone be-
haviour for free, but it requires more infrastructure
from the system, in particular support for a section
for these temporary words and knowledge about
whether compile, produces a reference to the tem-
porary word. The other option, defining interpre-
tation, compilation, and postponing behaviour is a
little harder to understand, but not much longer,
and it requires less infrastructure from the system.
The latter approach has been proposed for stan-
dardization and is preferable for this purpose.
Another design decision is whether to hook into

find or into the text interpreter. While hooking
into find has some advantages, the advantages of
hooking into the text interpreter, in particular with
respect to backwards compatibility, outweigh them.
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The Sockpuppet Forth to C interface
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England
t: +44 (0)23 8063 1441
e: sfp@mpeforth.com
w: www.mpeforth.com

Abstract
As processors become ever more complex and the software we are asked to write becomes
more complex, it takes ever longer to write the basic drivers for an embedded system. A full
digital  audio  chain  is  vastly  more  complex  than  pumping  DAC  output  into  an  audio
amplifier. Silicon vendors provide C libraries to make using their chips easier. Rather than
convert these libraries to Forth, MPE now provides a mechanism to call the C library from
Forth.

Introduction
With  the  ever  increasing  complexity  of  microcomputers  such  as  the  Cortex  cores  and
systems, manufacturers are providing development hardware and software systems based on
C libraries to make using their chips easier. Such libraries reduce the requirement for chip
documentation at the expense of software documentation. This tendency has increased to the
level that C header files include registers undocumented in the chip user manual.

The conventional approach to providing support for development boards in Forth has been to
manually  port  the  C  library  sources  to  Forth.  The  SockPuppet  system takes  a  different
approach by providing an interface solution between Forth and C; the Forth system calls the
underlying C libraries. In turn, this allows the details of the hardware to be abstracted away
by the C libraries,  whilst  allowing the Forth system to provide a  powerful,  uniform and
interactive user interface.

The MPE ARM/Cortex Forth cross-compiler supports calling functions in C or any language
that can provide functions that use the AAPCS calling convention. This is an ARM
convention documented in IHI0042F aapcs.pdf. Calls with a variable number of parameters
(varargs) are not supported.

The example code in both Forth and C is available for the Professional versions of the ARM
Cortex  cross  compiler.  The  example  code  provides  a  simple  GUI  for  an  STM32F429I
Discovery board using sample C code provided by ST and others. The interface is defined for
Cortex-M CPUs only.

This work is directly inspired by Robert Sexton’s Sockpuppet interface:
  https://github.com/rbsexton/sockpuppet
His contribution and permission are gratefully acknowledged.
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How the Forth to C interface works
Both Flash and RAM memory are partitioned, one pair for C and the other for Forth. Because
of the arcane and undocumented nature of start-up for C compiler target code, the initial boot
of the system is performed by the C code in order  to make sure that  the initialisation is
correct.

Every function that is exported from the C world to the Forth world appears as one of a
number of types of call. These words are called “externs”. You can handcraft these words in
assembler,  but  the  MPE  cross  compiler  compiler  includes  code  generators  for  several
techniques. The call format and return values match the AAPCS standard used by ARM C
compilers.

Each calling technique has its own pros and cons. They are discussed in following sections.

• SVC calls. You just need to know the SVC numbers. SVC calls provide the greatest
isolation between sections of code written in other languages. The functions foreign
to Forth are accessed by SVC calls and/or jump tables. The example solution uses
SVC calls for most foreign functions. Regardless of the primary call technique used,
all techniques rely on a small number of SVC calls.

• Jump table. The base address of the table can be set at run time, e.g. by making a
specific SVC call. The calling words fetch the run-time address from the table, given
an index.

• Double indirect  call.  A primary jump table is at a fixed address and contains  the
addresses of secondary tables,  which hold the actual  routine addresses.  The fixed
address and both indices must be known at compile time. This technique is used by
TI’s Stellaris parts and some NXP parts to access driver code in ROM.

• Direct calls to the address of the routine. You need to know the address at compile
time.

There is a practical limit of four arguments if you use SVC calls for the insulation between
Forth and C because Cortex CPUs automatically stack four registers for an interrupt.  The
other interface methods do not suffer from this limit. It is a matter of convention between the
Forth and C code as  to parameter  passing order.  It  can be changed by either  side.  MPE
convention is for the left-most Forth parameter to be passed in R0. This matches the AAPCS
code used by the hosted Forth compilers such as VFX Forth for ARM Linux.

SVC calls
The examples use the MPE calling convention and are illustrated in assembler as well as by
using the code generator. The code generator interface is much to be preferred and preserves
far  more  of  the  information  in  the  C prototype.  The  decision  to  use  the  C prototype  is
deliberate and follows long-established practice in MPE’s hosted systems.

SVC( 67 ) void BSP_LCD_DrawCircle( int x, int y, int r );
\ SVC 67: draw a circle of radius r at position (x,y).

The code generator parses the extern definition above and generates the extern as a function
with three parameters implemented as SVC call 67. If you really want to demonstrate your
assembler prowess, the code below performs the same operation.

65



Sockpuppet Forth to C interface EuroForth 2016

CODE BSP_LCD_DrawCircle \ x y r --
\ SVC 67 draw a circle of radius r at position (x,y).
  mov r2, tos                       \ r
  ldr r1, [ psp ], # 4              \ y
  ldr r0, [ psp ], # 4              \ x
  svc # __SAPI_BSP_LCD_DrawCircle
  ldr tos, [ psp ], # 4             \ restore TOS
  next,
END-CODE

When the SVC call occurs, the Cortex CPU stacks registers R0-R3, R12, LR, PC, xPSR on
the calling R13 stack with R0 at the lowest address. The SVC handler places the address of
this frame in R0/R4, extracts the SVC call number, reloads the AAPCS parameters from the
frame and jumps to the appropriate C function. In this case

void BSP_LCD_DrawCircle(
  uint16_t Xpos, uint16_t Ypos, uint16_t Radius
);

SVC calls provide the highest insulation between Forth and C, but suffer from several issues.
• The SVC call mechanism is part of the Cortex interrupt and exception system. The

assembler and/or C side of this uses code written in assembler to allow the C routines
called from a jump table to to be AAPCS compliant.

• The SVC mechanism is inefficient compared to a direct AAPCS handler.
• Because SVC calls are part of the CPU interrupt mechanism, you have to care how

long a call takes. Playing games with the Cortex interrupt mechanism can fix this, but
is complex.

Jump table
In order to avoid the penalties of the SVC call mechnism, you can make an array of function
pointers in C or assembler and call functions using an index into the table.

jumptable:
dd func0 ; address of function 0
dd func1 ; address of function 1
..

We still need to know the address of the jump table. This is found using an SVC call (15) and
stored in a variable. The jump table address could be hard-coded, but given the horrors of
perverting link map files and the like, the overhead of a single SVC call is preferable.

SVC( 15 ) void * GetDirFnTable( void );
\ Returns the address of the jump table.
variable JT \ -- addr
\ Holds the address of the jump table.
JT holdsJumpTable
\ Tell cross compiler where jump table address is held.
: initJTI \ -- ; initialise jump table calls
  GetDirFnTable JT ! ;
JTI( n ) int open(
  const char * pathname, int flags, mode_t mode
);
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If constructed in assembler, the SVC despatch table and the main jump table can be the same
table; it’s just a question of what you put in the table.

Double indirect call tables
Some vendors, particularly TI, use a table of tables approach. The sub-tables provide the API
for a particular peripheral, e.g. UARTs. Before use, you have to declare the base address of
the primary ROM table used for calling ROM functions. For Luminary/TI CPUs, this will
probably be:

$0100:0010 setPriTable

Now you can define a set of ROM calls, for example, again for a TI CPU.

DIC( 4, 0 ) void ROM_GPIOPinWrite(
  uint32 ui32Port, uint8 ui8Pins, uint8 ui8Val
);

where:
• ROM_APITABLE is an array of pointers located at 0x0100.0010.
• ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
• ROM_GPIOPinWrite is a function pointer located at ROM_GPIOTABLE[0].

Parameters:
• ui32Port is the base address of the GPIO port.
• ui8Pins is the bit-packed representation of the pin(s).
• ui8Val is the value to write to the pin(s).

To call this function, use the Forth form: 
  port pins val ROM_GPIOPinWrite

Direct calls
Where the address of the routine is known at the Forth compile time, you can use a direct
call.
  DIR( addr ) int foo( int a, char *b, char c );
The Forth word marshalls the parameters and calls the subroutine at target address addr.

Extracting information from C
It is convenient to have a certain amount of information available from the C portion of the
code. This is supported by a few SVC calls that exist in all versions of the Sockpuppet API.

svc( 0 ) int SAPI-Version( void );
SVC 00: Return the version of the API in use.
svc( 1 ) int GetSharedVars( void );
SVC 01: Get the address of the shared variable list.
svc( 15 ) int GetSvcFnTable( void );
SVC 15: Get the address of the SVC function table.
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In order to support data sharing between C and Forth, the C can export named objects which
can appear as Forth words.

C Linkage structure

#define DYNLINKNAMEMLEN 22
typedef struct {
// This union is a bit crazy, but it’s the simplest way of
// getting the compiler to shut up.
union {
void (*fp) (void);
int* ip;
unsigned int ui;
unsigned int* uip;
unsigned long* ulp;
} p; //< Pointer to the object of interest (4)
int16_t size; //< Size in bytes (6)
int16_t count; //< How many (8)
int8_t kind; //< Is this a variable or a constant? (9)
uint8_t strlen; //< Length of the string (10)
const char name[DYNLINKNAMEMLEN]; //<Null-Term C string.
} runtimelink_t;

When the Forth system powers up it runs the Forth word dy-populate which uses SVC
call  01 to  get  the  address  of  the  dynamiclinks[] table,  and walks  through the  table
creating Forth named variables whose addresses match those in the C system. A Forth word
dy-show is provided to list the entries in the table.

Forth Linkage structure
interpreter
: hword 2 field ;
: byte 1 field ;
target
struct /runtimelink \ -- len
\ Forth equivalent of the C structure above.
  int fdy.val \ usually a pointer 0, 4
  hword fdy.size \ size in bytes 4, 2
  hword fdy.count \ how many 6, 2
  byte fdy.type \ variable or constant 8, 1
  byte fdy.nlen \ name length 9, 1
  22 field fdy.zname \ zero terminated name 10, 22
end-struct

The accessor words just read the fields defined above. They are defined as compiler macros.
For interaction on the target, use the field names above.
compiler
: dy.val fdy.val @ ; \ addr -- n
: dy.size fdy.size w@ ; \ addr -- w
: dy.count fdy.count w@ ; \ addr -- w
: dy.type fdy.type c@ ; \ addr -- c
: dy.name fdy.nlen ; \ addr -- addr’
target
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A set  of  support  words  allow  us  to  run  down  the  table  and  create  Forth  VALUEs  and
CONSTANTs.

Demonstration code
In order to evaluate the Sockpuppet technique and to provide a demonstration environment
we decided to port  the MPE PowerView GUI code to an STM32F429I Discovery board,
which includes a small QVGA colour panel.

We made a decision to standardise on the gcc compiler maintained by ARM:
  https://launchpad.net/gcc-arm-embedded
This seems to be a clean compiler, but it has a few deficiencies:

• It does not include a make utility,
• Every silicon vendor ships a different version of Eclipse with different make tools,
• They are all incompatible.

The alternative is just to take the silicon vendor’s “free” tools, accepting that we will need a
huge amount of disc space (almost free these days) and a degree of pain in learning the tool-
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chain. The days when you could just download and go are long past. Whatever you do, there
will be pain.

Conclusions
Mixed language programming for embedded systems is entirely feasible and productive.

Do not assume that the C libraries provided by the silicon vendors are bug-free. 

You can use the Forth to debug the C.

Once  you  have  set  it  up,  it  all  works  surprisingly  well,  but  compared  to  Forth  cross-
compilation, the C compilation chain is baroque.

Using  the  C  libraries  for  hardware  access  saves  a  huge  amount  of  time  reading  chip
documentation. As the use of silicon vendor C libraries increases, silicon vendor are placing
less importance on correct documentation. We have already found devices whose C libraries
depend on undocumented registers.

Acknowledgements
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has made it a production-grade environment.
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Implementing the Forth Inner Interpreter in High Level Forth

Ulrich Hoffmann <uh@fh-wedel.de>

Abstract

This document defines a Forth threaded code (inner) interpreter written entirely in
high level standard Forth. For this it defines a specific threaded code structure of colon
definitions, a compiler from high level Forth to this threaded code and a corresponding
inner interpreter to execute it. This inner interpreter can run in a stepwise way and so gives
the surrounding environment control of its execution behavior. A real time environment
thus might slice the execution of threaded code in small pieces and provide an interactive
command shell while still meeting its real time requirements.

1 Introduction

Forth 94 and Forth 2012 define the semantics
of many Forth words. As this opens the space
for various implementations and optimizations
they do not however specify much of the dic-
tionary structure: words are identified by their
so called execution token (xt) and later exe-
cuted; given a word name the xt can be iden-
tified (FIND) along with its immediacy status.

For words defined via CREATE, the execution
token can be transformed into the memory ad-
dress of its parameters by means of >BODY.
Standard programs must not assume a specific
header structure or the structure of colon def-
initions, nor must they rely on a specific way
the system uses the return stack. Certain pro-
gramming techniques that are based on such
assumptions cannot be expressed in standard
programs. That’s ok.

Traditionally Forth is implemented as
threaded code [2]. The body of colon defini-
tions contains a list of addresses of the words
it invokes. There are primitives expressed in
machine code and high level definitions that
are defined in threaded code.

This document defines a threaded code inter-
preter written entirely in standard Forth. It de-
fines a specific threaded code structure of colon
definitions. This allows to also define an inner
interpreter (traditionally known as NEXT) for
this threaded code in high level Forth. The in-
ner interpreter defined below can run in a step-
wise way so the execution of threaded code can
be sliced in small pieces in a real time environ-
ment.

The primitives of this threaded code inter-
preter are all the words that the underlying
Forth system defines (be they machine code or

body

of sq

|-----------+---------+-------------|

| xt of dup | xt of * | xt of ~exit |

|-----------+---------+-------------|

^

|

|

|----|

| IP | Interpreter pointer

|----|

Figure 1: Threaded code of the definition ~: sq ( x -- x ) dup * ~;
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body

of test

|------------+---+------------+---+---------+-------------|

| xt of ~lit | 3 | xt of ~lit | 4 | xt of + | xt of ~EXIT |

|------------+---+------------+---+---------+-------------|

Figure 2: Threaded code for literals ~: test ( -- u ) 3 4 + ~;

colon words there). Threaded code high level
words are defined by a special version of colon
(thread-colon ~:). Its definition is given and
explained in section 3.

Also, an outer compiler that compiles to
threaded code as well as an outer interpreter
defined in threaded code is defined below giv-
ing an interactive shell to real time systems.

The current implementation does not define
dictionary/header structures but leaves these
as unspecified as the standards do. We still
get an interactive system with a well de-
fined threaded code structure. If more specific
knowledge about a system is required, it would
of course be possible to also specify the exact
structure of headers and the dictionary layout
and to define appropriate operations on these
structures.

2 Threaded Code

This section describes the chosen threaded
code structure of colon definitions. We will look
at simple words with invocation of primitives,
at string and number literals, and at control
structures.

Let’s assume the definition:

~: sq ( x -- x ) dup * ~;

then the threaded code for sq looks as shown in

figure 1 on the preceding page. For each word,
that is referenced by sq a corresponding exe-
cution token is stored. A thread-colon defini-
tion ends with the execution token of ~exit

compiled by ~; (thread-semicolon). sq invokes
only primitives, but the threaded code struc-
ture would be identical if thread-colon words
were invoked: They also have execution tokens
and these would be stored in the body of the
newly defined word.

An interpreter pointer IP references the cur-
rent point of execution. The threaded code in-
terpreter will modify IP while executing the
code.

2.1 Number literals

When there is a number literal in the source
code, it is later processed by means of ~lit:

~: test ( -- u ) 3 4 + ~;

as can be seen in figure 2 on the top of this
page.

2.2 Printing string literals

Printing string literals (used by ~.") is handled
by (~.", see figure 3 below.

~: test3 ( -- ) ~." it works" ~;

body

of test3 aligned

|------------+---+-----+-----+-----+-----+-----+---+-------------|

| xt of (~." | 8 | ’i’ | ’t’ | ’ ’ | ... | ’s’ | | xt of ~exit |

|------------+---+-----+-----+-----+-----+-----+---+-------------|

Figure 3: Threaded code for string literals ~: test3 ( -- ) ~." it works" ~;
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|------------+---+------------+----|

A | xt of ~lit | 0 | xt of ~lit | 10 |

|------------+---+------------+----|

|----------+-----------+----------------+--------------|

B | xt of 1- | xt of dup | xt of ~?branch | address of D |

|----------+-----------+----------------+--------------|

|---------+------------+---------+------------+---------------+--------------|

C | xt swap | xt of over | xt of + | xt of swap | xt of ~branch | address of B |

|---------+------------+---------+------------+---------------+--------------|

|---------+-------------|

D | xt drop | xt of ~exit |

|---------+-------------|

Figure 4: Threaded code for a BEGIN WHILE REPEAT loop

A counted string with string length and the
string characters is placed inline in the code
. In order to place the following token on an
aligned address the bytes after the inline string
are padded.

Our threaded code is (arbitrarily) restricted to
just printing strings. A more general approach
could easily define threaded string literal words
corresponding to S".

2.3 Control structures

Control structures compile unconditional and
conditional absolute branches:

For illustration let’s define the word looptest

with a BEGIN WHILE REPEAT loop:

: looptest ( -- )

0 10

~BEGIN

1- dup

~WHILE

swap over + swap

~REPEAT drop ~;

Figure 4 shows the corresponding threaded
code. There are 4 basic blocks labeled A
through D with appropriate branches at the
end of basic block B (conditional) and C
(unconditional). The threaded code primitives
~?branch and ~branch modify the interpreter
pointer IP appropriately.

2.4 Limitations

The current threaded code defines just as much
structure so that a simple interactive Forth
outer interpreter can be defined on top.

It does not define a code for a complete stan-
dard system. Specifically the current threaded
code does not contain

• (user) variables or constants. However
because definitions of the underlying sys-
tem become primitives of threaded code,
it inherits variables and constants.

• DO LOOPs. Adding this would be similar
to the branching words already available.

• Neither defining words nor DOES> as they
are not required to program an interac-
tive outer interpreter.

• a primitive for pushing address and
length of string literals on the stack. It
could easily be defined similar to the in-
line string printing word.

3 Implementation

This section explains how standard Forth defi-
nitions will allow to interpret and construct the
threaded code structure explained above. As a
general naming convention, names that start
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\ Perform a single interpretation step

: step ( i*x -- j*x )

IP @ dup cell+ IP !

@ catch

?dup IF cr ." Error " . reset THEN ;

\ Loop steps

: run ( i*x -- j*x )

BEGIN IP @ WHILE step REPEAT ;

Figure 5: The threaded code inner interpreter

with the tilde-character ˜ denote threaded
code words. They often have corresponding
words in the underlying system with similar
functionality.

The state of the threaded code interpreter has
the following components:

• the already mentioned Interpreter
Pointer IP:

Variable IP 0 IP !

• a return stack ~RP with its corresponding
return stack pointer RP.

Create ~R0 20 cells allot

Variable RP ~R0 RP !

Having a return stack of our own, allows
us to explicitly define the return stack be-
havior when nesting. Using that knowl-
edge return stack tricks can work (we
make no use of them here, though).

• a data stack shared with the underlying
system, and

• memory (code and data) also shared with
the underlying system.

Also headers, wordlists and the dictionary
structure is shared with the underlying system.

3.1 Inner Interpreter

We now define the threaded code inner inter-
preter. It is defined in Figure 5. It works very
similar to the NEXT code in classical Forth im-
plementations:

step first gets the address of the next execu-
tion token and increments IP. It then fetches
the execution token and executes it, which
modifies the interpreter state as desired. In
case of an error the word reset is invoked,
which re-initializes the interpreter.

In traditional Forth implementations every in-
voked word ends in a jump to the NEXT code
(or inlines it, if short enough) which results
in continuous threaded code interpretation. In
our case, as step invokes words via catch, they
return to step and no continuous interpreta-
tion takes place. This has the benefit, that we
can stepwise interpret threaded code (thus the
name step) and gain control after each step.
Continuous interpretation is handled by run in
simple cases which calls step in a loop. Setting
IP to 0 in one of the invoked words would stop
run. Note, that IP had been initialized to 0 so
that a ~exit from the top level word will set IP
to 0 as well and thus also stop threaded code
interpretation. A real time environment would
not call run but would do single interpretation
steps when appropriate.

3.2 Return stack operations

The return stack we defined above grows to-
wards increasing addresses. It should operate
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: ~>r ( x -- )

\ push a cell to the return stack

RP @ ! 1 cells RP +! ;

: ~r> ( -- x )

\ pop a cell from the return stack

-1 cells RP +! RP @ @ ;

Figure 6: Return stack operations

using post increment and pre decrement op-
erations. RP is supposed to point to the next
available cell. Figure 6 shows the appropriate
definitions for ~>r and ~r>.

3.3 Inline number literals

Inline number literals are prefixed with the
~lit instruction as shown in figure 7. Its defi-
nition is

: ~lit ( -- n )

\ extract inline number literal

IP @ @ 1 cells IP +! ;

Before execution, the interpreter pointer points
to the code cell that contains val (solid line).
Execution extracts the value val and puts it
on the stack. After execution the interpreter
pointer points past the literal (dotted line).
This threaded code structure is generated by
the threaded code outer interpeter, that we will
define in section 3.6.

3.4 Printing inline string literals

Inline string literals are handled similar to
number literals by (~." as shown in figure 8

on the next page. Note, that we are only inter-
ested in printing inline string literals here:

: (~." ( -- )

\ extract inline string

\ literal and print it

IP @ count 2dup + aligned IP !

type ;

Moving the interpreter pointer past the inline
string requires alignement as specified for our
threaded code structure.

The threaded code of figure 8 is generated by
the compiling word ~." that is defined like this:

: ~." ( <ccc >" -- )

\ Compile inline string to be

\ printed later when executed.

\ Like ." but for threaded code

[’] (~." ,

[char] " word count

here over 1+ chars allot place align

; immediate

It first compiles (~.", then the counted string
and also takes care of the required alignment.

3.5 Control structures

Up to now threaded code execution is sequen-
tial. step moves the interpreter pointer suc-

|----|

| IP |--------------+......

|----| | .

| .

V V

|-----+------------+-----+-----|

| ... | xt of ~lit | val | ... |

|-----+------------+-----+-----|

Figure 7: The execution of ~lit
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|----|

| IP |--------------+...........................

|----| | .

| .

V V

|-----+------------+-----+----+----+-----+----+-----|

| ... | xt of (~." | len | c1 | c2 | ... | cn | ... |

|-----+------------+-----+----+----+-----+----+-----|

Figure 8: The execution of (~."

cessively over threaded code cell by cell. No
branches take place.

Defining branches and control structures is
simple. As in traditional Forth implementa-
tions we define unconditional (~branch) and
conditional (~?branch) branches. For the sake
of simplicity they branch to absolute addresses.
Other branching regimes or additional branch-
ing instructions such as DO-LOOP primitives
would easy to add.

: ~branch ( -- )

\ absolute unconditional jump

IP @ @ IP ! ;

: ~? branch ( f -- )

\ absolute conditional jump

IF 1 cells IP +!

ELSE ~branch THEN ;

The interpreter pointer is adjusted appropri-
ately. After execution it points to the branch
target or (in case of a non taken conditional
branch) to the instruction following ~?branch

(skipping the branch address).

In order to compile branches in a structured
way we define the zoo of Forth control struc-

ture as depicted in figure 9.

These correspond to the standard control
structures but compile threaded code branches
with embedded absolute threaded code ad-
dresses.

3.6 Compiler to threaded code

In section 3.3 we saw the handling of inline
number literals. It is still open, how the appro-
priate threaded code structure (figure 7 on the
previous page) is generated. As in a traditional
implementation this is done by the Forth text
interpreter.

In figure 10 on the following page we define
a variant of the classical outer compiler that
looks for words in the dictionary, executes
them when they are immediate or compiles
them when not.

If a word is not found in the dictionary, the
compiler tries to see if it is a number and then
compiles it as number literal if so, or else raises
an error. Note, that this compiler does not han-
dle double numbers or base prefixes.

: ~IF ( -- x ) [’] ~? branch , here 0 , ; immediate

: ~AHEAD ( -- x ) [’] ~branch here 0 , ; immediate

: ~ELSE ( x -- x’ ) [’] ~branch , here 0 , swap here swap ! ; immediate

: ~THEN ( x -- ) here swap ! ; immediate

: ~BEGIN ( -- x ) here ; immediate

: ~WHILE ( x1 -- x2 x1 ) [’] ~? branch , here 0 , swap ; immediate

: ~AGAIN ( x -- ) [’] ~branch , , ; immediate

: ~UNTIL ( x -- ) [’] ~? branch , , ; immediate

: ~REPEAT ( x2 x1 -- ) postpone ~AGAIN postpone ~THEN ; immediate

Figure 9: Threaded code control structures

Ulrich Hoffmann Page 6 of 8 2016-09-09
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variable ~state ~state off \ threaded code outer interpreter state

-13 Constant #notfound

: ~] ( -- ) ~state on

BEGIN ( )

BEGIN ( )

bl word dup c@ \ scan next token

WHILE ( c-addr ) \ another token found

find ?dup \ look up in dictionary

IF -1 = IF , ELSE execute THEN ~state @ 0= IF EXIT THEN \ found

ELSE 0 0 rot count

over c@ [CHAR] - = dup >r IF 1- swap char+ swap THEN \ word not found

>number IF #notfound throw THEN

drop drop r> IF negate THEN

[’] ~lit , , \ compile threaded code literal

THEN

REPEAT ( c-addr ) \ no more tokens in input stream

DROP

SOURCE -ID 0= IF CR ." ] " THEN

REFILL 0= \ read more from input stream

UNTIL ; \ input stream exhausted

: ~[ ( -- ) ~state off ; immediate \ stop threaded code compiler

: ~: ( <name > -- )

\ push IP to return stack and set IP to start of threaded code.

Create ~] Does > IP @ ~>r IP ! ;

: ~EXIT ( -- )

\ Pop IP from return stack

~r> IP ! ;

: ~; ( -- )

\ Compile end of definition and leave threaded code outer compiler

[’] ~EXIT , ~state off ; immediate

Figure 10: Compiler to threaded code

Threaded code words are defined with

~: name .... ~;

~: invokes ~] that compiles the following
source code until ~state becomes false (by
executing ~; or ~]) or the input stream is ex-
hausted. Inside the definition we have to use
corresponding threaded code words (e. g. con-
trol structurres) to compile the right code.

We can then interactively execute the threaded
code definition with

name run

The (normal) Forth word name sets the inter-

preter pointer to the beginning of its threaded
code. run then interprets this code. If the in-
terpreter executes name’s ~exit IP will become
zero (being initialized to zero and pushed on
the return stack) and the run loop terminates.
We return to the underlying system.

As dictionary structure and headers are shared
with the underlying system, the headers for
threaded code are just defined in the base
Forth system.

Note also that execution of a threaded code
word is split into two parts. On execution of the
word in the underlying system interpretation

Ulrich Hoffmann Page 7 of 8 2016-09-09
77



Fachhochschule Wedel Technical Report Nr. 2016-09

~: ~interpret ( -- )

~BEGIN ( )

bl word dup c@ \ scan next token

~WHILE ( c-addr ) \ another token found

find \ lookup in dictionary

dup 1 = ~IF drop execute ~ELSE \ immediate

dup -1 = ~IF drop state @ ~IF compile , ~ELSE execute ~THEN ~ELSE

\ word not found , number?

drop 0 0 rot count over c@ 45 = dup ~>r ~IF 1- swap char+ swap ~THEN

>number ~IF #notfound throw ~THEN drop drop \ maybe number

~r> ~IF negate ~THEN

state @ ~IF postpone LITERAL ~THEN \ compile literal

~THEN ~THEN

~REPEAT ( c-addr )

drop ~;

~: ~quit ( -- ) clear -stack ~R0 RP ! ~state off interpret -mode

~BEGIN cr state @ ~IF ~." ] " ~THEN ~query ~interpret ~." ~ok" ~AGAIN ~;

Figure 11: Interpreter in threaded code

does not start immediately but only the inter-
preter pointer is adjusted appropriately (sav-
ing its old content to the return stack). By this
we can explicitly control execution by step and
run.

3.7 Interpreter in threaded code

Ultimately we want to have a Forth outer inter-
preter that is defined in threaded code so that
we can have an interactive shell which can be
executed via step and run. Up to now we just
have a compiler to threaded code, but this is
defined in the underlying Forth system and we
cannot control its execution.

So — here we go. We define a Forth outer inter-
preter in threaded code. Figure 11 shows a FIG
forth style interpreter loop that combines inter-
pretation and compilation state. It compiles to
code of the base system (using compile, and
Literal). So — it is similar in function to the
base system outer interpreter but is itself com-

piled to threaded code using the threaded code
compiler ~[ defined above. And so, we can con-
trol its execution via step.

~quit is the corresponding quit loop that suc-
cessively expects user input and interprets it.
(~query is an appropriate query implementa-
tion in threaded code, not shown).

4 Conclusion

In this document we defined a threaded code
structure for Forth colon definitions and an in-
ner interpreter, step, in high level Forth. Step-
wise execution of threaded code can be con-
trolled by periodicaly invoking step.

We constructed a compiler to generate this
threaded code and also an interactive outer in-
terpreter in threaded code. As step can con-
trol the execution of this outer interpreter, its
execution time can be distributed according to
the requirements of a real time system, such as
the synchronous Forth framework in [1].

References

[1] A synchronous FORTH framework for hard real-time control, U. Hoffmann and A. Read, euroForth 2016
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A pa
kage manager for (the)Forth(.net)

Gerald Wodni

EuroForth 2016

Abstra
t

Let us join Forthes and share great 
ode with ea
h

other � in an orderly fashion.

1 Introdu
tion

The Forth Net[1℄ has matured into a simple meta-

repository system, whi
h provides a mindbogglingly

new idea to the Forth programmer: Build your

proje
ts upon existing 
ode from others instead of

reinventing the wheel all over again.

Starting with 
ode snippets up to full blown li-

braries authors 
an upload their 
ode (behold, some

even ship do
umentation!) to The Forth Net. Ea
h

pa
kage 
ontains a Forth-parseable des
ription-�le

whi
h was dis
ussed in the last Forth200x-Meeting

in Bath.

Pa
kages 
an easily be sear
hed and downloaded

by using f, the Forth pa
kage manager. Typing fget

mrot 1.0.0 in Gforth will install mrot in version

1.0.0 dire
tly onto your box.

2 A small Pa
kage

To proof how simple the 
reation of a pa
kage is, let

us share a non standardized � yet very useful � word

with the forth 
ommunity:

Listing 1: mrot.4th

1 : −rot ( x1 x2 x3 −− x3 x1 x2 ) rot rot ;

As stated before we shall also o�er a minimalisti


do
umentation whi
h happens to be ma
hine read-

able and easily parseable in Forth. The pa
kage.4th-

�le is an obligatory �le whi
h 
ontains key-value def-

initions. key-value <name> <value> parses a (key-

)name and uses the remaining line as value. Manda-

tory keys are:

name name of the pa
kage [a-z℄+[-a-z0-9℄*

version semanti
 version number 
onsisting of 3

de
imal numbers separated by '.' [2℄

li
ense name of the li
ense you publish the pa
kage

with, i.e. "GPL", "MIT", . . .

Further information about this �le (key-list, tags,

dependen
ies, . . . ) 
an be found in the pa
kage

guidelines [3℄.

Our example does not need any dependen
ies, but

we add a short des
ription, spe
ify the main in
lude-

�le and the li
ense.

Listing 2: pa
kage.4th

1 forth−package
2 key−value name mrot
3 key−value version 1.0.0
4 key−value description save TOS in 3rd
5 key−value license public domain
6 key−value main mrot.4th
7 end−forth−package

3 f - a pa
kage manager

Us Forth programmers are not fond of leaving our

beloved system. This is why f was 
oded into exis-

ten
e, a simple pa
kage manager whi
h lets us ex-

plore and download pa
kages without leaving the

realms of our system. This is its API:

fall list all pa
kages

fsear
h <needle>

�nfo <name> show a pa
kage's ReadMe

fget <name> <version> download a pa
kage

�n
lude <name> <version>

4 We need you!

Pa
ketize your 
ode now! By the date of this writing,

we have 15 amazing pa
kets ready to be used in your

next proje
t, and 321140 to go to be
ome the biggest

pa
kage repository in the world! ;)

Referen
es

[1℄ The Forth Net. http://theforth.net.

[2℄ SemVer 2.0. http://semver.org/.

[3℄ Pa
kage guidelines. http://theforth.net/

guidelines.
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net : Using net2o

reinventing the internet

Bernd Paysan

EuroForth 2016, Konstanz/Reichenau

Motivation Layer 7: Applications Get it Try it

Outline

Motivation

Layer 7: Applications
Basic Frameworks

Get it

Try it

Motivation Layer 7: Applications Get it Try it

3 years after Snowden

What happend to change the world:

Politics Manhatten project to find “the golden key”?
Users don’t want their dick picks be watched and use

DuckDuckGo and encrypted chat
Software NSA backdoors have been refitted by attackers

(Juniper)
Solutions net2o starts to be increasingly usable

Motivation Layer 7: Applications Get it Try it

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish
onion routing camouflage probably with AES

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content

Motivation Layer 7: Applications Get it Try it

Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can

replace the entire stack

Motivation Layer 7: Applications Get it Try it

Basic Frameworks

PKI Create, import, and exchange keys
Named file copy For testing only

Vault A container for encrypted data without metadata
exposure

DHT Query key/value pairs (keys are pubkeys or hash keys)
Chat Instant messaging 1:1 or in chat groups

Version control system For larger/structured content
Sync to synchronize your computers (RSN)

Audio/Video Chat Real time data streaming (RSN)

Motivation Layer 7: Applications Get it Try it

Get it: Debian and Android

Debian Use the Debian package, and enter as root:
cat >/etc/apt/sources.list.d/net2o.list <<EOF
deb [arch=amd64,all] http://net2o.de/debian
testing main
EOF
wget -O -
https://net2o.de/bernd@net2o.de.gpg.asc | \
apt-key add -
aptitude update; aptitude install net2o

Android Get Gforth from play store or
https://net2o.de/Gforth.apk
Open/close (back button) Gforth if you like; then
open net2o.

Motivation Layer 7: Applications Get it Try it

Get it: Windows and macOS

Windows Get the two current setup.exes for Gforth and net2o,
and install them:
http://www.complang.tuwien.ac.at/forth/gforth/
Snapshots/current/gforth64.exe
https://net2o.de/windows/net2o64.exe
You will be asked for accepting the unsigned exes, as
neither Gforth nor net2o are signed now

macOS Once I got around creating a brew tap, it will be easy
to install under Mac OS X (or whatever it is called
now), too.
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Motivation Layer 7: Applications Get it Try it

Get it from Source

From Source for Linux, Mac OS X, Windows (cygwin) you need:
git automake autoconf make gcc libtool
libltdl7 fossil
you run: mkdir net2o; cd net2o
wget
https://fossil.net2o.de/net2o/doc/trunk/do
chmod +x do; ./do
This will install some stuff and take some time (I will
try to improve that).

Motivation Layer 7: Applications Get it Try it

Try it — Generate a Key

Linux you run:
n2o cmd
keygen <nick>
Enter your passphrase twice.

Android Tap on the little nettie to start the app, it will
autodetect that you don’t have a key generated.
Enter nick and passphrase twice.

Motivation Layer 7: Applications Get it Try it

Try it — get a key and chat

• To get my key, search for it (32 bit is sufficient now, but easy
to attack)
keysearch kQusJ

• Send me an invitation
invite @bernd

• Try to chat with me
chat euroforth@bernd

• Aquire more keys by observing a group chat. List your keys
with
n2o keylist
from within the chat.

• Change networks with your Android and watch that the chat
still works.

• Leave the chat with /bye or Ctrl+D (back on Android)

Motivation Layer 7: Applications Get it Try it

Try it — Vault en/decryption

• Take a file and encrypt it
enc test.txt

• Show it’s content
cat test.txt.v2o

• Sign a file with a detached signature
sign test.txt

• Verify the signature
verify test.txt

Motivation Layer 7: Applications Get it Try it

Try it — Use the DVCS
• Create a directory and add a few files into it, keep a net2o

instance running inside that directory with
n2o cmd

• Initialize the directory
init

• Add the files in the directory
add *
ci -m "My checkin message"
and check them in

• Change a file and see what has changed
diff

• Check in the changed file
ci -m "Second checkin"

• Show the commit messages
log

Appendix

For Further Reading I

Bernd Paysan
net2o source repository and wiki
http://fossil.net2o.de/net2o
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Security

M. Anton Ertl, TU Wien

Problem

• Attacks on computer systems

• “Hackers”

• Nation-level attackers

Problem for Forth?

• We do embedded systems

Input limited, therefore not attackable

• Example: TV Set with 10 Buttons

Therac-25

Remote control

Teletext

DVB-C/S/T

Smart TV (Internet/WLAN)

• StuxNet

• Internet of Things

Possible Attacks

• Arbitrary Code Execution

• usually enabled by a buffer overflow vulnerability

Stack

Buffer RA

• Dangling pointer

• Other attacks

read buffer overflow (Heartbleed)

SQL injection

...

Buffer overflows in Forth?

• Length of access explicit

move ( c-addr1 c-addr2 u -- )

but: two lengths involved

Mistakes possible

• Memory accesses with ! c! etc.

• xc!+? instead of xc!+

Separate return stack: does it protect?

create buf 20 allot
create foo my-class new ,
buf 50 my-file read-line
foo @ my-method

buf
code field

data
field
foo

code field

buf
code field

data
field
foo

code field

my-class
xt

code field

native
code

vor read-line nach read-line

native
code

Does non-executable data help?

• NX DEP WˆX ...

• Return-Oriented Programming

libc native codereturn stack

mov eax, [esp]
add esp,4

ret
...

mov [eax], ...
ret
...

Now what?

• Code audit

• Secure programming language

No access beyond buffer boundaries
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And in Forth?

• Divide the program

• A part in full Forth

Needs audit against Buffer overflows

• A part in a secure Dialect

More cumbersome to program

simpler audit

Not secure against malicious programmer

for more you would need more type checking

... move ! ...

secure

... move* !* ...

insecure

... ! !* ...

Secure Dialect

• Buffer descriptors: start, end

• Pass and check against buffer descriptor on every write access

• Have checking variants of all writing words

• move* ( from to count buf -- )

!* ( x addr buf -- )

read-file* ( c-addr u file-id buf -- u2 ior )

• Variables?

Use value

variable* !! @@

Protect against mistakes

• Stack arrangement mistakes

Magic number in descriptor

“encrypt” descriptor

$a9b8c7d6e5f4 <key>

xor

magic number
start xor key
end xor key

Dangling Pointers

• buf @ free-buf 5 a 24 + buf @ !*

• garbage collection instead of free

• or overwrite descriptor on free

Conclusion

• Buffer overflows ⇒ arbitrary code execution

• Secure Forth dialect for defense

each writing word takes buffer descriptor

• No typechecking,

but magic number and/or descriptor “encryption”

to protect against mistakes
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synthesizing Forth

Forth in the satellite industry

a report on work in progress

Klaus.Schleisiek at spacetech-i.com

Peculiarities of the space industry

Usually these are one-off projects.

Once deployed, satellites can not be repaired.

Development is usually done in four stages:

BB: Breadboard (get the functionality right)

EM: Engineering model (eventual form and function)

QM: Qualification model (heavily mistreated using qualified parts)

FM: Flight model (clean room assembled)

Qualified parts

These are the most important criteria:

Shock and vibration (during satellite launch)

Extreme temperature range

Radiation tolerance depending on the intended orbit:

Total dose (blurring the IC structures created by diffusion)

SEE: Single event effects due to heavy ions

Latchup due to heavy ions

FPGA design flow

Simplified ESA design flow for re-programmable FPGAs:
Definition phase

Top-down architectural design

PDR: Preliminary Design Review

Bottom-up RTL code creation

VHDL simulation and design verification

FPGA synthesis and place&route

Design validation on EM hardware

CDR: Critical Design Review

Design for radiation tolerance

QR / AR: Quality / Acceptance Review

Each warning generated by the design tools has to be
explained to beaurocrats in detail.

Design iterations

A test cycle in VHDL (modification, re-synthesis,
place&route, FPGA re-configuration) takes about
45 minutes.

Putting uCore into the FPGA, realizing "higher level"
functionality in software cuts a test cycle down to

15 seconds.

But:
uCore is not qualified for space use

Software qualification is much more expensive than VHDL

qualification, because we do not quite know "how" to do that ;)

=> Software can only be used during the BB and EM
phases :(

Consequences

Forth programming is restricted to design exploration.
For the QM and FM phases, uCore and Forth have to be "designed

out" and replaced by VHDL code.

=> Forth should be written with synthesizability in mind.

How do we have to write Forth to make it easily portable
to VHDL?

Forth / VHDL

Forth is a sequential language.

Parallelism must be mimicked using multi-tasking.

VHDL describes parallel processes, which all happen
"at the same time". Sequential behaviour must be
explicitly designed in if needed.

=> Forth should be written in a data flow style to ease

the process of porting it to equivalent VHDL code.

An example

1064 nm laser wavemeter:
An InGaAs line of 1024 pixels must be read out, low-pass filtered (noise

suppression) and differentiated to find the center of a gaussian shaped

interferometer "fringe" within 300 usec. Readout alone takes 200 usec.
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1st Forth approach

The 1024 AD-converted pixel values will be stored at SCAN
in Forth's data memory by a state machine.

: initial  ( -- )
   0   Scan 1-
   Edge @ ?FOR  1 + ld >r - r>  NEXT  Crest @ +
   Edge @ ?FOR  1 + ld >r + r>  NEXT  drop
   first-pixel diff!
;
: filter ( i -- i+1 )
   dup >r   dup diff@ >r   first-pixel -
   Scan + ld   Edge @ + ld   Crest @ + ld   Edge @ + @
   -rot + - + r> +   r> 1+   tuck diff!
;
: differentiate  ( -- )
   Diff #pixels erase   initial
   first-pixel  BEGIN  filter   dup last-pixel = UNTIL
   drop
;

synthesizable approach

Variable Lead

: filter  ( sum I -- sum' )   Lead @
   IF  dup Edge @              u< IF  pix@ -  EXIT THEN
      Edge @ Crest @ + 1- over u< IF  pix@ +  EXIT THEN
      drop  EXIT
   THEN
   Scan + 1- ld   Edge @ - ld   Crest @ - ld   Edge @ - @
   -rot + - + +
;
: differentiate   ( -- )
   Diff #pixels erase   Lead on   0   #pixels 0
   DO  I filter   I window = IF  Lead off  THEN
       Lead @ 0= IF  dup I first-pixel - diff!  THEN
   LOOP  drop
;

85


	Preface
	Contents
	Ulrich Hoffmann and Andrew Read: A synchronous FORTH framework for hard real-time control
	Sergey Baranov: Simulating Recurrent Neural Networks in Forth
	Nick J. Nelson: Tunnel Vision
	Bill Stoddart: The Halting Problem in Forth
	Andrew Read: An Axiomatic Approach to Forth
	Wolf Wejgaard: Planet Holonforth
	M. Anton Ertl: Sections
	M. Anton Ertl: Recognizers: Arguments and Design Decisions
	Stephen Pelc: The Sockpuppet Forth to C interface
	Ulrich Hoffmann: Implementing the Forth Inner Interpreter in High Level Forth
	Gerald Wodni: f — A package manager for (the)Forth(.net)
	Bernd Paysan: net2o: Using net2o
	M. Anton Ertl: Security
	Klaus Schleisiek: synthesizing Forth

