
The Halting Problem in Forth

Bill Stoddart

September 1, 2016

Abstract

Forth can be used to formulate a simpli�ed but fully general state-

ment of the halting problem and to formulate a short and simple proof.

Keywords: Forth, halting problem, proof

1 Introduction

In his 1936 paper �On Computable Numbers�, Alan Turing formulated the
idea of a Turing machine and its tape as a way of describing �e�ective proce-
dure� and showed that there were some limitations in such machines. A slight
variation in the limitations that Turing demonstrated gave us the �Halting
Problem". This phrase may ha�rst have appeared in the 1958 textbook Com-

putability and Unsolvability by Martin Davis, but the problem is generally
attributed to Turing due to its closeness to the material in his paper. It
shows that no Turing machine can exist such that, if supplied with the de-
scription of another arbitrary Turing machine S and its data (tape) D, would
be able to predict whether S would eventually come to a halt if activated on
D. Given that we recognise Turing machines as representing computations
in a general sense, it tells us that no program can be written which can take
another program S and data D as input and reliably tell us whether S will
halt when executed on data D.

In this paper we �rst formulate a slight simpli�cation of the halting problem
in Forth. We then discuss what the mathematical implications would be if
a solution to the halting problem, in the form of some program H, did exist,

showing that this would provide a e�ective procedure for demonstrating the
truth of mathematical propositions.

We then give a Forth based proof of the halting problem, and set a variation
of the problem as an exercise.

2 Describing the halting problem in Forth

When a Forth program is executed from the keyboard it either comes back
with an �ok� response, or exhibits some pathological behaviour such as re-
porting an error, not responding because it is in a n in�nite loop, or crashing
the whole system. We classify the �ok� response as what we mean by �halt-
ing�.

We specify a putative Forth program H by its stack e�ect:

xt → f , f will be true if and only if execution of xt from the current state
would halt.

Note that we do not talk about the application of a program to its data, but
it is implicit that there is a stack where any data required by the execution
of xt may be found.

Were H to exist, we could use it as follows:

4 2 ′ /H .

�

−1 ok
4 0 ′ /H .

�

0 ok

3 Implications of the existence of H

Fermat's last theorem states that for any integer n > 2 there are no integers
a, b, c such that:

an + bn = cn

Fermat died leaving a note in the margin of his notebook saying he had found
a truly marvellous proof of his theorem, but this proof was never found. All
subsequent attempts proof failed until 1995, when Andrew Wiles produced
a proof 150 pages long.

However, with the aid of our program H we could have investigated Fermat's
last theorem by providing a Forth program FERMAT which searches ex-

haustively for a counter example and halts when it �nds one. Then we could
have proved the theorem by the execution:

′ FERMAT H .

�

0 ok

This tells us the program FERMAT does not halt, implying that the search
for a counter example will continue forever, in other words that no counter
example exists and the theorem is therefore true.

In the same way we could explore any mathematical conjecture by writing
a program to search exhaustively over the variables of the conjecture until a
counter example is found. Then use H to determine if the program fails to
halt, in which case there is no counter example, and the conjecture is proved.

4 A proof of the halting problem in Forth

Traditional proofs of the halting problem and friends rely on a diagonalisation
argument - see �8 of Turing's paper. We will permit ourselves a more direct
approach.

We assume a program H exists with stack e�ect xt → f where f will be
true if execution of xt halts, and false otherwise.

We specify a program IH (xt →) which inverts the halting behaviour of
xt , i.e. it halts if execution of xt would fail to halt, and it fails to halt if
execution of xt would halt. We can de�ne this program by:

: IH (xt →) DUP H IF BEGIN AGAIN THEN ;

We then consider whether ′ IH IH will halt.

When we execute ′ IH IH the invocation of H within IH �nds ′ IH ′ IH on
the stack, so it will report whether ′ IH IH will halt.

If we assume H returns true, reporting that ′ IH IH will halt, then IH will
enter a non-terminating loop, so we must discard this assumption.

If we assume H returns false, reporting that ′ IH IH will not halt, the in-
vocation of H in IH must have yielded false, which would yield immediate
termination. Again we must discard this assumption.

So we are forced to reject our assumption that the program H exists.

5 A similar non-existence proof for the zero

test program - exercise

Turing considered a the analysis of a slightly di�erent machine, one supposed
to tell whether a Turing machine with a given tape will ever output a speci�c
symbol, say a zero, to that tape.

We adapt this to Forth by investigating whether a program Z could exist
with this speci�cation:

xt → f , f will be true if an only if execution of xt leaves a zero at the top
of the stack.

Exercise: Prove that no such program Z can exist.

6 Conclusion

To demonstrate the halting problem in Forth we assume the existence of a
program H xt → f , f is true if and only if execution of xt halts. We then
use H to de�ne a program:

: IH (xt →) DUP H IF BEGIN AGAIN ;

and we show IH cannot exist by a reductio ad absurdum obtained from
considering execution of ′ IH IH .

This approach is very uncluttered, due to the minimalism of Forth, but also
di�ers from other approaches to the halting problem in that it does not
require formulation in terms of a program acting on given data - with our
approach, using a stack, the presence of any data required for our arguments
can be left implicit.

