
A synchronous FORTH framework for hard real-time control

Ulrich Ho�mann (FH Wedel University of Applied Sciences), Andrew Read

June 2016

uh@fh-wedel.de, andrew81244@outlook.com

Abstract

Forth control programs are typically written in an event triggered style: events that take place in the
environment interrupt the main control program. The interrupt handler either handles the event completely
on its own (if that's simple enough or timing requires it) or it triggers a task from an underlying multitasking
system to take care of the event (in a non timing critical way). Most Forth multitasking systems are cooperative
thus o�ering high reliability and predictable timing behavior. The framework described here uses a synchronous
approach to meet hard real-time requirements. The approach borrows from di�erent sources, most notably from
synchronous hardware design, where signals are updated at a �xed cycle rate, and program logic is implemented
via �nite state machines. Despite the fact that applications built with this framework follow hard real time
constraints they may still retain interactivity through a FORTH interpreter. This is accomplished by means of
an optional high level threaded code interpreter which can be executed in a step-wise way and will only progress
as fast as necessary to still be within the real-time boundaries. The only requirement for this framework is a
single free-running counter/timer with a known clock period. All other functionality is expressed in standard
Forth and is thus portable to di�erent standard systems.

1 Introduction

The outline of this paper is as follows: we �rst brie�y review synchronous digital logic and �nite state machines.
Through this review we identify the essential concepts that we wish to abstract for our software framework. We then
consider related work, most notably time triggered architectures for embedded systems and �nite state machines
in FORTH. Our synchronous FORTH framework for hard real-time control is then presented in a top-down fashion
beginning with a conceptual overview and leading to implementation details. We go on to explain the general
requirements for the implementation of this framework on a FORTH system and describe our speci�c implementa-
tion on a Texas Instruments Tiva-C development board using Mecrisp Forth. We present test measurements that
we obtained on the Tiva-C board. Finally we discuss the potential advantages and limitations of our framework
and suggest possible applications.

2 Synchronous digital logic

2.1 Background

The essential characteristic of synchronous digital logic is a clock to which all signal transitions are synchronized.
By contrast, asynchronous signals update in their own time (�g. 1). Most commonly, signal transitions are
synchronized to the rising edge of the clock although in dual data rate (DDR) interfaces signal transitions occur
on both clock edges.

Synchronous digital logic is implemented in hardware using �ip-�ops, referred to from a logic design perspective as
registers. A typical D-type �ip-�op will have an input port, a clock port, an output port and a reset port (�g. 2).

1

CLK

A

B

C

D

Figure 1: An example of asynchronous and synchronous signals. A and B update in their own time without
reference to CLK. C and D update synchronously with each other and with the rising edge of CLK.

Whilst all signal transitions are conceptually synchronous to the rising edge of a clock, in reality certain timing
constraints must be met if the physical devices are to operate correctly (�g. 3). Firstly the input signal must become
stable some minimum time before the rising edge transition of the clock. This is the set-up time constraint. The
input signal must also be held stable for some minimum time after the clock transition - the hold time constraint.
Lastly, the output signal will not transition until some time after the clock transition. This is the clock output
time constraint.

2.2 Multiple clock domains

A complex digital logic design is likely to have more than one clock domain (�g. 4), often because di�erent
peripheral interfaces must be clocked at di�erent rates. A single design may also have clocks that run at the same
frequency but at a �xed phase o�set, for example to register data arriving from external peripherals with a phase
delay.

2.3 Essential concepts for a software framework

The relative bene�ts of synchronous and asynchronous circuits continues to be debated, but in the present era
the most common central processing units (CPU's) and peripheral integrated circuits used in real-time control
applications are based on synchronous logic. A noteworthy exception is the asynchronous GreenArrays G144 Forth
processor [1].

We do not attempt to reevaluate the merits of the synchronous and asynchronous approaches in this paper but
summarize some simple notes as follows.

Metastability is a breakdown of the digital logic abstraction that allows signals (which are actually potential
di�erences with respect to electronic ground) to be considered as exclusively 'high' or 'low'. The synchronous
design approach deals with issues such as race-conditions and signal metastability by means of objective timing
requirements that are validated during the place and route stage of circuit implementation. These timing constraints
also impose a limitation on the overall circuit size. Asynchronous circuits may be arbitrarily large provided
appropriate mechanisms are in place for completion detection, but logic still needs to be synchronized at the circuit
borders in any application with deterministic timing requirements.

Digital logic circuits are expressed in hardware design languages (the most common being VHDL and Verilog) that
synthesis tools translate into the physical layout of an integrated circuit. The framework that we present in this

2

D Q

R
Q

S

CLK

Data

Figure 2: A schematic of a D-type �ip-�op. The signal at input D is registered on the rising edge of CLK. The
registered signal subsequently appears on outputs Q and inverted Q and hold steady until the next rising edge of
CLK. Set (S) and reset (R) inputs are available to drive Q high and low respectively irrespective of D.

CLK

D

D

Q

tSetup

tHold

tClock_output

Figure 3: Timing characteristics of a D-type �ip-�op. The data signal must be stable tSetup before the leading edge
of the clock. The data signal must remain stable tHold after the leading edge of the clock. The output signal is
updates tClock_Output after the leading edge of the clock.

3

CLK-A

CLK-2x

CLK-90

CLK-B

Figure 4: An illustration of multiple clock domains. Clock-A is the reference clock. Clock-90 has the same period
as Clock-A but is retarded 90 degrees in phase. Clock-2x has twice the period of Clock-A but is in phase. Clock-B
has a period somewhere between Clock-A and Clock-2x and does not have a �xed phase relationship with either

paper is a software approach that provides similar functionality to a hardware design language such as VHDL: that
is the ability to read inputs, write outputs and update internal signals synchronously with one or more free-running
clocks.

In addition to synchronous signal update and multiple clock domains, our framework requires a suitable model for
the computation. The natural choice is the �nite state machine (FSM), arguably the most common computation
device in digital logic design and a familiar construct in software applications [2].

3 Finite state machines

Finite state machines need little or no introduction in this paper. Proponents of the FSM approach argue that
the FSM model provides a systematic approach for designing computations that lead to optimal or near-optimal
implementations [2]. Essentially a �nite state machine is a device that must always in one of a �nite number of
prede�ned states. Transitions between states occur according to the rules of a state transition diagram. The next
state is always a function of the current state and of the FSM inputs (which may include internal registers such
as counters). In the most simple �nite state machines outputs are a function of only the current state (Moore
Machines). Alternatively outputs may be a function of the current state and of the inputs (Mealy Machines).
Finally, in recursive �nite state machine designs outputs may also be a function of state transition and output
history since reset [2].

4 Review of related work

Many embedded systems are developed in an event triggered architecture style: whenever an external asynchronous
event occurs the embedded system is interrupted and a handler is invoked to take care of the event. Once the
handling is completed the embedded system continues its previous work. Depending on the number of di�erent
external events and their timing properties it might be quite di�cult to build reliable real time systems this way,
especially when events can occur simultaneously or while the handling of other events is underway.

An alternative approach for real time system design is time triggered architecture: handling of external events takes
place at regular intervals. Michael Pont [4] developed a time triggered architecture and implemented it for LPC-1769

4

arm processors based on a single timer interrupt. In [13] Kopetz and Bauer give a comprehensive summary of their
research on time triggered architectures with an exhaustive bibliography on the topic. Event triggered and time
triggered architectures are also described in Peter Hintenaus book on embedded system engineering [5]. He also
discusses implementing real time systems with multiple clock domains and �nite state machine implementations in
soft- and hardware.

Our approach is also a time triggered architecture, but we avoid interrupts completely and synchronize multiple
clock domains by means of a free running counter. (If one is not directly provided in hardware, a timer interrupt
can be used for a straightforward implementation.)

Finite state machines are a contemporary way to model system behavior that is especially popular in hardware
design as �nite state machines are easy to de�ne and �t well to synchronous system architectures [2]. In their book
�Structure and Interpretation of Signals and System� [6]Lee and Varaiya describe the use of �nite state machines
for system design and implementation from a computational point of view. They discuss how to combine state
machines in order to model complex systems and de�ne so called linear time-invariant systems as special state
machines with bene�cial signal processing properties.

There have been numerous Forth implementations of �nite state machines, only few of them were published: Basile
[7] gives a short implementation in Forth-79, Rawson[8]- in polyForth. Nijhof [12] calls his implementation �Goto
in Forth�. Starling [11] discusses a state machine hard/software co-design and the processing of external events
with Forth. Carter [10] describes Forth implemented FSMs for robotics. The most elaborated discussion of state
machines in Forth has been done by Noble [9]. These approaches focus on Forth as sequential language and
make use of its extensibility to add new state machine de�ning structures that allow for easy de�nition. However,
real-time considerations are not either not taken into account or else they are not well-documented.

Embedding a slow pace Forth inner interpreter into real-time applications has been best practice for many years
with Microchip �eld engineers.

Our work reuses elements, including those cited above, that have been commonplace in embedded programming for
many years. What we present in this paper is a di�erent combination in a novel framework. We avoid interrupts,
we implement �nite state machines and multiple clock domains in software, we retain the interactivity of FORTH,
and bring everything together in a systematic framework with an elegant syntax borrowed from digital logic design.

5 FORTH framework

5.1 Overview

The Forth framework is illustrated in �gure 5. The framework comprises �ve entity types: CLOCKs (or clock
domains), SIGNALs, INs, and OUTs and FSMs (�nite state machines) together with an operational loop.

The �rst step in establishing an application is to de�ne one or more clock domains. If there is only a single clock
domain then the only parameter that needs to be speci�ed is the clock period. If more than one clock domain
is in use then phase o�set between each is also speci�ed. Signals are added to each clock domain. A signal is
e�ectively a value-type variable but with an important distinction. A signal can be updated at any time during a
clock cycle, but it will not assume its new value until the following clock cycle. All signals within a clock domain
are updated synchronously at each clock cycle. A signal may be updated directly by the application logic or,
alternatively, they it may be connected to an IN port. An IN port speci�es a memory address (which may be a
memory-mapped register) that provides the value with which to update the signal at each clock cycle. A signal
may also be connected to an OUT port. An OUT port provides a memory address to which the value of a signal
is written at each clock cycle. Finally, a single �nite state machine which reads and updates signals at each cycle
in accordance with the application requirements is associated with each clock domain.

As a high-level illustration, the following Forth listing gives an example of the establishment of a clock domain and
related entities. More complete explanations of the framework entities are given throughout the remainder of this
section. The discussion of usage and applications continues at a higher level in the next section.

FCPU \ FCPU is the CPU frequency

10000 \ desired clock domain frequency in Hz

/ \ number of CPU cycles in a clock domain period

5

SIGNAL A

SIGNAL BIN B&1

SIGNAL C OUT C &2

SIGNAL DIN D OUT D&3 &4

Clock domains

Finite state machine (FSM)

Figure 5: Schematic overview of the FORTH framework. Entities are organized within CLOCK domains that have a
de�ned frequency and phase. Within each CLOCK domain the primary construct is a SIGNAL which is essentially
a variable with clock-synchronous update. IN's link memory-mapped addresses to signals with a synchronous read
relationship. OUT's link memory-mapped addresses to SIGNALs with a synchronous write relationship. There is
a single �nite state machine (FSM) within each clock domain that contains the FORTH code to inspect and update
all SIGNALS each clock cycle.

0 \ example phase offset

CLOCK 10kHz \ define a new clock domain labeled '10kHz '

10kHz 0 SIGNAL s0 \ add a signal named 's0' with a reset value of 0 to the clock domain

10kHz 0 SIGNAL s1 \ add another signal 's1'

10kHz $1000 IN s0 \ tie the input of signal s0 to memory address $1000

10kHz $2000 OUT s1 \ tie the output of signal s1 to memory address $2000

: our -code \ a simple (single -state) FSM

s0 not => s1 \ invert s0 and update s1 with the result each clock cycle

;

' our -code 10kHz FSM \ attach the FSM to this clock domain

5.2 Framework requirements

The framework is written entirely in ANSI Forth. The only requirement of the underlying hardware is a free-
running timer counter of known clock period accessible through Forth. The framework expects the following two
words to be available.

: CPU -time (-- n) ;

\ return the value of the free -running timer counter

\ assumed to be unsigned and full -cell width (e.g. 32 bits in a 32-bit cell)

: init -CPU -time (--) ;

\ the framework calls this word (which may be empty) at initialization

6

List link

Current value

Next value

Reset value

List link

Address

SIGNAL link

List link

Address

SIGNAL link

SIGNALIN OUT

Figure 6: Structure of the SIGNAL, IN and OUT entities. Each entity type is organized within a linked list

5.3 SIGNAL, IN, and OUT entity structures

Figure 6 illustrates the structures of the signal, in and out entities. All of the entities are organized as linked lists
with the anchor node in the clock data structure (see section 5.5). The SIGNAL entity reserves space for three
values, each of cell size: the current value, the next value that will be assumed at the following clock cycle, and
a reset value that was established when the signal was de�ned. The IN and OUT entities each hold a memory
address and a link to the SIGNAL to which they are attached to.

5.4 Programmed and synchronous updates

Figure 7 illustrates the mechanisms by which a SIGNAL is used and updated. 'Programmed', refers to usage of
the signal within the �nite state machine. At any time when the signal is read the current value �eld is returned.
If the signal is written to within the �nite state machine, the next value �eld is updated. The framework itself
synchronously updates all SIGNALS once each clock domain cycle. This synchronous update copies the next-value
�eld to the current-value �eld. The application may also instruct a reset, in which case the reset-value �eld will be
copied to the current-value �eld

Figure 8 illustrates the update relationship between SIGNALs, INs and OUTs. The framework follows the following
sequence when a clock domain is triggered to perform a synchronous update. Firstly the INs are processed in turn.
The memory address speci�ed by each IN is read and the value is written to the next value �eld of its associated
signal. Next the SIGNALs are processed in turn. As described above, the next value �eld of each signal is copied
to its current value �eld. Finally the OUT's are processed. In each case the current value of the associated signal
is written to the memory address.

5.5 CLOCK entity structure

Figure 9 illustrates the structure of the CLOCK domain entity. An application may de�ne multiple clocks and they
are organized in a linked list. For each clock its phase and period are speci�ed. The period is the number of CPU
clock cycles (as returned by the free-running counter timer CPU-time) between each round of synchronous updates
of within the clock domain. The phase is also speci�ed in the number of CPU clock cycles. If an application
includes multiple clock domains then the phase parameters may be used to specify a phase relationship between
the clock domains. The clock entity also anchors the linked list of SIGNALs, INs, and OUTs that have been de�ned
for that clock domain. The execution token of the �nite state machine associated with the clock domain is held in

7

List link

Current value

Next value

Reset value

SIGNAL

2

1

3

4

Programmed
1 FSM read
2 FSM write

Synchronous
3 CLK update
4 CLK reset

Figure 7: Schematic of the programmed and synchronous update of SIGNAL's

List link

Current value

Next value

List link

Address

SIGNAL link

List link

Address

SIGNAL link

Synchronous
1 read address to next value
2 write current value to address

1 2

SIGNALIN OUT

Figure 8: Schematic of the synchronous updates of IN's and OUT's

8

the XT �eld of the CLOCK domain entity. The due and �ags �elds are used by the framework during operation
(see the next section).

5.6 Timing framework

Figure 10 presents a �owchart of the timing framework that acts to coordinate the clock domains and their respective
elements. It comprises an outer loop (super-loop) and two routines (check-clocks and run-FSMs).

First we examine check-clocks. This routine proceeds once through the linked list of all clock domains. For each
clock domain the number of CPU cycles until that clock domain is due to update synchronously is computed. This
is done by reference to the due �eld and a call to CPU-time. If the CPU-cycles-until-due value is zero or negative
then the clock domain proceeds to a synchronous update in the manner described above. All of the INs, SIGNALs
and OUTs in that clock domain are updated in turn. The clock-domain's due-�eld is updated by an increment
equal to the 'period' and a �ag is set to indicate that the FSM of that clock domain is also now due for execution.
The FSM is not executed at this point. Regardless of whether a clock domain proceeds through a synchronous
update, the value of 'least-slack' is examined and potentially revised. For each clock domain, the 'slack' is the
number of CPU cycles until that domain is due for a synchronous update. The 'least-slack' is the number of CPU
cycles until the earliest of the clock domains is due to update. If the 'least-slack' is below the 'minimum-slack'
threshold, then FSM processing is skipped in favor of synchronous update.

Returning to super-loop, after check-clocks has been run the �nal value of 'least-slack' is compared with the
value of 'minimum-slack', which provides a threshold as described below. If the 'least-slack' exceeds the 'minimum-
slack' then execution proceeds to run-FSMs. If not then check-clocks is run again until 'least-slack' exceeds the
threshold. run-FSMs proceeds through each clock domain in turn. If the ready-to-execute �ag has been set by
check-clocks then the FSM is executed at this time by calling its XT and the ready-to-execute �ag is cleared.

Figure 11 presents two examples of the operation of the framework with a single clock domain. In both cases the
clock domain is due for synchronous updates at t0 and t1. Consider �rst case A. The period labeled CLK-A indicates
the time during which the entities of this clock domain are being updated (this occurs within check-clocks when
the due time is reached). During this period the updating of SIGNALS and OUTS leads to the update of OUT-A.
After CLK-A has been completed the read-to-execute �ag will have been set for this clock domain. When run-FSMs

is called the FSM of this clock domain is executed. For illustration purposes we present a simple device in which the
only action of FSM-A is to invert the SIGNAL driving OUT-A, so that OUT-A toggles between logical high and
low levels and produces a square wave of twice the period of the clock domain. In case B there is a problem. The
run time duration of the FSM-B is too long for the speci�ed clock domain period and execution is not completed
in time for the synchronous update expected at t1. This constraint places a practical lower limit on the period
that may be speci�ed for a clock domain that depends on the underlying hardware and the host Forth platform.

5.7 Multiple clock domains

If an application de�nes only a single clock domain then the 'minimum-slack' threshold has no impact on the
operation of the framework and the default value of zero applies. Where an application has more than one clock
domain then the 'minimum-slack' threshold in�uences the sequence of operations, as illustrated in �gure 12. In this
example clock domain A is assumed to have twice the frequency of clock domain B and the two clock domains are
(approximately) in phase. Here the 'minimum-slack' parameter was set to some non-zero value. After CLK-A has
proceeded through a signal update at t0, super-loop (�gure 10) computes that 'least-slack' is less than 'minimum-
slack' and so the �ow of execution returns to check-clocks rather than proceeding to run-FSMs. As a result
CLK-B is able to proceed to a signal update immediately following CLK-A. Subsequently the FSMs of both clock
domains are called and the cycle repeats at t1.

The bene�t of using the 'minimum-slack' mechanism is that it enables priority to be given to the synchronous signal
update process (which is assumed to be hard real-time critical since it drives the OUT signals) at the expense of
the FSM calls, which are not time critical, subject to each FSM completing execution at some time before the next
synchronous update is due.

We have not analyzed the e�ect of 'minimum-slack' from a theoretical standpoint and leave it to be engineered
on the application basis. There naturally is a trade-o� in setting the value of 'minimum-slack' since if a value is
speci�ed that is too high then execution of the FSM may be unnecessarily delayed and a failure case may result as
illustrated in �gure 11 (case B).

9

Signals link

Ins link

Outs link

List link

Phase

Period

XT

Due

Flags

CLOCK

Figure 9: Structure of the CLOCK domain entity

10

check-clocks

<= 0

Calculate clock
cycles until due

Get next clock
domain

Update
INs

Update
OUTs

Update
SIGNALs

Set
FSM flag

Update least
slack

Done
all? No

No

Yes

end

Yes

run-FSMs

FSM
flag?

Get next clock
domain

Execute
XT

True

Done
all?

end

Yes

False

super-loop

least_slack
>

minimum

check-clocks

run-FSMs

True

False

Figure 10: Flowchart of the FORTH software for the framework.

11

CLK-A FSM-A

OUT-A

CLK-A FSM-A

CLK-B FSM-B

OUT-B

CLK-B FSM-B

t0 t1

Figure 11: Timeline diagram of the timing framework in operation. A and B are separate cases and are presented
on the same diagram only for comparison purposes. Case A illustrates typical operation of the framework with a
single clock domain. Case B illustrates that there is a practical lower limit that can be speci�ed for the period of
a clock domain and that the computation requirement for the FSM computation is a relevant factor to be taken
into account

CLK-A

t0 t1

CLK-B FSM-A FSM-B

OUT-B

CLK-A FSM-A

OUT-A

Min slack

Figure 12: Multiclock timeline. In this example it is assumed that clock domain A has exactly half the period of
clock domain B and that the two clock domains are (approximately) in phase.

12

5.8 Finite state machine logic

Argued by analogy with typical digital logic design practices, �nite state machines are a natural complement to
the synchronous logic entities that we present within our framework. However our framework does not insist that
the executable attached to each CLOCK domain be a �nite state machine. It could be arbitrary FORTH code,
but in that case the system will no longer be within the scope of this paper. In particular the success of the design
in meeting timing requirements will be implementation dependent.

The SIGNAL construct itself also provides a simple mechanism to implement a �nite state machine in Forth, as
illustrated in the following listing. The bene�t of using a SIGNAL as the FSM state variable is that it may be
updated at any point in the program �ow, but the next value will not take e�ect until the time of the synchronous
update which is guaranteed to be after completion of the entire FSM executable. Hence next state and output
calculation logic may be cleanly divided between control structures.

0 constant state_init

1 constant state_A

2 constant state_B

1kHZ state_init SIGNAL state

1kHZ 0 SIGNAL s0

: my-fsm

\ next state logic

state CASE

state_init OF state_A => state ENDOF

state_A OF (some next state logic) ENDOF

state_B OF (some next state logic) ENDOF

ENDCASE

\ output logic

state CASE

state_init OF 0 => s0 ENDOF

state_A OF (some output logic) ENDOF

state_B OF (some output logic) ENDOF

ENDCASE

;

\ add this FSM to the clock domain

' my-fsm 1kHz FSM \ attach the FSM to this clock domain

5.9 Interactivity via an additional interpreter

One of the advantages of embedded programming in Forth is the interactive use of the interpreter during devel-
opment. We have retained this facility without compromising our framework by implementing a threaded code
Forth interpreter as a �nite state machine. The interpreter is activated by setting up a new clock domain with
a suitable time period and attaching to it the interpreter's �nite state machine. With the interpreter in place,
the usual debugging capabilities such as inspecting variables or memory locations, making interventions in stored
values, running diagnostic routines, etc. are all available. In addition the interpreter can be used to make on-the-�y
changes to clock domains and their associated �nite state machines.

The interpreter is described in a separate technical report [14] by Ulrich Ho�mann so here we give just a rough
overview of its working principles.

Whereas many of today's Forth systems compile de�nitions to machine code, traditionally Forth has been imple-
mented by means of an address interpreter (the so called inner interpreter to contrast it with the source code
analyzing text (outer) interpreter). For this, the systems implement a small interpreter loop usually named NEXT

that is highly optimized for overall system speed (and thus often no longer recognizable as a loop).

The interpreter loop can certainly also be implemented in high-level Forth. The current implementation adheres
to ANSI Forth. It manages an instruction pointer that traverses arrays of execution tokens. Words are executed
by invoking these execution tokens. Special primitives for instruction pointer manipulation (control structure

13

primitives) are de�ned. This address interpreter is the basis of an entire new Forth system (including a text
interpreter of its own), the Guest system. It shares some functionality with the surrounding Host system but can
be di�erent in any aspect. De�ned words of the Host System are primitives of the Guest system.

The Guest has the bene�cial property that its address interpreter can be invoked to just carry out a single inter-
pretation step and then transfer control back to the caller. This allows to implement the Guest as a state machine
where each transition performs just a single address interpreter step. Choosing an appropriate clock domain allows
to �ne tune the Guest execution speed. The Guest is much slower than the Host as its NEXT is not optimized for
speed, but it can use Host primitives. We found the interpreter to be fast enough for reasonable interactive use.
So here we have a slow but interactively usable Forth systems that �ts our framework.

6 Implementation on speci�c platforms

We now discuss the practical issues arising from the implementation of this framework on a number of Forth
platforms

6.1 General considerations

As mentioned, we sought the widest applicability of our framework by minimizing the requirements of the underlying
system. Our framework expects only ANSI Forth and a free-running timer counter. It has been successfully
implemented and tested in VFX Forth, G-Forth and Mecrisp on the Texas Instruments Tiva-C.

All of the above platforms allow the Forth dictionary to be hosted entirely in RAM as opposed to FLASH. Having
the dictionary entirely in RAM freed us from needing to consider any implications that would arise from the
separation of the dictionary into executable elements and dynamic data elements. The framework code would
require modi�cation on systems where the dictionary is not entirely hosted in RAM. Our preliminary analysis has
convinced us that the changes required to deal with a mixed FLASH/RAM dictionary structure would not be
major. However we prefer to omit further discussion of that issue in the current paper as we consider it to be a
side topic relevant to certain implementations only.

6.2 VFX Forth

Implementation on VFX Forth was very straightforward since we could rely on full ANSI Forth compatibility. We
de�ned the necessary support words as follows

: CPU -time (-- n)

ticks \ 1ms increments

;

: init -CPU -time (--) ;

6.3 G-FORTH

Implementation on G-FORTH was likewise straightforward.

: CPU -time (-- n)

ntime drop 10 / \ 10ns scale - increments will be larger

;

: init -CPU -time (--) ;

14

Parameter Result Notes

Jitter 1.75% Relative standard deviation of the period of the generated square wave

tClock_Output 10 microseconds Incremental time delay for each additional OUT to be updated

fmax 5 kHz Highest CLOCK period achieved using an illustrative synthetic test

Table 1: Summary of results on the Tiva-C at 16MHz with Mecrisp Forth

6.4 Mecrisp on the Tiva-C

We were very pleased to have the Mecrisp platform available on the Texas Instruments Tiva-C to implement our
framework and conduct real time measurements in hardware. Mecrisp is not a completely ANSI compatible system,
as a result we prepared an ANSI compatibility layer to support our framework. Otherwise implementation on the
Mecrisp was also straightforward. Rather than present a detailed report of our ANSI compatibility layer within
this paper we intend to make our notes available as a separate technical report.

7 Measurements

Following implementation on the Mecrisp Tiva-C platform we conducted a number of practical investigations using
the framework. We used the generation of a square wave by SIGNALs within a CLOCK domain as our synthetic
test for measurement purposes. This synthetic test has the merits of simplicity and convenience and we intend
it only for illustration purposes. We recognize that a square wave would likely generated microcontroller PWM
(pulse wave modulation) facilities in an actual application.

Table 1 summarizes the quantitative measurements. These and additional qualitative tests are described in the
following sections.

7.1 Jitter

Jitter is commonly de�ned as the deviation of our synchronous signal updates from true periodicity. We measured
the period of 30 individual square wave periods using a PC oscilloscope and determined the standard deviation of
the clock period expressed as a percentage of the mean. This is the relative standard deviation, which we measured
at 1.75%. Figure 13 is an oscilloscope trace of the actual output measured on the Tiva-C. The �le jitter.fs in the
test listing section shows the code used to generate it.

7.2 tClock_Output

We examined the delay that our framework requires to �synchronously� update each additional OUT signal in a clock
domain after the �rst OUT signal (�g. 14). In a digital logic design, parallel logic elements would be responsible
for updating all outputs simultaneously, but with a software framework outputs are necessarily updated one by
one. We de�ne the delay to be the incremental tClock_Output times of our framework (i.e. the marginal delay for
each additional OUT signal). It was measured at approximately 10 microseconds.

7.3 Multiple clock domains

We conducted qualitative tests to assess the ability of our system to support multiple clock domains (�gs. 15, 16).
Although we did not make speci�c measurements we observed that the signals from two clock domain appeared to
be stable over a period of approximately six hours.

15

Figure 13: Measurement of jitter. A single square wave is being generated. The duration of each cycle from
rising-edge to rising-edge was measured using the on-screen cursor of a PC oscilloscope. In all 30 cycles were
measured.

Figure 14: Measurement of tClock_Output. A series of signals have been generated. The lowest signal is taken as
the leading edge of the clock and the delay in the output of the other signals was measured.

16

Figure 15: Two synchronous clock domains. The lower signal is a 1 kHz square wave (generated in a 2 kHz clock
domain that inverts the output each cycle). The upper signal is a 0.5 kHz square wave speci�ed with no phase
o�set to the lower signal. The transition edges of both signals should theoretically coincide exactly along the time
axis, but there is an o�set due to the inherent limitation of using a single CPU to generate both outputs.

Figure 16: Two asynchronous clock domains. In this case the lower signal is a 1 kHz square wave and the upper
signal is a 0.75 kHz square wave. The two clock domains are asynchronous in the sense that their transition edges
can occur at any point relative to the phase of the other. Visual inspection of the signals in the above �gure
and over a period of several hours with our live oscilloscope trace con�rmed that the framework produced stable
outputs in spite of the changing phase relationships.

17

8 Discussion

8.1 Postulated advantages of this approach

This article presents a novel framework for real-time control in FORTH. At this stage we have evaluated the
framework on the Mecrisp platform with various test measurements but we have not implemented an actual
application. Nevertheless we postulate some advantages compared to traditional multitasking based approaches.

Firstly, whilst the �nite state machine methodology is a more constrained programming model than synchronous
processes, it renders the system capable of being conceptualized at a more abstract level and, in principle, systematic
techniques suitable for the evaluation of FSMs can be applied to this framework. The SIGNAL construct itself
provides a convenient approach for implementing FSMs in Forth.

Secondly, because our framework separates the reading and writing of external registers from the computational
code and application control �ow, we are able to specify the timing of signal updates more predictably and also
come closer to a true synchronous system.

Thirdly, because our framework is running on a single CPU, there are no meta-stability issues with the signals of
di�erent clock domains, since signal update is e�ectively atomic from the perspective of the FSM logic.

Finally, compared to other time-triggered architectures that focus in the main just on the timing of code execution,
we argue that our framework is possibly a more complete approach because it adds SIGNALS, INS and OUTS as
well as CLOCK domains for triggering events.

8.2 Limitations

We naturally also recognize a number of limitations to our framework.

Firstly, not all embedded systems developers are attracted to develop applications using the construct of �nite state
machines. This is a matter of programming model preference. Our framework imposes the additional constraint on
the FSM design since in order to meet the timing requirements of a certain clock frequency the FSM update logic
must complete within a limited amount of time (or the FSM must be split into simpler sub-units of computation).

Secondly, any layer that sits between application code and the CPU will naturally consume resources and limit
maximum performance compared to the potential performance of hand-crafted assembler. We achieved a maximum
CLOCK frequency of 5kHz on the 16MHz Tiva-C microcontroller board in our synthetic test.

On a related note, the use of a single CPU rather than true parallel logic also introduces latency into the update
of output signals. We measured a 10us delay between the update of consecutive signals. By comparison, with logic
circuits implements in commonly available FPGA's, we would expect that such latencies could easily be constrained
within half a clock cycle.

Perhaps most seriously of all we do not o�er any method for computing whether an application will be able to meet
hard real time requirements using our framework [3]. Allied to this point we do not o�er a systematic procedure
for setting the min_slack, which is critical to the operation of multiple clock domains. Instead it is left for trial
and error tuning during application testing.

As a next step it might be useful to instrument the FSM engine to track the actual number of CPU cycles spent
in run-FSM and record the incidence of timing glitches such as those illustrated in case B of �gure 11.

8.3 Possible applications

At present our framework has been presented at a conceptual level with a small number of trial implementations and
synthetic measurements o�ered as evidence of practical feasibility. To be properly relevant to embedded systems
developers our framework would prove its worth in a real-world application. We are considering possible robotics
applications in this regard.

Within the �eld of test and measurement our framework could also be a platform for the rapid development of an
FSM-based system aided by the interactivity provided by the FORTH terminal prior to translation into FPGA's
or ASIC's.

18

9 Proposal for an alternative implementation approach

One of our objectives in developing this framework was to minimize the requirements that we demand from the
underlying system. Hence our choice to require only a free-running timer counter from the underlying system and
use what is e�ectively a busy loop to schedule synchronous updates. The disadvantage of this approach is the
lesser precision of a busy-loop in calling the synchronous updates as compared with a timer-driven interrupt. For
completeness we present an interrupt driven model for framework operation in �gure 17. At the present time we
have not implemented this model and o�er it as a proposal for next steps.

10 Conclusion

We have presented a novel framework using Forth in applications with hard real-time requirements. Our framework
is directly inspired by the methods of synchronous digital logic design and we have introduced constructs inten-
tionally borrowed from VHDL, such as clock domains, SIGNALs, INs and OUTs. Our framework is compatible
with any ANSI Forth system that includes a free running timer/counter. We have implemented the framework in
VFX Forth, GForth and Mecrisp on the Texas Instruments Tiva-C. We devised some synthetic tests on the Tiva-C
platform and made some measurements to give a qualitative sense of the performance of our framework and o�er
evidence of its practical feasibility. For our framework to become relevant to embedded developers we recognize
that its e�ectiveness in real world applications would need to be demonstrated. Nevertheless we suggest a number
of advantages to the use of our system in hard real time applications. In essence our framework moves applica-
tion design along the spectrum from the relative freedom of a pure software approach to the more constrained
(and therefore arguably more reliable) approach of synchronous digital logic design. We are currently considering
possible applications, potentially in robotics.

The authors are grateful to Matthias Koch for the availability of the Mecrisp platform and his assistance to us
during discussions, and to the anonymous academic reviewers for their helpful comments.

References

[1] Architecture datasheet PB002-100822, GreenArrays, Inc., 2010

[2] Finite State Machines in Hardware, Volnei Pedroni, MIT Press, 2013

[3] Philip Koopman, �Better Embedded System Software�, Drumnadrochit Press, 2010

[4] Michael J. Pont, �The Engineering of Reliable Embedded Systems�, ISBN 978-0-9930355-0-0

[5] Hintenaus, Peter, �Engineering Embedded Systems: Physics, Programs, Circuits�, Springer, 2015

[6] Edward A. Lee and Pravin Varaiya, �Structure and Interpretation of Signals and Systems�, Second Edition,
LeeVaraiya.org, 2011

[7] James Basile, �A Forth Finite State Machine�, The Journal of Forth Application and Research 1,2, 1982

[8] E. Rawson, �State Sequence Handlers�, The Journal of Forth Application and Research 3,4, 1986

[9] Julian V. Noble, �Finite State Machines in Forth�, The Journal of Forth Application and Research 7,1, 1995

[10] Everett F. Carter Jr, �Robots and Finite-State machines�, Dr. Dobb's Journal, February 1997

[11] Starling, M. K, "A Hardware/Software Finite State Machine Implementation", 1983 Rochester Forth Appli-
cations Conference. Rochester: Institute for Applied Forth Research, 1983.

[12] Albert Nijhof, �Goto in Forth�, http://home.hccnet.nl/anij/c/c213a.html, last access 2016-06-23

[13] Hermann Kopetz and Günther Bauer,�The Time-Triggered Architecture�, Proceedings of the IEEE, 2003

[14] Ulrich Ho�mann, �Implementing the Forth Inner Interpreter in High Level Forth�, Technical Report, EuroForth
2016

19

Clock-interrupt

Update
INs

Update
OUTs

Update
SIGNALs

end

Execute
XT

Disable
interrupts

Enable
interrupts

Figure 17: Alternative scheme for triggering each clock-domain with an interrupt

20

Source code listing

1 : field:

2 \ Create and use fields in a structure

3 Create (offset size -- offset ')

4 over , \ save the current value of the offset

5 + \ increment the offset by this field 's size

6 Does > (structure -base -- field -address)

7 @ + \ add this field 's offset to the structure -base

8 ;

9

10 \ CLOCK domain data structure

11 0

12 1 cells field: >link \ link field to prior CLOCK or zero if the first CLOCK

13 1 cells field: >phase \ relative phase offset of this CLOCK in CPU clock cycles

14 1 cells field: >period \ period of this CLOCK in CPU clock cycles

15 1 cells field: >signal -link \ linked list of signals operated by this CLOCK

16 1 cells field: >in -link \ linked list of IN's operated by this CLOCK

17 1 cells field: >out -link \ linked list of IN's operated by this CLOCK

18 1 cells field: >xt \ execution token of this CLOCK 's FSM

19 1 cells field: >due \ count in CPU clock cycles when this CLOCK is next due to

execute

20 1 cells field: >flags \ boolean flags bit0: 1 = alive , 0 = sleeping

21 drop

22

23 \ SIGNAL data structure

24 1 cells \ >link \ link field to prior signal or zero if the first signal in this

clock domain

25 1 cells field: >current \ current signal value

26 1 cells field: >next \ becomes this value at UPDATE

27 1 cells field: >reset \ becomes this value at RESET

28 drop

29

30 \ IN port / OUT port data structure

31 1 cells \ >link \ link field to prior IN or zero if the first IN in this clock

domain

32 1 cells field: >addr \ memory mapped register referenced by this IN

33 1 cells field: >signal \ signal referenced by this IN

34 drop

35

36 variable clock -link 0 clock -link ! \ pointer to linked list of CLOCK domains

37

38 : {nothing} (--)

39 \ dummy FSM

40 ;

41

42 : CLOCK

43 \ create a new clock domain

44 Create (period phase <NAME > --)

45 here clock -link @ , \ link

46 clock -link ! \ save this clock 's location to the global clock -link

variable

47 , \ phase

48 , \ period

49 0 , \ signal -link

50 0 , \ in-link

51 0 , \ out -link

52 ['] {nothing} , \ XT

53 0 , \ due

54 0 , \ flags

55 Does > (-- structure -base)

56 \ return the address of the clock structure

57 ;

58

59 : FSM (XT clock -domain --)

60 \ set the finite state machine associated with a clock -domain

61 >xt ! ;

62

63 : SIGNAL

64 \ create a new signal

65 Create (clock -domain default -value <NAME > --)

66 swap here swap (default -value structure -base clock -domain)

67 >signal -link dup @ (default -value structure -base signal -link last -signal)

21

68 , (default -value structure -base signal -link) \ link

69 ! (default -value) \ save this signal 's location to signal -link

70 dup , \ current

71 dup , \ next

72 , \ reset

73 Does > (-- current value)

74 >current @ \ return the current value of the signal

75 ;

76

77 : IN (clock -domain addr <SIGNAL > --)

78 \ create a new IN port

79 swap here swap (addr structure -base clock -domain)

80 >in-link dup @ (addr structure -base in-link last -in)

81 , (addr structure -base in -link)

82 ! (addr)

83 , \ addr

84 ' >body , \ signal

85 ;

86

87 : OUT (clock -domain addr <SIGNAL > --)

88 \ create a new OUT port

89 swap here swap (addr structure -base clock -domain)

90 >out -link dup @ (addr structure -base in-link last -in)

91 , (addr structure -base in -link)

92 ! (addr)

93 , \ addr

94 ' >body , \ signal

95 ;

96

97 : => (n <name > --)

98 \ store a value in the next field of a SIGNAL (better not to redefine TO?)

99 ' >body >next state @ IF postpone literal postpone ! EXIT THEN ! ; immediate

100

101 : {update -signal} ('signal --)

102 \ update a signal to its next value

103 dup >next @ swap >current ! ;

104

105 : {reset -signal} ('signal --)

106 \ update a signal to its default value

107 dup >reset @ swap 2dup >current ! >next ! ;

108

109 : {update -in} ('in --)

110 \ read an IN port and write to the >next field of its SIGNAL

111 dup >addr @ @ swap >signal @ >next ! ;

112

113 : {update -out} ('out --)

114 \ write to an OUT port , the >current field of its SIGNAL

115 dup >signal @ >current @ swap >addr @ ! ;

116

117 : do-list (xt link --)

118 BEGIN (xt link)

119 @ dup (xt 'item)

120 WHILE (xt 'item)

121 over over >r >r swap ('item xt)

122 execute (--)

123 r> r> (-- xt 'item)

124 REPEAT

125 drop drop ;

126

127 : do-clocks (xt --)

128 \ apply XT to all clocks in turn

129 \ XT must have signature (i*x 'clock -- j*x)

130 clock -link do -list ;

131

132 : do-signals (i*x clock -domain xt -- j*x)

133 \ apply XT to each signal in turn in a given clock -domain

134 swap >signal -link do-list ;

135

136 : do-ins (i*x clock -domain xt -- j*x)

137 \ apply XT to each IN in turn in a given clock -domain

138 swap >in -link do-list ;

139

140 : do-outs (i*x clock -domain xt -- j*x)

22

141 \ apply XT to each IN in turn in a given clock -domain

142 swap >out -link do -list ;

143

144 : UPDATE -SIGNALS (clock -domain --)

145 \ update all signals synchronously to their next values

146 ['] {update -signal} do -signals ;

147

148 : RESET -SIGNALS (clock -domain --)

149 \ update all signals synchronously to their default values

150 ['] {reset -signal} do -signals ;

151

152 : UPDATE -INS (clock -domain --)

153 \ read all IN addresses and write to the >next fields of their associated signals

154 ['] {update -in} do-ins ;

155

156 : UPDATE -OUTS (clock -domain --)

157 \ read all IN addresses and write to the >next fields of their associated signals

158 ['] {update -out} do-outs ;

159

160 : .clock ('clock --)

161 \ print the fields of a clock

162 ." [CLOCK@" dup 0 u.r

163 ." name=" dup body > >name .name

164 ." , link=" dup >link @ 0 u.r

165 ." , phase=" dup >phase @ 0 u.r

166 ." , period =" dup >period @ 0 u.r

167 ." , signal -link=" dup >signal -link @ 0 u.r

168 ." , XT=" dup >xt @ 0 u.r

169 ." , due=" dup >due @ 0 u.r

170 ." , flags=" >flags @ 0 u.r ."]" cr

171 ;

172

173 : .signal ('signal --)

174 \ print the fields of a signal

175 ." [SIGNAL@" dup 0 u.r

176 ." name=" dup body > >name .name

177 ." , link=" dup >link @ 0 u.r

178 ." , current =" dup >current @ 0 u.r

179 ." , next=" dup >period @ 0 u.r

180 ." , reset=" >reset @ 0 u.r ."]" cr

181 ;

182

183 : .in ('in --)

184 \ print the fields of an in

185 ." [IN@" dup 0 u.r

186 ." , addr=" dup >addr @ 0 u.r

187 ." , signal =" >signal @ 0 u.r ."]" cr

188 ;

189

190 : .out ('in --)

191 \ print the fields of an in

192 ." [OUT@" dup 0 u.r

193 ." , addr=" dup >addr @ 0 u.r

194 ." , signal =" >signal @ 0 u.r ."]" cr

195 ;

196

197 : .signals (clock -domain --)

198 \ print all of the signals in a clock domain

199 cr

200 ['] .signal do-signals

201 ;

202

203 : .clocks (--)

204 \ print all of the clock domains

205 cr

206 ['] .clock do-clocks

207 ;

208

209 : .ins (clock -domain)

210 \ print all of the IN 's in a clock domain

211 cr

212 ['] .in do -ins

213 ;

23

214

215 : .outs (clock -domain)

216 \ print all of the IN 's in a clock domain

217 cr

218 ['] .out do -outs

219 ;

220

221

222 variable slack

223 \ slack is updated by check -clocks , it contains the number of CPU cycles until the next clock

domain due time

224

225 variable min -slack 0 min -slack !

226 \ min -slack is fine -tuned by the designer. If slack < min -slack then super -loop will wait

227 \ for the next clock rather than proceed with FSM execution

228

229 : {initialize -clock} (t0 'clock -- t0)

230 \ initialize a clock given the t0 value of CPU -time

231 >R dup R@ >period @ R@ >phase @ + + R@ >due ! \ set due time

232 0 R@ >flags ! \ clear flags

233 R> reset -signals \ reset all signals

234 ;

235

236 : initialize -clocks (--)

237 \ initialize all clock domains

238 CPU -time ['] {initialize -clock} do-clocks drop ;

239

240

241 : {check -clock} ('clock --)

242 \ check if this CLOCK is due and if so update the SIGNALS , set flags = alive , and schedule the

next clock

243 dup >due @ ('clock due)

244 CPU -time - ('clock cycles -until -due)

245 dup 0 <= IF ('clock cycles -until -due)

246 drop ('clock)

247 dup update -ins \ all IN's, SIGNALs and OUTs now update synchronously

248 dup update -signals

249 dup update -outs

250 dup >flags dup @ ('clock 'flags flags)

251 1 OR swap ! \ set flags so to indicate that the FSM is due to run

252 dup >period @ dup >R ('clock period R:period)

253 over >due @ ('clock period last -due R:period)

254 + ('clock next -due R:period)

255 over >due ! \ determine and save the next due time

256 R> ('clock period)

257 THEN ('clock cycles -until -due/period)

258 slack @ MIN slack ! drop \ update the slack

259 ;

260

261 : check -clocks (-- slack)

262 \ check all clocks , update SIGNALS and flags where clocks are due , and update slack

263 100000000 slack ! \ initial dummy value

264 ['] {check -clock} do-clocks

265 slack @

266 ;

267

268 : {run -FSM} ('clock --)

269 \ check if this clock is now active to run and if so , run the FSM

270 dup >flags @ ('clock flags)

271 1 AND IF ('clock)

272 \ run the FSM logic

273 dup >r >xt @ execute r>

274 \ set flags so that this task will now sleep)

275 dup >flags dup @ ('clock 'flags flags)

276 254 AND swap ! ('clock)

277 THEN

278 drop

279 ;

280

281 : run -FSMs (--)

282 ['] {run -FSM} do -clocks ;

283

284 : super -loop

24

285 BEGIN

286 BEGIN

287 check -clocks (slack)

288 min -slack @ > (flag)

289 UNTIL

290 run -FSMs

291

292 key? drop \ VFX FORTH needs this to facilitate Windows refresh

293 AGAIN

294 ;

295

296 : main (--)

297 reset \ threaded code interpreter

298 initialize -clocks

299 super -loop

300 ;

Test listings

1 jitter.fs

2

3 erase -clocks

4

5 FCPU 2000 / 0 CLOCK 2kHz

6

7 2kHz 0 SIGNAL s0

8

9 : toggle

10 s0 not => s0

11 ;

12

13 ' toggle 2KHz FSM

14

15 2KHz LOGIC0 OUT s0

16

17 : test

18 main

19 ;

1 max_freq.fs

2

3 erase -clocks

4

5 10000 constant freq \ frequency in Hz

6

7 FCPU freq / 0 CLOCK CLK

8 CLK 0 SIGNAL s0

9

10 0 variable t0

11

12 : toggle

13 s0 not => s0

14 100 0 DO i t0 ! LOOP

15 ;

16

17 ' toggle CLK FSM

18

19 CLK LOGIC0 OUT s0

20

21 : test

22 main

23 ;

25

