
Request for comments Andrew Read

(appendix to workshop introduction) andrew81244@outlook.com

 July 2016

An Axiomatic Approach to Forth

1. Introduction

Forth has traditionally been implemented by writing a certain number

of code words in assembly language, out of which the remainder of the

Forth dictionary is built up. Forth virtual machines may implement

code words in C or another high level language. Forth processors may

offer instructions that correspond directly to code words.

Traditionally there have been few constraints on code words. ANSI

Forth defines the behaviour of high level Forth words and leave

implementation details to the system designer. This approach has its

benefits, but also leads to certain practical problems.

Firstly, mature Forth systems that are ANSI compliant may actually

behave differently, especially when programmed at a “technical”

level.

Secondly, implementers of new FORTH systems, virtual machines or

Forth processors have to “make it up from scratch” every time.

Whether the resulting Forth systems are truly ANSI compliant cannot

be tested until after completion.

Thirdly, there is no straightforward way of porting mature Forth

implementations to new targets. Each time new, machine specific, code

words must be written and somehow tested before the porting of Forth
itself can begin.

2. A conceptual viewpoint

A conceptual objection may also be made: Forth has been long proven

to “work” as a programming language, but because the code words upon
which the implementation of every Forth system depends are arbitrary,

there is not a certain foundation to the language.

On the other hand, there is an opportunity here: Forth has no syntax

so the behaviour of Forth words can be completely defined in terms of

their effects, irrespective of the context in which they occur. So it

should be possible to determine a completely deductive chain of logic

from the most fundamental underlying elements of Forth through to

ANSI Forth words, via a well-defined set of code words.

3. Objectives of the project

This project aims to take a deductive approach to the definition of
Forth from conceptual underpinnings. There are four stages

(A) Elemental structures (“structures”)

Identify and document the elemental structures of Forth at a

conceptual level.

“Structures” in this context means something akin to “physical

entity”, or perhaps “mechanical entity”, rather than just data

structures in the traditional sense. Hopefully the intended meaning

may become clearer through the following discussion.

Some structures are explicit in Forth (e.g. the parameter stack),

while others are implicit (e.g. the program counter, system memory,

or the locus of arithmetic logic). Yet others may require more

careful thought. For example, is the return stack a single elemental

structure or is it actually the mapping of multiple conceptual

elements (a LIFO store accessed with >R and R> and a subroutine
return program counter store) to a single implementation entity?

What kind of structure is the Forth dictionary itself?

The objective of this stage will be to “find” all of the elemental

structures that underlie what we commonly understand as Forth, to

properly separate them, and to describe them concisely and

rigorously.

(B) Elemental operators (“operators”)

Identify the elemental operators which act on the structures and

document them by stating their effects.

Again some elemental operators make themselves very evident and in

fact are cognates with Forth words. For example, “+” is an operator

that acts on the parameter stack, the locus of arithmetic logic, and

on the parameter stack again.

Other operators are less obvious, for example is there an operator

“BNE”, that acts on the program counter conditionally depending on

the value held at the top of the parameter stack?

The objective of this stage will be to find all of the elemental

operators that we believe comprise Forth and document them in the

form of a table that shows their impact on the elemental structures.

This stage is likely to be highly iterative with the identification

of elemental structures. For example, when we consider “BNE”, if it

is an operator, does it imply there is also a structure that is the

locus of logical comparison?

Referring to the title of this RFC, the elemental structures and

operators might loosely be considered a set of “axioms” for Forth.

(C) Code words

The next stage of the project is to bring together the structures and
the operators into a suitable set of Forth words from which a

complete Forth implementation can be developed.

The code words serve as the abstraction layer to provide “Forth-like”

access to the elemental structures and operators.

Some code words may map directly onto individual operators (perhaps

“+” for example). Others code words will be combinations of

operators, acting serially or in parallel.

The code words will need to take account that there may be

differences between the data width of the Forth system (e.g. 32 bits)
and the data width of the underlying structures (e.g. 16 bits or 8

bits). This project does not intend to prescribe any expected data

width at either the structure or the Forth system level.

From a practical perspective, code words may be implemented in a

machine-dependant manner in the language of the underlying system, as

has always been the case. (That language might be C for a Forth

virtual machine, assembly language, or the primitives of a Forth

processor.) However, the implementation of the code words will no

longer be arbitrary because (i) the set of code words will be

explicitly defined and (ii) the function of each code word will be

completely specified in term of the fundamental structures and
operators.

This stage of the project is likely to be rather judgmental. The

optimally chosen set of code words is unlikely to be the minimal set

(for example there is actually no need of “+”, provided we have “0”

and “-”, but is this a sensible economy?).

A staging post of this phase in the project is likely to be the

articulation of a set of policies or guidelines for deciding which

words should be defined in terms of the fundamental structures and

operators (the code words) and which in terms of other Forth words

(the remainder of the dictionary).

(D) Forth implementation

Finally, the code words can be leveraged to develop an ANSI Forth

implementation.

4. Working approach

(A) Relative weighting of effort

I anticipate that the first two stages, finding the elemental

structures and operators likely represents 60% of the effort that

would be required. Although a first draft can no doubt be drawn up

quickly, consideration of subtle points and generally iterating and
polishing the thinking will take much more time. The third stage,

the code worlds is perhaps 25% of the effort, and much of that spent

on consideration of words at the boundary between “the code” and the

rest of the dictionary. The final ANSI Forth implementation, whilst

probably the greatest number of written lines, may only be 15% of the

effort if the Forth implementation is limited to the CORE wordset and

a few others, and good advantage is taken of readily available prior

work.

(B) Verification

It will be necessary to verify the results of each stage. A number
of possible approaches exist and the actual verification approach

adopted will depend on the preference of the project participants.

Firstly, there is the possibility of using some sort of “logical

calculus” to prove results in a manner similar to pure mathematics.

Although this approach has been adopted before, particularly in

relation to verifying stack operations, experience suggests that such

an approach is likely to prove unwieldy in practice and that the

difficulty of developing the “calculus” in the first place will

probably exceed its benefit.

Secondly, there is the use of informed debate to discuss critical
decisions, not just in terms of functionality but also from the

perspectives of desirable aesthetics and symmetry. We can call this

the “philosophical” approach. Hoc tam ars quam scientia est.

Examination from an aesthetic perspective will be invaluable to for

an elegant result.

Thirdly, there is the mechanical approach. By explicitly simulating

(perhaps with pencil and paper at first) the structures, operators

and code words it should be possible to verify the effect of any

sequence of operations. The mechanical approach needs to be alert to

“corner cases”, and here again there is a role for informed debate as

a source of suitable challenge.

Finally, and this is really an extension of the mechanical approach,

a working Forth system built on these foundations will help to

convince that the foundations are satisfactory.

5. Uses and benefits

It is intended that the four components that will be developed in
this project (the structures, operator, code words and ANSI Forth

implementation) may serve as an “axiomatic” reference model that

enhances and clarifies the Forth language. It is not intended that

they should be advocated as “standard”, or that they should proscribe

other approaches. If the reference model is intellectually appealing

and helpful in itself, that will be justification enough for the
effort expended.

The root of my own interest in this project is my experience of

developing an instruction set and Forth system for the N.I.G.E.

Machine. In the last few years I have become interested in how Forth

constructs can be visualized as structures and then taken from

software into hardware. This approach has allowed exception handling

and multitasking to be implemented as atomic machine language

instructions in the N.I.G.E. Machine.

Ulli Hoffmann mentioned to me some time ago how a Forth meta-compiler

could be used to “make seamless” the Forth held in RAM and that
included from source files on SD-card. I now wish to extend the

Forth system software and before doing so it would be expedient to

migrate the N.I.G.E. Machine to a meta-compiled system. At the same

time, I would like to re-examine and potentially reconfigure the

N.I.G.E. Machine instruction set. Both of these aims will be better

accomplished in the light of a conceptually rigorous approach to the

fundamental structure of Forth. Hence my wish for a reference model

with axiomatic foundations.

I believe the reference model could also be interesting to anyone

working with Forth virtual machines, since there is really very

little difference between a Forth processor in hardware and a Forth
virtual machine in software.

The reference model might be helpful to anyone who wishes to use

Forth on the multitude of new microprocessor-based development boards

since consistent system behaviour will be assured. In addition,

perennial practical difficulties such as efficient Forth file
transfer can potentially be addressed at a low level by defining

interfaces at the level of elemental Forth structures and building

suitable operators for their handling deep into the language.

