
37th EuroForth Conference

September 10-12, 2021

(Preprint Proceedings)

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 37th EuroForth
finds us mostly at home, thanks to Covid19, and the conference is being held
on the Internet. The two previous EuroForths were held as a remote conference
(2020) and in Hamburg, Germany (2019). Information on earlier conferences
can be found at the EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there have been two submissions to the refereed track, one of which was accepted
(50% acceptance rate). For more meaningful statistics, I include the numbers
since 2006: 30 submissions, 21 accepts, 70% acceptance rate. The papers were
sent to three program committee members for review, and they all produced
reviews. The reviews of all papers are anonymous to the authors: The papers
were reviewed and the final decision taken without involving the authors. This
year one submission was co-authored by the program chair; Ulrich Hoffmann
served as secondary chair and organized the reviewing and the final decision for
that paper. I thank the program committee for their service in reviewing the
papers. I thank the authors for their papers.

Late papers will be included in the final proceedings (http://www.euroforth.
org/ef20/papers/).

You can find these proceedings, as well as the individual papers and slides,
and links to the presentation videos on http://www.euroforth.org/ef21/

papers/.
Workshops and social events (yes, even in a remote conference) complement

the program. This year’s EuroForth is organized by Gerald Wodni.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Ulrich Hoffmann, FH Wedel University of Applied Sciences (secondary chair)
Matthias Koch, Institute of Quantum Optics, Leibniz University Hannover
Jaanus Pöial, Tallinn University of Technology
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas

3

http://www.euroforth.org/
http://www.euroforth.org/ef20/papers/
http://www.euroforth.org/ef20/papers/
http://www.euroforth.org/ef21/papers/
http://www.euroforth.org/ef21/papers/

Contents

Refereed Papers
M. Anton Ertl: Practical Considerations in a Static Stack Checker . . 5

Non-Refereed Papers
Peter Knaggs: Using Test Driven Development to build a new Forth

interpreter . 13
Klaus Scheisiek: The Linguistics of Forth 31

Presentation Slides
Ulrich Hoffmann: Taming the IoT — Forth’s Role in the Internet of

Things . 32
Krishna Myneni: simulation of the Einstein-Podolsky-Rosen experi-

ment in forth . 38
Bernd Paysan: net2o Progress Report — Decentralized Censorship . . 46
Brad Rodriguez: The case for <BUILDS 48
Klaus Scheisiek: microCore progress 51
Philip Zembrod: Where does X spend its time? A small Forth profiler 52
M. Anton Ertl: Copying Bytes . 58
Ulrich Hoffmann: Forth — The New Synthesis — progress report —

disaggregating the stacks and memory 61
Philip Zembrod: DSLs — power & challenge 65

4

Practical Considerations in a Static Stack Checker
M. Anton Ertl∗

TU Wien

Abstract
One difficulty in applying static checking to existing
Forth code (rather than accepting only programs
written with the checker in mind) is how to deal
with words with statically unknown stack effects,
such as execute. The work described in this paper
introduces the concept of an anchor to represent
the basis of the stack depth for a position in the
code. A new anchor is introduced after a word with
an unknown stack effect. Two anchors are synchro-
nized (if still unrelated) on control-flow joins (e.g.,
then), without reporting a stack imbalance (which
would probably be a false positive). For previously
synchronized anchors, such control flow words can
compare the stack depth and report a stack imbal-
ance (probably a mistake) if they do not match.
The introduction of anchors also allows to perform
the analysis in a single pass.

1 Introduction
Static type checking for Forth has been the subject
of research for a long time (see Section 7), but has
not resulted in type checkers usable for mainstream
Forth. Among the reasons for that are:

• In a statically checked language one typically
wants to report all programs that may be er-
roneous and designs the language and type
system for that. E.g., PAF [Ert13] (where
the stack depth must be statically known) re-
places execute with the statically checkable
exec.tag .
By contrast, for checking programs that incor-
porate significant parts that were developed
(and debugged) without checker, the checker
should report no or very few violations for
the presumably correct legacy parts (false pos-
itives), at the potential cost of more false neg-
atives.

• The stack effect comments in existing programs
are not quite standardized enough to allow au-
tomatic processing, so a type checker cannot
check against them, and also cannot use them

∗anton@mips.complang.tuwien.ac.at

to fill in holes in stack effect knowledge (e.g.,
for deferred words).

• It’s hard to specify a type system that is prac-
tically usable for mainstream Forth [Ert17b].

In the present paper I have chosen to bypass the
type system problem by implementing only stack
depth checking. I also bypass the stack-effect com-
ment problem by not making use of them. In this
paper I explore how to implement a static stack-
depth checker for mainstream Forth, and describe
the various design decisions along the way.

It treats statically unknown stack effects as
blanks to be filled in rather than as errors, reducing
the number of false positives.

The main idea is the introduction of anchors. An
anchor represents a base stack depth for a part of a
definition. Compiling a word with a statically un-
known stack effect introduces a new anchor; control
flow connecting previously disconnected anchors re-
sults in synchronizing them, while control flow con-
necting already-synchronized anchors allows check-
ing.

Section 2 shows a simple example of stack-depth
checking. Section 3 discusses how checking can deal
with the various time levels in Forth (interpreta-
tion, compilation, postpone): We decide to check
the run-time during compilation, and don’t try to
do other checking. Section 4 discusses stack-depth
checking at a conceptual level, while Section 5 dis-
cusses implementation issues, in particular, how to
perform the checking in a single pass.

2 Example
This section gives an example of how stack checking
could work. Consider the definition:

: min (n1 n2 -- n)
2dup < if drop else nip then ;

This definition contains a stack effect comment.
For stack depth checking the relevant information
from this comment is that on exit from this defini-
tion, the stack depth is one item less than on entry
(s = a−1), and that the deepest stack item accessed
is two items below the entry depth (d = a − 2),
where a (the anchor) is the depth on entry. Overall:

5

Ertl Static Stack Checker

-1/-2. We show the stack effect of words without
anchor, and the intermediate results with anchor.
We also know the stack depth effects of the con-

tained words:
word s d
2dup +2 −2
< −1 −2
if −1 −1
drop −1 −1
nip −1 −2

Let’s determine the overall stack depth effect of
min. We start before the first word, with the stack
effect from the start to this place being a + 0/a + 0.
Next we want to combine this stack depth ef-

fect s1/d1 with the stack effect s2/d2 of the first
word 2dup: The combined stack effect is s1 +
s2/ min(d1, s1 + d2) = a + 2/a− 2.
Using the same computation for the next words

results in the following stack effects:
sequence s d
2dup a + 2 a− 2
2dup < a + 1 a− 2
2dup < if a + 0 a− 2
2dup < if drop a− 1 a− 2

After the else control flow continues from after
the if:

sequence s d
2dup < if nip a− 1 a− 2

The two control flows join at then. The s values
of the two control flows have to agree, otherwise
we will see a statically unknown stack depth (Sec-
tion 4.4). The minimum of the joining d values is
the resulting d value. This leads to a−1/a−2 after
the then and thus at the end of min; after removing
the anchor we get −1/− 2.

We can compare this result of static analysis
sa/da with the stack depth effect sc/dc described
by the programmer in the stack effect comment.
We check that sa = sc and da = dc.1 In the present
example this works out.

3 Time levels
3.1 Immediate
In Forth we have immediate stack effects, e.g., when
text-interpreting + in interpretation state. These
stack effects are not interesting for our checker, for
two reasons:

• There is usually little information telling us
what stack depth the programmer intended.

• Where there is such information, Forth systems
tend to check already, using run-time checking:
No stack underflow should happen. And the

1Or da ≤ dc to allow having a stack effect comment that
reflects the intended interface rather than the implementa-
tion.

stack depth at the end of a colon definition is
the same as at the start.

If more checking is desired, it’s easy to add run-
time checking:

: expect-depth (u --)
depth 1- <> if

.s true abort" unexpected stack depth"
then ;

\ usage example:
0 expect-depth

I am unaware that Forth programmers use this
kind of checking, so maybe the reason checkers are
not used more is not related to the easyness or dif-
ficulty of designing and implementing them.

3.2 Compilation
When compiling a word, it has a run-time stack
effect in addition to its immediate (i.e., compile-
time) stack effect. E.g., when compiling if, the run-
time stack effect is (f --), while the immediate
(compile-time) stack effect is (-- orig).

The primary interest of static stack depth check-
ing is to check whether a colon definition behaves at
run-time as intended (with respect to stack depth).
In this case, we have the stack effect comment of
a colon definition that tells us the intended stack
effect.

3.3 Higher levels
Forth allows to write words that compile code, us-
ing postpone, compile,, literal etc. Such words
have three levels of stack effects: Their immediate
stack effect, the stack effect when these words are
executed, and the stack effect when the code com-
piled by these words is executed.

E.g., the parser generator Gray2 contains the fol-
lowing words:

: compile-test (set --)
postpone literal
test-vector @ compile, ;

: generate-alternative1 (--)
operand1 get-first compile-test
postpone if
operand1 generate
postpone else
operand2 generate
postpone endif ;

The use of compile-test in
generate-alternative1 has the immediate

2http://www.complang.tuwien.ac.at/forth/gray.zip

6

Ertl Static Stack Checker

stack effect (--) (compiling it does not change
the stack), the stack effect (set --) when
generate-alternative1 runs, and the stack
effect (--) when the code generated by running
compile-test runs. Of these stack effects, only
one is documented (and I have seen this also for
cases where an undocumented stack effect other
than (--) exists).

It is possible to postpone a word like
compile-test, leading to an additional time level
with its stack effect. While I don’t remember seeing
such code in the wild, it still has to be taken into
account.

3.4 Checking at which level?
One approach is be to check at all levels (in particu-
lar, including more postponed time levels). If possi-
ble, the advantage would be that stack mistakes in
code involving postpone could be pointed out right
at the source code level. The difficulty here is that
you often have nothing to check against.
A alternative approach is to only check the run-

time stack effect during compilation. There you can
compare on control-flow joins (which are more fre-
quent than at other levels), and optionally compare
with the stack-effect comment (which typically doc-
uments the run-time stack effect of a colon defini-
tion, but rarely the other levels). In the present
paper we only check at this level, and only whether
the stack effects agree on control flow joins.

4 Principles
This section outlines general principles of stack-
depth checking, without discussing implementation
issues.
In order to perform stack depth checking of a

colon definition, we need the stack depth effect of
the constituent words, and we need something to
compare against: we can compare with the stack
effect comment, but we can also compare with the
result of stack depth checking of other paths on
control-flow joins.

4.1 Straight-line code
As outlined above, if we have a straight-line se-
quence S consisting of two subsequences S1S2, we
can compute s/d for S with the following rules:

s = s1 + s2

d = min(d1, s1 + d2)

where s1/d1 is the effect of S1, and s2/d2 the effect
of S2.

4.2 Control-flow
In this section we discuss the conceptual treatment
of control-flow. In the Section 5.2 we discuss prac-
tical considerations.

On unconditional branches (ahead, again), the
stack depth computation follows the control flow.

On conditional branches (if, until), first the
stack effect −1/ − 1 of the word itself is appended
to the previous sequence. Then the the stack depth
computation follows both directions. I.e., for the
fall-through path it works as for straight-line code,
whereas for the taken branch it works like for the
unconditional branch.

On control-flow joins (then, begin), the current
stack depths of the two joining control flows have to
be equal (otherwise the stack depth checker should
report a stack depth mistake). The deepest stack
depth is the deeper of the two joining stack depths.

A then or begin at a place that is sequentially
unreachable (e.g., in ahead [1 cs-roll] then3)
is not a control-flow join; it only continues the con-
trol flow on the other path.

While the present section treats control flow as
if the direction of control-flow edges was impor-
tant, we see in Section 5.4 that the checker can fol-
low control-flow edges in any direction (e.g., always
downwards).

4.3 Statically unknown stack effects
For some words the static stack effect is unknown,
either because of incomplete knowledge, or because
the word can have an arbitrary stack effect at run-
time, e.g., execute. A stack checker that is in-
tended to work for existing Forth programs has to
deal with the occurence of such words. In order to
avoid false alarms, it has to assume that the actual
stack effect of the word with the unknown stack
effect is such that the stack effect is balanced, if
possible.

Assuming a checker that processes words left-to-
right top-to-bottom, we can achieve this by having
a new anchor for the stack depth after the unkown-
effect word. If there is a control-flow join with code
that uses the old anchor, the anchors can by syn-
chronized. E.g. for

if execute over else 2drop then

the stack effects of the subsequences are:
sequence s d

if a− 1 a− 1
if execute b + 0 b + 0

if execute over b + 1 b− 2
if 2drop a− 3 a− 3

When processing the then, the two anchors can
be synchronized to avoid a stack-depth mismatch:

3Else does this internally

7

Ertl Static Stack Checker

b = a−4. As a result the overall stack effect of this
sequence is −3/− 6.

This approach allows reporting stack-depth er-
rors in known-depth islands isolated from the rest
by words with unknown stack effects, e.g.:

execute if drop then execute

In this example both control flows at the then
use the same anchor, and the checker can notice
and report the depth mismatch.

4.4 Matching and Synchronization
The rest of this paper repeatedly uses terms like
matching control flows or synchronizing anchors.
This always refers to the same basic operation,
which happens when two control flows meet in one
place, e.g., a then.
If the two control flows have the same anchor or

anchors that have been (transitively) synchronized
already, we have to compare the stack depths rela-
tive to these anchors; e.g., if b = a+2 and the stack
depth is s1 = b+1 at one control flow and s2 = a+3
at the other, then the stack depths match (because
s1 = b + 1 = a + 2 + 1 = a + 3 = s2). If they do not
match, the checker should warn of a stack depth
imbalance, and the currently-defined word should
probably be marked as having an unknown stack
effect to avoid getting warnings in places where the
word is called.
If the two control flows have anchors that have

not been synchronized yet, they are synchronized
based on the assumption that the two control flows
match (we want to avoid reporting false positives).
E.g., if a and b are not already synchronized, and we
have s1 = b+1 and s2 = a+3, then we synchronize
a and b by setting s1 = s2, i.e., b + 1 = a + 3, i.e.,
b = a + 2.

4.5 Multiple Stacks
In the rest of this paper, I write only about the
data stack, but we can do the same static check-
ing for the floating-point and return stack as well
(and more, if a system has more, e.g., a vector stack
[Ert17a]), with the same principles, and appropri-
ately extended data structures.

5 Implementation issues
5.1 Deepest stack access
The deepest stack access d is only used for checks
against stack effect comments. However, for exist-
ing code there is probably too much variety in stack

effect notation to make such checks practical. Nev-
ertheless, I include the maximum depth in the fol-
lowing discussions; it can be useful for code written
to a stack comment standard.

5.2 Single-pass implementation
For implementation simplicity, we want to process
the words of a colon definition in a single pass from
the first to the last word, without requiring to build
a control-flow graph and, e.g., performing an itera-
tive analysis until a fixed point is reached [ASU86].
Can we do this for stack-depth checking? Fortu-
nately, we can:

Deepest stack access

The access depth s1 +d2 at any particular place has
no influence on other access depths, so we can just
compute the minimum (in our formulation) of all
access depths, without needing to track the deepest
stack item through control flow.

The existence of multiple anchors is a complica-
tion: Access depths are relative to their anchors.
So we compute the deepest stack item relative to
each anchor. When an anchor is (possibly transi-
tively) synchronized with the word-entry anchor, we
can incorporate knowledge about its deepest stack
access into the knowledge about the deepest stack
access for the word. If there are anchors left at the
end that are not synchronized with the word-entry
anchor, we are out of luck and cannot guarantee
that the deepest stack access for the word-entry an-
chor is the deepest stack access for the word. This
is due to the unknown stack effects and cannot be
solved with more sophisticated analysis unless this
analysis makes the stack effects less unknown.

Stack depth change

By contrast, computing the current stack depth re-
quires dealing with control flow, not just with the
anchors. Fortunately, the direction of a control-flow
edge does not play a role: We just want to match
the current stack depths at one end of a control-
flow edge with that at the other end, and the direc-
tion does not play a role. So for a backwards edge
(represented by a dest or do-sys) the word push-
ing the dest/do-sys can put the anchor and current
depth in the dest/do-sys; and the word consuming
the dest/do-sys them performs the match. Likewise
for origs.

This allows us to do the analysis in a single pass.

5.3 Data structures
This means that we need the following data struc-
tures:

For each completed word: s and d.

8

Ertl Static Stack Checker

For each word currently analysed4, we need a set
of anchors, a current anchor, a current stack depth
relative to the anchor, and an exit anchor and stack
depth.
The set of anchors of a word is partitioned into

subsets; each anchor starts as a singleton subset,
and synchronization unites the subsets of the in-
volved anchors. One way to implement this is as
a parent-pointer tree: each anchor may point to a
parent anchor, and the common ancestor represents
the subset. We also need to store the current-depth
difference of an anchor a to its parent b in a. When
trying to match depths, follow each anchor to its
root and compute the sum of the current-depth dif-
ferences along this path.
For each orig, dest, or do-sys, we need to store an

anchor and a current stack depth relative to that
anchor. We also need this information for every
leave.
In a given Forth system, we can extend exist-

ing data structures such as headers and control-flow
stack items with these data. This requires changes
to core data structures, which has certain costs.
Alternatively, we can keep these data separate.

E.g., a separate lookup table xt→ s, d, an addi-
tional control-flow stack, and an additional stack
for storing one definition’s incomplete anchor and
depth data while processing a quotation. This ap-
proach is more complex (mainly thanks to memory
allocation), but has the advantage of being easier
to work as an add-on.
Gforth has used three-cell control-flow stack

items for a long time [Ert94]; for the stack checker
the control-flow stack items grew a fourth cell,
which (if the checker is active) points to a larger
anchored stack effect structure that resides in a sep-
arate section [Ert16]. Because of the size of the
control-flow stack items, Gforth has already em-
ployed a separate leave stack, and it continues to
do so.
The current stack checker stores the stack effect

for a colon definition or primitive as created word
in a table (case-sensitive wordlist), using the xt of
the colon definition as the name. The entries for
colon definitions are in a separate section to avoid
any interference with the ordinary memory alloca-
tion.

5.4 Control-flow words
This section explains how the control-flow words
work with the data structures.
First, let’s consider the effect on straight-line

code:
For unconditional control-flow words (ahead,

again, exit, and non-zero throw), the following
4Due to quotations, multiple words can be analysed at

the same time.

code is unreachable. One way of dealing with this
is to mark the following code as unreachable until
a control-flow join (begin, then) is compiled, but
that needs a special handling of unreachable code
in control-flow words. A simpler way is to introduce
a new anchor right after the unconditional control-
flow; if there is ever a join with a control flow coming
from reachable code, the end result is the same.

For the other control-flow words (if, then,
begin, until, ?do, do, loop, +loop), control flow
can flow from before to after the word, so the an-
chor is the same after the word as before, and the
current depth is changed as indicated by the stack
effect of the word.

Concerning the effect on the control-flow stack
items:

Words that push control-flow stack items (if,
ahead, begin, ?do, do) push the current anchor and
the current stack depth (after applying the stack ef-
fect of the word).

For words that consume control-flow stack items
(then, again, until, loop, +loop) the checker ap-
plies the stack effect of the word, then tries to match
the current anchor and stack depth with the anchor
and stack depth of the incoming control-flow stack
item, as outlined above.

Exit can be analysed like an unconditional
branch to the end of the definition. We use the
exit anchor and stack depth for that: Every exit is
matched with that. At the end of the definition (;,
does>, or ;code) we match the current stack depth
with the exit stack depth. Then we compare the
exit stack depth to the entry stack depth: if the an-
chors have the same ancestor, we can compute the
stack effect of the definition, store it for the defi-
nition, and possibly compare it to the stack effect
comment.

E.g., if the min example was instead written as

: min (n1 n2 -- n)
2dup < if drop exit then nip ;

the checker would work much in the same way as be-
fore, with the stack effect at the exit being matched
against the stack effect at the ;.

Leave is basically an unconditional forward
branch like ahead, but it does not leave an orig
on the control-flow stack. So it’s not enough to just
enhance control-flow stack items or implement an-
other control-flow stack. One way to deal with this
is to store the additional information in a lookup ta-
ble indexed by the address of the branch (for origs)
or branch target (for dests); it may be necessary to
distinguish between origs and dests in some other
way if they can have the same address.

If an additional control-flow stack is used,
cs-roll and other control-flow stack manipulation
words need to be enhanced to deal with it.

9

Ertl Static Stack Checker

If you miss else, while, and repeat in this dis-
cussion, it’s because they are composed from the
other words [Bad90].

5.5 Recursion
The simplest way to treat recurse (and recursive
calls by name) is as a word with unknown stack
depth. This way is probably good enough, because
recursion is significantly rarer than other sources of
unknown stack effects, but it is possible to perform
better checking in many cases:
One way to do it would be to check again once

the stack effect of the word is known (through the
base-case path), but this means using a second pass
through the word.
Another way computes the stack-depth change s

of the recursive call by looking at the stack depth
before and after the recursive call once the anchors
involved have been synchronized, and checks if it is
equal to the s derived from the base-case path.
Concerning the maximum depth d: In the usual

case the maxiumum depth is determined from the
base case, but if there is a deeper access in the recur-
sive case, the maximum depth depends on the re-
cursion depth and cannot be determined statically.
However, the usual case for recursive calls is to ac-
cess at most as deeply as the base case, so it may
be advisable to produce a warning if the recursive
call performs a deeper access.

5.6 ?Dup
We have to deal with ?dup, because we want to
process existing code, and existing code uses ?dup
often enough that it would be a significant source
of false postives. E.g., in:

?dup if . then

the if . then is unbalanced and a stack checker
that does not take the ?dup into consideration re-
ports this. But this unbalance rebalances the un-
balanced stack effect of the ?dup, so the whole is
balanced, and the stack checker ideally should rec-
ognize this.
The common cases of correct ?dup usage are ?dup

followed possibly by 0= followed by a conditional
branch, and this can be dealt with by setting a flag
when encountering ?dup, modifying it on 0=, and
the conditional branch having appropriately differ-
ent stack depths on the branch-taken and the fall-
through paths (and resetting the flag). If any other
word encounters the ?dup flag, it’s probably ok to
report a stack-depth mismatch.5

5I have seen only two cases that do not follow this pattern:
one was a bug, and one was a usage of ?dup at the end of
a word, resulting in a word with a ?dup-like stack effect and
usage limitations.

6 Status and Further Work
An early stage of a stack checker for Gforth exists.
At the moment it can check sequences and control
structures where only a single anchor is involved; it
does not even support else yet. It checks the data,
FP, and return stack. The stack effect of most prim-
itives is known, while the stack effect of pre-defined
colon definitions is unknown. The stack effect of
successfully checked colon definitions is known.

In the future the checker will be able to also work
on code with multiple anchors. In the long run the
plan is to also (optionally) use stack effect com-
ments for checking and to use the stack effect com-
ments of pre-defined colon definitions to allow more
checks.

Finally, the checker needs to be evaluated by ap-
plying it to real-world programs. Because these pro-
grams are presumably correct, any mismatches are
probably false positives, so this kind of evaluation
will tell us the false-positive rate. We will also mea-
sure how often we match already-synchronized an-
chors, giving an idea of the number of actual checks
we do perform. And we can compare that to the
number of total matches and the proportion of code
outside control flow, giving a rough idea what pro-
portion of code is not checked; but note that, e.g.,
a colon definition without control flow is often still
checked if it is used inside control flow in another
colon definition.

For checking against stack effect comments, we
will probably have to update the stack effect syntax
in some Forth programs and can then check against
the stack effects specified there.

7 Related work
A simpler way to check the stack depth is to do it
at run-time. Hoffmann [Hof91] proposes checking
the stack depth on entry to a word and on exit
from a word against the stack effect comment. The
disadvantage of run-time checking is that one needs
to run the word with test cases that cover all the
code in the word in order to catch errors. No run-
time stack-checking scheme has seen wide usage.

Instead, John Hayes’ tester framework has seen
wide (although by far not universal) usage. The
programmer specifies test cases and expected re-
sults and tests not only the stack depth, but also
the stack contents. The disadvantage is that the
bugs are only reported when the tests are run. Still,
Forth programmers are used to catch bugs through
testing (including less formalized testing method-
ologies), which may contribute to the lack of popu-
larity of run-time and compile-time stack-depth and
type checking. There are, however, programs deal-
ing with complex data structures where a significant

10

Ertl Static Stack Checker

amount of code is necessary for performing testing,
and a checker can help to find bugs in that testing
code, and find bugs early in the application code.
Reasearchers have been working on compile-time

checking for a long time, sometimes as a by-product
of other goals:
Tevet [Tev89] uses named data stack items (re-

sulting in a feature similar to locals), and accesses
them by compiling pick for read accesses and stick
for writes. In order to do this, his compiler keeps
track of the stack depth and reports an error when
the compiler cannot determine the stack depth (e.g.,
because of a stack imbalance at a control-flow join).
Tevet’s work is close to the present work in limit-
ing itself to stack-depth checking, but differs by re-
quiring a statically known stack depth, while the
present work can deal with unknown stack effects,
and only reports an imbalance on a statically known
imbalance.
Similarly, Ertl requires a statically known stack

depth in the Forth dialect PAF [Ert13]; this work
does not describe how the stack is checked, and, for
now, is only a paper design.
The work that focusses on checking generally

also requires complete knowledge of the stack depth
in order to work and typically assumes complete
knowledge of the stack effects of called words. By
contrast, the present work assumes that component
words with unknown stack effects are used correctly
(to avoid false positives), and only warns in cases
where the stack effects derived from words with
known stack effects do not agree.
Most of the static checking work has been on type

checking, but Hoffmann [Hof93] attacks stack depth
checking, the same topic as the present paper; he
works out the rules for computing the stack effects
of Forth code more explicitly than the present work,
but without (explicit) anchors.
On the type checking front, Pöial worked out

a stack effect calculus with types in a series of
papers [Pöi90, Pöi91, Pöi94] and later described
[Pöi02, Pöi06] and implemented [Pöi08] a prototype
of a type checker for Forth. This type checker does
not deal with unknown stack effects, and the work
did not make it out of the prototype stage.
Stoddart and Knaggs [SK91] also work out a

typed stack algebra, and also discuss considerations
such as @ and !, structured data types, immediate
words, and execute, but, as usual, assume a total
knowledge of the types.
Riegler [Rie15] builds on the work of Pöial, Stod-

dart and Knaggs, and enhances it with configura-
tion options and pluggable types.
Pfitzenmaier sketches his ideas about type check-

ing Forth [Pfi09], but did not follow it up with an
implementation.
In addition to the work on type checking (legacy)

Forth, which have not resulted in a widely-used

checker, there has also been work on creating
new, statically type-checked programming langu-
gaes, and they have sometimes resulted in usable
systems:

StrongForth6 is a system for a statically type-
checked dialect of Forth. It does not accept legacy
Forth programs, but requires writing programs to
conform with its typing rules.

Factor [PEG10] is a Forth-like high-level language
with a mixture of static and dynamic type-checking,
so it also solves the problem of static stack-depth
checking, but again it prefers to err on the side of
overreporting rather than underreporting mistakes.

Kleffner [Kle17] attacks the type checking prob-
lem by designing a typed concatenative language
(including the execute-like call) and a static type
system for it, but this work has not been followed
up with an implementation.

8 Conclusion
A practical stack-depth checker for code that con-
tains significant legacy code cannot rely on stack-
effect comments and must produce no or very few
false positives, even in the presence of words with
statically unknown stack effects. To have something
to check against, such a checker can check that the
stack effects of two joining control flows agree. It
can treat words with statically unknown stack ef-
fects as blanks by introducing a new stack-depth
anchor when processing such words. The use of an-
chors is also helpful for performing the checking in
a single pass.

References
[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D.

Ullman. Compilers. Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.
5.2

[Bad90] Wil Baden. Virtual rheology. In
FORML’90 Proceedings, 1990. 5.4

[Ert94] M. Anton Ertl. Automatic scoping of
local variables. In EuroForth ’94 Con-
ference Proceedings, pages 31–37, Winch-
ester, UK, 1994. 5.3

[Ert13] M. Anton Ertl. PAF: A portable assembly
language. In 29th EuroForth Conference,
pages 30–38, 2013. 1, 7

[Ert16] M. Anton Ertl. Sections. In 32nd Euro-
Forth Conference, pages 55–57, 2016. 5.3

6https://www.stephan-becher.de/strongforth/

11

Ertl Static Stack Checker

[Ert17a] M. Anton Ertl. SIMD and vectors. In
33rd EuroForth Conference, pages 25–36,
2017. 4.5

[Ert17b] M. Anton Ertl. Statische Typüberprü-
fung. Vortrag bei der Forth-Tagung 2017,
2017. 1

[Hof91] U. Hoffmann. Stack checking - A debug-
ging aid. In euroFORML ’91 Conference
Proccedings, 1991. 7

[Hof93] Ulrich Hoffmann. Static stack effect anal-
ysis. In EuroFORTH ’93 conference pro-
ceedings, Mariánské Láznè (Marienbad),
1993. 7

[Kle17] Robert Kleffner. A foundation for typed
concatenative languages. Master’s thesis,
Northeastern University, 2017. 7

[PEG10] Sviatoslav Pestov, Daniel Ehrenberg, and
Joe Groff. Factor: a dynamic stack-based
programming language. In William D.
Clinger, editor, Proceedings of the 6th
Symposium on Dynamic Languages, DLS
2010, October 18, 2010, Reno, Nevada,
USA, pages 43–58. ACM, 2010. 7

[Pfi09] Jürgen Pfitzenmaier. Forth type checker.
In 25th EuroForth Conference, pages 60–
67, 2009. 7

[Pöi90] Jaanus Pöial. Algebraic specification
of stack-effects for Forth programs. In
euroFORML’90 Conference Proceedings,
1990. 7

[Pöi91] Jaanus Pöial. Multiple stack-effects of
Forth-programs. In euroFORML ’91
Conference Proccedings, 1991. 7

[Pöi94] Jaanus Pöial. Forth and formal language
theory. In EuroForth ’94 Conference Pro-
ceedings, pages 47–52, Winchester, UK,
1994. 7

[Pöi02] Jaanus Pöial. Stack effect calculus with
typed wildcards, polymorphism and in-
heritance. In M. Anton Ertl, editor, 18th
EuroForth Conference, page 38, 2002. Ab-
stract in hardcopy proceedings. 7

[Pöi06] Jaanus Pöial. Typing tools for typeless
stack languages. In 22nd EuroForth Con-
ference, pages 40–46, 2006. 7

[Pöi08] Jaanus Pöial. Java framework for static
analysis of Forth programs. In 24th Euro-
Forth Conference, pages 20–24, 2008. 7

[Rie15] Gregor Riegler. Evaluation and imple-
mentation of an optional, pluggable type
system for Forth. Master’s thesis, Tech-
nische Universität Wien, 2015. 7

[SK91] Bill Stoddart and Peter J. Knaggs. Type
inference in stack based languages. In
euroFORML ’91 Conference Proccedings,
1991. 7

[Tev89] Adin Tevet. Symbolic stack address-
ing. Journal of Forth Application and Re-
search, 5(3):365–379, 1989. 7

12

Using Test Driven Development

to build a new Forth interpreter

Peter Knaggs

January 5, 2023

Abstract

.

1 Introduction

We are describe a method for brining up a new Forth interpreter from scratch using a Test Driven
development approach and the John Hayes test suite1.

The minimum requirements are quite basic:

1. A simple Data stack

2. A simple Dictionary

3. A few native de�nitions of just three standard words

4. A native implementation of the test harness

5. A simple interpret loop

6. The ability to read lines from a �le

To demonstrate just how simple this approach is an initial system, written in under 500 lines of
C, is provided in the appendix.

2 Data Stack

The core system requires a relatively simple data stack. In annex A we see a simple array of
integers and a stack pointer to index into the array.

We de�ne four methods that work on this array:

push Place a new integer value on the top of the stack and increment the stack pointer.
This should check for a stack over�ow;

pop Return the top most integer value from the stack and decrement the stack pointer.
This should check for a stack under�ow;

popLong Return a double number from the top of the stack;

nip Remove the item under the top of stack from the stack.

Note that for simplicity of the example, we use a incrementing stack pointer. This stack im-
plementation is very basic and we would expect it to be changed quite signi�cantly during the
process.

1ftp://ftp.taygeta.com/pub/Forth/Applications/ANS/core.fr

1

13

3 Dictionary

This is a simple linked list of word de�nitions. Each de�nition has a simple data structure (XT_t),
which contains the name of the word, a pointer to a procedure (ptr_func_t) that does not take any
arguments and does not return any value. All communication to the word is via the data stack.

This dictionary is not optimised in any way, it has no knowledge of immediate words, compilation
semantics, word lists, or even colon de�nitions. We assume this rather simple dictionary will be
replaced with a more complex data structure during the development, adding the missing features
as they are required by the test suite.

3.1 A method of adding a new word to the dictionary

A function to add new native code word to the dictionary. This function is not to be invoked
directly from the interpreter but is only intended to initialise the dictionary. It will simply map a
word name to a native code function, which it does by adding a XT_t to the linked list that makes
up the dictionary. For example:

AddWord("TESTING", comment);

would associate the word �TESTING� with the C function comment.

3.2 A method of �nding a word in the dictionary

A function to step though the linked list, looking to match a dictionary item with a given name.
If the name is found, the corresponding data structure (XT_t) is returned otherwise a NULL is
returned indicating the name was not found in the dictionary.

4 Echo

When debugging the scanning of the input source, it is useful to echo the text as it is scanned. A
special variable echo is de�ned to enable this behaviour.

We de�ne two words to allow the test harness to control the echoing of the input.

+ECHO Turn echoing on, white space and words are written to the console as they are processed.

�ECHO Disable the echo display.

5 Scanning

We provide three methods to scan and process the input:

nextChar Read the next character from the input �le. If this detects the end of the line, it
will automatically read the next line from the input �le. It is also responsible for
outputting the character if the system in in echo mode. It will return the character
or the special value EOF if there is no more text in the �le.

⟨next char from input⟩ ≡
char ← line[position]
increment position

if char is end of line then
line ← read line from �le
position ← 0
increment line number

if echo then

println

14

print line number, ": "
end if

char ← line[position]
increment position

end if

if echo then

if char is not white space or char is space or char is tab then

print char

end if

end if

return char

nextWord Read the next word from the input, ignoring any leading white space. A word is
considered to be any non-white space text. Returns a pointer to the start of the word
or NULL if there is no more text in the �le.

⟨next word from input⟩ ≡
(Ignore leading white space)
char ← space

while char is white space do
char ← ⟨next char from input⟩

end while

if char is EOF (end of �le) then
return null (end of �le)

end if

(Read name up to next space)
name ← empty string
while char is not white space and char is not EOF (end of �le) do
name ← name + char

char ← ⟨next char from input⟩
end while

return name

parseNumber
Takes two parameters, the text to parse (as returned by the nextWord) and a pointer to
an integer where it will put the resultant number. It will attempt to parse the text as
a number (using the base value for the radix). If it can parse the number, it will return
true and place the number in the integer passed as the second parameter, otherwise
it will return false.

⟨parse text as number⟩ ≡
value ← 0
sign ← 1
position ← 0
min ← ordinal `A'
max ← min + base - 10;

char ← text[position]
increment position

if char is `-' then
sign ← -1
char ← text[position]

15

increment position

end if

while char is not end of text do
char ← upper case (char)
if char is digit do
char ← ordinal char - ordinal `0'

else if ordinal char ≥ min and ordinal char < max then

char ← ordinal char - min + 10
else

return invalid value
end if

value ← (value × base) + char

char ← text[position]
increment position

end while

number ← value × sign

return valid value

6 Forth Words

The Hayes test suite uses three normal Forth words without testing them �rst. As we are de�ning
the test harness as native words, we need to provide native de�nitions of these words:

HEX (6.2.1660) Set the number radix (base) to 16.
Note that all numbers in the test suite are given in hexadecimal;

\ (6.2.2535) End of line comment � Ignore the rest of the line;

((6.1.0080) In-line comment � ignore all text up to the next).

7 Test harness

There are two di�erent test harnesses to be considered depending on suite of test being use. The
original John Hayes test harness uses {, -> and }. In the Forth200x document Anton Etrl extended
the test harness to allow for �oating point values, this version uses T{, -> and }T.

As we are only going to use the core tests provided by the Hayes suite we do not actually need
the �oating point extension.

{ Start a test case, we clear the data stack at the start of the test, resetting the data
stack depth back to zero.

⟨start test case⟩ ≡
test start depth ← 0

-> Save test case. This must save the current data stack in a test stack, record the depth
of the stack and reset the data stack.

⟨save test case⟩ ≡
test stack ← data stack

test end depth ← data stack depth

data stack depth ← 0

16

} End a test case. This is the most complex de�nition as it must compare the current
data stack with the one saved in the test stack and report any di�erences.

⟨end test case⟩ ≡
match ← (test end depth is data stack depth)
n ← test start depth

while match is true and n < test end depth do

match ← data stack[n] is test stack[n]
end while

if match is false then
println �Stack Mismatch�
print �Found: �
for n ← test start depth upto test end depth do

print test stack[n]
end for

println

print �Expecting: �
for n ← test start depth upto data stack depth do

print data stack[n]
end for

println

abort

end if

data stack depth ← test start depth

TESTING Ignore the rest of the line. The harness uses a variable verbose to control weather the
line is sent to the console or not. We have the echo option witch will do the same.
You could of course provide an implementation that will send the line to the console
even when the echo option is disabled.

8 Temporary De�nitions

The test suite de�nes a number of words, both colon de�nitions and constants, before it has tested
these features. Our system is so simple, we can not currently process these de�nitions therefore,
as a temporary measure, we need to comment out these de�nitions and provide our own (native
code) versions.

Once we are past the initial stages of the test suite, it moves on to the de�ning words. This
will require changing the way the dictionary is store, but is also means we can uncomment the
de�nitions and remove our temporary ones, allowing the test suite to operate in the manner
originally intended. See section 10 (Procedure) for details.

8.1 Colon De�nitions

Thankfully the test suite only de�nes two helper words in the early stages:

BITSSET? This will test the value on the top of the stack to see it it has a value other than 0.
Returning either one 0 or two 0's on the stack:

⟨temporary bitsset de�nition⟩ ≡
top ← pop()
push(0)
if top is 0 then

17

push(0)
end if

BITS Counts the number of bits in the value on the top of the stack:

⟨temporary bits de�nition⟩ ≡
top ← pop()
count ← 0
while top is not 0 do
increment count

shift top right by 1 bit
end if

push(count)

8.2 Constant De�nitions

Similarly we have to comment out the constant de�nition, replacing them with our own native
code versions. Fortunately most languages provide equivalent constant values so the native code
versions are relatively simple:

Constant Forth De�nition Meaning
0S 0 All bits are zero
1S 0 INVERT All bits are one
<TRUE> 1S All bits are one
<FALSE> 0S All bits are zero
MSB 1S 1 RSHIFT INVERT most signi�cant bit only
MAX-UINT 0 INVERT maximum unsigned integer
MAX-INT 1S 1 RSHIFT maximum signed integer
MIN-INT 1S 1 RSHIFT INVERT minimum signed integer
MID-UINT 1S 1 RSHIFT mid-point of unsigned integer
MID-UINT+1 1S 1 RSHIFT INVERT mid-point of unsigned integer plus one

Once we have implemented and tested the CONSTANT de�nition we can uncomment these constants
and remove the temporary de�nitions.

8.3 Division

The C language does not de�ne whether division is symmetrical or not. So we need to comment
out the de�nition of IFFLOORED and IFSYM, replacing them with our own native versions that
simply ignore the rest of the line. Unfortunately that does mean we also have to provide our own
version of the subsequent helper words:

IFFLOORED Ignore rest of line

IFSYM Ignore rest of line

T/MOD Native implementation of /MOD (6.1.0240)

T/ T/MOD NIP

TMOD T/MOD DROP

T*/MOD Native implementation of */MOD (6.1.0110)

T*/ T*/ NIP

Again, once we have tested colon-de�nitions, we can uncomment the IFFLOORD and IFSYM de�ni-
tions and remove our temporary de�nitions.

18

9 Interpret Loop

Like the dictionary and the stack, the interpret loop is very simple. It has no knowledge of the
more advanced features, such as state. These will need to be added as development progresses.

The loop will simply read one name at a time from the input �le ⟨scan next word from input⟩.
It will look the name up in the dictionary ⟨�nd name in dictionary⟩, if the name is found it will
execute the associated de�nition, otherwise it attempts to process the name as a number ⟨parse
name as number⟩. If it is a valid number, the number is placed on the stack, otherwise a �name
not found in dictionary� error is reported.

⟨interpret loop⟩ ≡
begin

name ← ⟨next word from input⟩
while name is not null (end of �le)
word ← ⟨�nd name in dictionary⟩
if word is not null (name found in dictionary)
execute word.function (execute word)

else (word not in dictionary)
value ← ⟨parse name as number⟩
if value is valid number then
push(value)

else (name not in dictionary or a valid number)
println

println �Word not found: �, name
abort

end if

end if

repeat

10 Procedure

We are now ready to process the Hayes test suite2. Any time the test reports a missing word, the
word should be de�ned and the test suite again. This will allow you to run the following sections
of the test suite:

1. Basic Assumptions

2. Booleans: INVERT AND OR XOR

3. Shifts: 2* 2/ LSHIFT RSHIFT

4. Comparisons: 0= = 0< < > U< MIN MAX

5. Stack operations: 2DROP 2DUP 2OVER 2SWAP ?DUP DEPTH DROP DUP OVER ROT SWAP

6. Return stack operations: this has been moved to later in the suite

7. Add/Subtract: + - 1+ 1- ABS NEGATE

8. Multiplication: S>D * M* UM*

9. Division: FM/MOD SM/REM UM/MOD */ */MOD / /MOD MOD

The rest of the suite requires fully working versions of the : and CONSTANT de�ning words. At
this point it would be useful to copy the �rst 12 tests from section 15 (De�ning Words) of the test
suite to the top of the test �le, allowing basic testing of both words.

2ftp://ftp.taygeta.com/pub/Forth/Applications/ANS/core.fr

19

Once CONSTANT is de�ned and tested, it should be possible to uncomment the constant de�nitions
and remove the corresponding native code de�nitions (8.2). Allowing the constants to be de�ned
by the test suite.

Similarly, when : has been de�ned and tested, it should be possible to uncomment the IFFLOORED
and IFSYM de�nitions and remove the dependent native code de�nitions (8.3). Unfortunately we
can not uncomment the BITSSET? and BITS de�nitions until after section 13 (Flow control).

10. Memory: HERE , @ ! CELL+ CELLS C, C@ C! CHARS 2@ 2! ALIGN ALIGNED +! ALLOT

11. Characters: CHAR [CHAR] [] BL S"

12. Dictionary: ' ['] FIND EXECUTE IMMEDIATE COUNT LITERAL POSTPONE STATE

6. Return stack operations: >R R> R@

13. Flow control: IF ELSE THEN BEGIN WHILE REPEAT UNTIL RECURSE

It should now be possible to remove the two temporary colon-de�nitions (BITSSET? and BITS) in
section 8.1 from our system and allow the test suite to de�ne them.

It should also be noted that we have moved section 9 of the test suite (return stack operations)
to just after section 12 (Dictionary).

14. Loops: DO LOOP +LOOP I J UNLOOP LEAVE EXIT

15. De�ning Words: : ; CONSTANT VARIABLE CREATE DOES> >BODY

16. Evaluate: EVALUATE

17. Parser input: SOURCE >IN WORD

18. Numbers: <# # #S #> HOLD SIGN BASE >NUMBER HEX DECIMAL

19. Memory movement: FILL MOVE

20. Output: . ." CR EMIT SPACE SPACES TYPE U.

21. Input: ACCEPT

22. Dictionary Search Rules

Having completed the Hayes test suite, most of the CORE word set from the ANS Forth standard
have been implemented and tested. We are now ready to move on to using the more advanced
testing as presented in the Gerry Jackson test suite3 and/or the Forth200x standard4.

11 Experience

The Test Driven Development approach to developing a new interpreter outlined here has been
used to to successfully develop two compilers, one in Java and one in C#. An example of the base
code necessary to start this process is given in the appendix. This demonstrates a small initial
code size of just under 500 lines of C5 (ignore comments).

A Code

1 #include <stdlib.h> /* Standard Library: malloc, free, exit */
2 #include <stdarg.h> /* Variable argument processing: va_list, va_start, va_end */
3 #include <stdio.h> /* Standard Input/Output: fprintf, vfprintf, stderr, puts, fopen, fclose, fgets, EOF */
4 #include <string.h> /* String Library: strdup, strchr, strrchr, strcmp, strcpy, strlen, strcat, memset, memcpy */

3https://github.com/gerryjackson/forth2012-test-suite
4https://forth-standard.org/standard/testsuite
5https://www.rigwit.co.uk/forth/baseforth.c

20

5 #include <ctype.h> /* Character Library: isgraph, isspace, toupper, isdigit */
6 #include <limits.h> /* Constants: INT_MAX, UINT_MAX */
7

8 /* Maximum line bu�er length */
9 #de�ne MAXLINE 1024

10

11 /* input �le name */
12 static char* �lename = NULL;
13

14 /* line number within input �le */
15 static int lineNo;
16

17 /* �le pointer for current input �le */
18 static FILE* �n;
19

20 /* input line bu�er */
21 static char* line = NULL;
22

23 /* current scanning position within the input line bu�er */
24 static char* pos;
25

26 /* current radix (base) for number conversion */
27 static int base = 10;
28

29 /* ========== Error Handling ========== */
30

31 /* Forward reference to the freeDict function to free the memory used by the dictionary. */
32 void freeDict();
33

34 /**
35 * @brief Report an error message to the standard error and exit the program.
36 * The error message may contain parameter place holders with the additional parameters being provide after the
37 * message. This will display the message on the standard error stream, free any allocated memory and exit the
38 * program with the exit code.
39 * @param code the exit code.
40 * @param format the error message to be displayed (may contain parameter descriptions).
41 * @param ... any additional parameters required by the format.
42 */
43 void Error(int code, char* format, ...) {
44 if (format) {
45 fprintf(stderr, "\n%s(%d): ", �lename, lineNo);
46 va_list vaargs;
47 va_start(vaargs, format);
48 vfprintf(stderr, format, vaargs);
49 va_end(vaargs);
50 }
51

52 freeDict();
53 free(�lename);
54 if (line) { free(line); }
55 if (�n) { fclose(�n); }
56 exit(code);
57 }
58

21

59 /**
60 * @brief Remove the directory name from a �le path.
61 * This will return a pointer to the �rst character of the last part of the path (or the start of the path, if the path does
62 * not have any directories).
63 * @param �lename pointer to the start of the �le path.
64 * @return a pointer to the start of the �lename within the path.
65 */
66 char* rmDir(char* �lename) {
67 char* temp = strrchr(�lename, '/'); /* Unix directory separator */
68 if (!temp) {
69 temp = strrchr(�lename, '\\'); /* Dos directory separator */
70 }
71 return temp == NULL ? �lename : ++temp;
72 }
73

74 /**
75 * @brief Report the program usage, with an error message and a �lename that will be displayed after the error
76 * message. Note this does not free memory so may only be used in the initializations, before the dictionary memory
77 * has been allocated.
78 * @param progname the program name, may contain a full path name.
79 * @param message the message to be displayed.
80 * @param �lename the �lename causing the error.
81 */
82 void usage(char* progname, char* message, char* �lename) {
83 progname = rmDir(progname);
84 char* temp = strchr(progname, '.');
85 if (temp) {
86 *temp = 0;
87 }
88

89 printf("Usage: %s <�lename>\n", progname);
90 if (�lename) {
91 printf(message, �lename);
92 } else {
93 puts(message);
94 }
95 exit(EXIT_FAILURE);
96 }
97

98 /* ========== Data Stack ========== */
99

100 #de�ne MAXSTACK 10
101 int stack[MAXSTACK]; /* Data Stack */
102 int dsp = 0; /* Data Stack pointer/depth */
103

104 /**
105 * @brief Push a single cell item on to the data stack.
106 * This will report an error if the stack is full.
107 * @param data the item to be placed on the stack.
108 * @return the data item placed on the stack.
109 */
110 int push(int data) {
111 if (dsp >= MAXSTACK) {
112 Error(EXIT_FAILURE, "Stack Over�ow");
113 }
114 stack[dsp++] = (int) data;
115 return data;
116 }
117

118 /**
119 * @brief Remove the item at the top of the stack and return it.
120 * This will report an error if the stack is empty.
121 * @return the data item at the top of the stack.
122 */
123 int pop() {
124 if (dsp == 0) {
125 Error(EXIT_FAILURE, "Stack Under�ow");
126 }
127 return (int) stack[==dsp];
128 }

22

129

130 /**
131 * @brief Remove a double cell item from the top of the stack and return it.
132 * @return a double cell item.
133 */
134 long long popLong() {
135 long long top = (long long) pop() << (sizeof(long) * 8);
136 return top | pop();
137 }
138

139 /**
140 * @brief Remove the second item on the data stack.
141 * @return the data item removed from the stack.
142 */
143 int nip() {
144 int data = stack[dsp];
145 stack[==dsp] = data;
146 return data;
147 }
148

149 /* ========== Dictionary ========== */
150

151 /**
152 * @brief A pointer to a function that takes no arguments are does not return a value, i.e., void func().
153 */
154 typedef void (*ptr_func_t)();
155

156 /**
157 * @brief The Execution Token data structure.
158 */
159 struct XT_s {
160 char* /name;
161 ptr_func_t /func;
162 struct XT_s* /next;
163 };
164

165 /**
166 * @brief A pointer to an Execution Token data structure.
167 */
168 typedef struct XT_s* XT_t;
169

170 /**
171 * @brief The head of the dictionary linked list.
172 * A pointer to the most recent XT in the dictionary. Each XT contains a pointer to the next XT in the dictionary
173 * with the last XT in the list holding the NULL for the next value.
174 */
175 static XT_t dict = NULL;
176

177 /**
178 * @brief Free all memory used by the dictionary.
179 * Loop though the dictionary, one entry at a time, and free the memory used by the word name and the XT_s
180 * data structure itself.
181 */
182 void freeDict() {
183 XT_t next = dict;
184 while (dict != NULL) {
185 next = dict=>next;
186 free(dict=>name);
187 free(dict);
188 dict = next;
189 }
190 }
191

192 /**
193 * @brief Add a word into the dictionary.
194 * This will build a new XT data structure which it will place at the head of the dictionary linked list, placing the
195 * current head of the list as the next item in the XT data structure.
196 * @param name word name to add.
197 * @param func pointer to c=function to preform the word's action.
198 */

23

199 void AddWord(const char* name, ptr_func_t func) {
200 XT_t xt = (XT_t) malloc(sizeof(struct XT_s));
201 xt=>func = (ptr_func_t) func;
202 xt=>name = strdup(name);
203 xt=>next = dict;
204 dict = xt;
205 }
206

207 /**
208 * @brief Find a word in the dictionary, returning the word's XT data structures or NULL if the word is not found.
209 * This will start at the head of the dictionary and follow the links to each XT in the dictionary until it either �nds the
210 * XT with the given name or comes to the end of the linked list.
211 * @param name the word to search for.
212 * @return a pointer to the XT of the word or NULL if not found.
213 */
214 XT_t �nd(char* name) {
215 XT_t current = dict;
216 while (current != NULL) {
217 if (strcmp(current=>name, name) == 0) {
218 break;
219 } else {
220 current = current=>next;
221 }
222 }
223 return current;
224 }
225

226 /* ========== Echo ========== */
227

228 static int echo = 1;
229

230 void echoO�() { echo = 0; }
231 void echoOn() { echo = 1; }
232

233 void initEcho() {
234 AddWord("+ECHO", echoOn);
235 AddWord("=ECHO", echoO�);
236 }
237

238 /* ========== Scanning ========== */
239

240 /**
241 * @brief Read the next character from the input �le.
242 * If the character is the end of line marker, read the next line from the �le and return the �rst character of the new
243 * line. If in echo mode write the character to the console, when reading a new line write the line number to the
244 * console.
245 * @return the character or EOF if at the end of the �le.
246 */
247 char nextChar() {
248 char c = *pos++;
249 if (c == 0) {
250 if (fgets(line, MAXLINE, �n)) {
251 pos = line;
252 lineNo++;
253 if (strlen(line) + 1 == MAXLINE) {
254 Error(EXIT_FAILURE, "Line too long for bu�er of %d characters", MAXLINE);
255 }
256 if (echo) {
257 printf("\n%4d: ", lineNo);
258 }
259 c = *pos++;
260 } else {
261 return EOF;
262 }
263 }
264 if (echo && (isgraph(c) || c == ' ' || c == '\t')) {
265 putchar(c);
266 }
267 return c;
268 }

24

269

270 /**
271 * @brief Return the next word from the input.
272 * This will ignore any leading white space and return a pointer to the next non white=space character in the input
273 * line. It will replace the �rst white=space character after the word name with an end of text marker to convert that
274 * part of the input line into a string.
275 * @return a pointer to the �rst character of the word.
276 */
277 char* nextWord() {
278 /* Ignore leading white space */
279 char c = ' ';
280 while (isspace(c)) {
281 c = nextChar();
282 }
283

284 if (c == EOF) {
285 return NULL;
286 }
287

288 /* Read name up to next space */
289 char* name = pos = 1;
290 while (!isspace(c) && c != EOF) {
291 c = nextChar();
292 }
293

294 /* Mark end of word */
295 *(pos = 1) = 0;
296

297 return name;
298 }
299

300 /**
301 * @brief Attempt to convert text into a number using the current base.
302 * This will attempt to convert the string in text into a number using the value is base as the radix. If successful the
303 * number will be placed in the integer pointed to by the number parameter and a true value is returned otherwise a
304 * false value is returned.
305 * @param text the text to be parsed.
306 * @param number a pointer to a location where the number can be stored.
307 * @return true if the text is a number or false if not.
308 */
309 int parseNumber(char* text, int* number) {
310 int value = 0;
311 int sign = 1;
312

313 char c = *text++;
314 if (c == '=') {
315 sign = =1;
316 c = *text++;
317 }
318

319 while (c > 0) {
320 c = toupper(c);
321 if (isdigit(c)) {
322 c = c = '0';
323 } else if (c >= 'A' && c < 'A' + base = 10) {
324 c = c = 'A' + 10;
325 } else {
326 return 0; /* Not a valid number */
327 }
328 value *= base;
329 value += c;
330 c = *text++;
331 }
332

333 *number = (value * sign);
334 return c == 0;
335 }

25

336

337 /* ========== Forth Words ========== */
338

339 /**
340 * @brief Set BASE to 16
341 */
342 void hex() { base = 16; }
343

344 /**
345 * @brief Ignore all text up until the end of the line.
346 */
347 void comment() {
348 int len = strlen(pos);
349 while (len== > 0) {
350 nextChar();
351 }
352 }
353

354 /**
355 * @brief In=line comment = ignore all text up until the next).
356 */
357 void parn() {
358 char c;
359 do {
360 c = nextChar();
361 } while (c != EOF && c != ')');
362 }
363

364 /**
365 * @brief Add the Forth words HEX, \ and (to the dictionary.
366 */
367 void initForth() {
368 AddWord("HEX", hex);
369 AddWord("\\", comment);
370 AddWord("(", parn);
371 }
372

373 /* ========== Test Harness ========== */
374

375 static int testStack[MAXSTACK]; /* Test stack */
376 static int tend;
377

378 /**
379 * @brief Start a test, start with a clean data stack.
380 */
381 void testStart() {
382 dsp = 0;
383 }
384

385 /**
386 * @brief Save the test stack.
387 * Copy the current data stack to the test stack.
388 */
389 void testSave() {
390 memset(testStack, 0, sizeof(int) * MAXSTACK);
391 memcpy(testStack, stack, sizeof(int) * dsp);
392 tend = dsp;
393 dsp = 0;
394 }
395

396 /**
397 * @brief End a test.
398 * Compare the current data stack with the test data stack.
399 * Report an error if the two stacks to not match exactly.
400 */

26

401 void testEnd() {
402 int match = (tend == dsp);
403 for (int n = 0; (match && n < tend); n++) {
404 match = (stack[n] == testStack[n]);
405 }
406

407 if (!match) {
408 fprintf(stderr, "\n%s(%d): Stack Mismatch\n", �lename, lineNo);
409 fprintf(stderr, "Found: ");
410 for (int n = 0; n < tend; n++) {
411 fprintf(stderr, "%d ", testStack[n]);
412 }
413

414 fprintf(stderr, "\nExpecting: ");
415 for (int n = 0; n < dsp; n++) {
416 fprintf(stderr, "%d ", stack[n]);
417 }
418

419 fprintf(stderr, "\n");
420 Error(EXIT_FAILURE, NULL);
421 }
422 dsp = 0;
423 }
424

425 /* ==== Temporary colon de�nitions to be removed once : is de�ned and tested */
426 /* { : BITSSET? IF 0 0 ELSE 0 THEN ; => } */
427 void bittest() {
428 int top = pop();
429 push(0);
430 if (top) {
431 push(0);
432 }
433 }
434

435 /* : BITS (x == u) 0 SWAP BEGIN DUP WHILE MSB AND IF >R 1+ R> THEN 2* REPEAT DROP ; */
436 void bits() {
437 unsigned int top = pop();
438 int count = 0;
439 while (top) {
440 count++;
441 top >>= 1;
442 }
443 push(count);
444 }
445

446 /* ==== Temporary CONSTANT de�nitions to be removed once CONSTANT is de�ned and tested */
447 void zeros() { push(0); } /* 0 */
448 void ones() { push(~0); } /* 0 INVERT */
449 void cfalse() { push(0); } /* 0S */
450 void ctrue() { push(~0); } /* 1S */
451 void msb() { push(~INT_MAX); } /* 1S 1 RSHIFT INVERT */
452

453 /* The Comparison operators de�ne a number of constants */
454 /* MSB, MAX=UINT, MAX=INT, MIN=INT, MID=UINT, MID=UINT+1 */
455 void maxUInt() { push(UINT_MAX); } /* 0 INVERT */
456 void maxInt() { push(INT_MAX); } /* 0 INVERT 1 RSHIFT */
457 void minInt() { push(INT_MIN); } /* 0 INVERT 1 RSHIFT INVERT */
458 void midUInt() { push(UINT_MAX >> 1); } /* 0 INVERT 1 RSHIFT */
459 void midUI1() { push(~(UINT_MAX >> 1)); } /* 0 INVERT 1 RSHIFT INVERT */
460

461 /* C can use either Floored or Symmetric division */
462 /* The following temporary colon de�nitions can be removed once : is de�ned and tested */
463 int isFloored() {
464 return (=3 / 2) == =1;
465 }
466

27

467 /* IFFLOORED : T/MOD >R S>D R> FM/MOD ; */
468 /* IFSYM : T/MOD >R S>D R> SM/REM ; */
469 void tdm() {
470 int top = pop();
471 long long nos = popLong();
472

473 long long div;
474 int rem;
475

476 if (isFloored()) {
477 div = nos / top;
478 rem = (int) (nos = (div * top));
479 } else {
480 div = nos / top;
481 rem = (int) (nos % top);
482 }
483

484 push(rem);
485 push((int) div);
486 }
487

488 /* IFFLOORED : T/ T/MOD SWAP DROP ; */
489 /* IFSYM : T/ T/MOD SWAP DROP ; */
490 void td() { tdm(); nip(); }
491

492 /* IFFLOORED : TMOD T/MOD DROP ; */
493 /* IFSYM : TMOD T/MOD DROP ; */
494 void tm() { tdm(); pop(); }
495

496 /* IFFLOORED : T*_/MOD >R M* R> FM/MOD ; */
497 /* IFSYM : T*_/MOD >R M* R> SM/REM ; */
498 void tsdm() {
499 int top = pop();
500 long long a = pop();
501 long long b = pop();
502 long long mul = a * b;
503

504 long long div;
505 int rem;
506

507 if (isFloored()) {
508 div = mul / top;
509 rem = (top = (int) div * top);
510 } else {
511 div = mul / top;
512 rem = mul % top;
513 }
514

515 push(rem);
516 push((int) div);
517 }
518

519 /* IFFLOORED : T*_/ T*_/MOD SWAP DROP ; */
520 /* IFSYM : T*_/ T*_/MOD SWAP DROP ; */
521 void tsd() { tsdm(); nip(); }
522

523 /**
524 * @brief Initialise the dictionary with the test harness and temporary de�nitions.
525 */
526 void initTest() {
527 /* Hayes test harness { => } */
528 AddWord("{", testStart);
529 AddWord("=>", testSave);
530 AddWord("}", testEnd);
531 /* Forth200x test harness T{ => }T */
532 AddWord("T{", testStart);
533 AddWord("}T", testEnd);

28

534 AddWord("TESTING", comment);
535

536 /* Temporary colon de�nitions (Basic assumptions and Memory) */
537 AddWord("BITSSET?", bittest);
538 AddWord("BITS", bits);
539

540 /* Temporary constant de�nitions */
541 AddWord("0S", zeros);
542 AddWord("1S", ones);
543 AddWord("<TRUE>", ctrue);
544 AddWord("<FALSE>", cfalse);
545

546 /* Comparison operators use the following constants */
547 AddWord("MSB", msb);
548 AddWord("MAX=UINT", maxUInt);
549 AddWord("MAX=INT", maxInt);
550 AddWord("MIN=INT", minInt);
551 AddWord("MID=UINT", midUInt);
552 AddWord("MID=UINT+1", midUI1);
553

554 /* Temporary colon de�nitions (Division) */
555 AddWord("IFFLOORED", comment); /* Ignore rest of line */
556 AddWord("IFSYM", comment); /* Ignore rest of line */
557 AddWord("T/MOD", tdm);
558 AddWord("T/", td);
559 AddWord("TMOD", tm);
560 AddWord("T*/MOD", tsdm);
561 AddWord("T*/", tsd);
562 }
563

564 /* ========== Main ========== */
565

566 /**
567 * @brief Open the �le given in as the command line argument.
568 * This will process all of the command line arguments, checking that there is only one. It will attempt to open the
569 * �le, if not able to it will add the .forth extension to the �le and try again, if the �le is still not found it will try the
570 * .fr extension. If successful the �n and �lename global variables con�gured, otherwise it will report a usage error
571 * and exit.
572 * @param argc the number of arguments contained in the argv array.
573 * @param argv an array of strings, one for each command line argument.
574 */
575 void openFile(int argc, char *argv[]) {
576 /* Check we have the right number of arguments */
577 if (argc == 1) {
578 usage(argv[0], "We need a �le to process !", NULL);
579 } else if (argc > 2) {
580 usage(argv[0], "Can only process one �le at a time", NULL);
581 }
582 �lename = argv[1];
583

584 /* Process the �le name (allow for ".forth" extension) */
585 int len = strlen(�lename) + 10;
586 char* name = (char*) malloc(len * sizeof(char));
587 strcpy(name, �lename);
588

589 /* Does the �le exist? */
590 �n = fopen(name, "r");
591 if (!�n) {
592 /* File not found, try ".forth" extension */
593 strcat(name, ".forth");
594 �n = fopen(name, "r");
595 }
596

597 if (!�n) {
598 /* Still not found, try ".fr" extension */
599 strcpy(name, �lename);
600 strcat(name, ".fr");
601 �n = fopen(name, "r");
602 }
603

29

604 if (!�n) {
605 /* Still not found, give in */
606 usage(argv[0], "Can not open input �le: \"%s\"", �lename);
607 }
608

609 �lename = strdup(rmDir(name));
610 free(name);
611 }
612

613 /**
614 * @brief Initialise the system.
615 * First it will attempt to process the command line arguments. It will then initialise the dictionary before initialising
616 * the line bu�er so that the �rst call to nextChar will load the �rst line of the �le into the bu�er.
617 * @param argc the number of command line arguments in the argv array.
618 * @param argv an array of strings, one for each command line argument.
619 */
620 void init(int argc, char* argv[]) {
621 /* Open input �le */
622 openFile(argc, argv);
623

624 /* Initialise dictionary */
625 initEcho();
626 initTest();
627 initForth();
628

629 /* Initialise line bu�er */
630 line = (char*)malloc(MAXLINE * sizeof(char));
631 pos = line;
632 *pos = 0;
633 lineNo = 0;
634 }
635

636 /**
637 * @brief The main interpret loop.
638 * This will read the input �le, one word at a time, it will look up each word in the dictionary and if found it will
639 * preform the action associated with the word, otherwise it will attempt to convert the word into a number (using the
640 * current base). If successful it will place the number on the data stack otherwise it will report a word not found
641 * error and abort.
642 * @param argc the number of command line arguments in the argv array.
643 * @param argv an array of strings, one for each command line argument.
644 * @return does not return
645 */
646 int main(int argc, char* argv[]) {
647 init(argc, argv);
648

649 /* Interpret loop */
650 char* name;
651 while (name = nextWord()) {
652 XT_t word = �nd(name); /* Lookup name in dictionary */
653 if (word) { /* if name found */
654 word=>func(); /* Execute XT*/
655 } else { /* Name not found */
656 int value; /* convert to number */
657 if (parseNumber(name, &value)) {
658 push(value); /* Push number onto stack */
659 } else { /* Not a word or a number */
660 Error(EXIT_FAILURE, "Word not found: %s", name);
661 }
662 }
663 }
664 Error(EXIT_SUCCESS, NULL);
665 }

30

The Linguistics of Forth

Recently, I introduced Forth to a computer science student that is taking linguistics as subsidiary
subject. It became clear to me that linguists should love Forth for two reasons that have substantial
collateral benefits:

• Its Stack based nature.

• Its simple Parser.

The Stack advantage
Programming an explicitly Stack based machine is considerably different to the vast majority of
existing programming languages. It needs a different way of thinking. In the past we could always
refer to the "HP-calculators" to familiarise engineers with Forth. (Note: Unfortunately, HP has given
up on RPN. It is still there but only as an obscure operating mode for aged engineers.)

From a linguistic point of view this has dramatic advantages for a programming language.

Because input and output arguments are handled by the Stack, Forth words do not need parameter
lists. This changes the programming style substantially, because you can put several words on a
single line. This could be called "horizontal programming style".

Conventional programming languages clutter the code with parameter lists, which severely hamper
the readability of the code. Usually, only one procedure call followed by its parameter list is put on
a single line.

First benefit:

Given Forth's horizontal programming capability we can compose phrases and sentences. And we
can put our ambition into writing "readable" code that can be understood by system engineers on its
highest levels resulting in more reliable code.

Second benefit:

Horizontal programming puts more code on a single screen. Therefore, you do not have to scroll
nearly as often as in other languages. That is a clear debugging advantage.

The Parser advantage
Most of the time, Forth's lexical scanner only looks out for whitespace. As a consequence, any
special character may be used to compose a name. This opens up a whole new dimension for the
signification of names compared to most other programming languages. Those have a rather limited
inventory of "valid" characters that may be used.

Therefore, Forth's source code includes many more significant spaces compared to other languages.
This makes Forth code more readable, because "reading" Forth is akin to reading a book.

And because of its simplicity, the Forth lexical scanner can do without regular expressions
processing.

I asked myself, why most programming languages are so neglectant of the syntactical role of
spaces. This came to my mind:

The first programming languages (FORTRAN, COBOL) appeared at a time when the source code
had to be punched into cards. Every single character was costly. Omitting "unnecessary" spaces was
used as a simple means for compression. Apparently, more recent programming languages upheld
this as a tradition, whose justification had withered away decades ago.

31

Taming the IoT 
Forth's Role in the Internet of Things

EuroForth'21 conference 2021-09

Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

uho@ .de

Overview

• The Internet of Things

• MQTT

• Forth Things

• Demo

• Different Kind of Messages

• Domain Specific Languages

• Conclusion

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

The Internet of Things

• embedded Systems

• interconnected by Internet technology

• + specialised communication protocols

• MQTT (Message Queuing Telemetry Transport)  
publish and subscribe via a broker

• ROS (robot operating system)

• zeromq, AMQP, DDS

so
ur

ce
: W

ik
im

ed
ia

32

• lightweigth IoT communication

• publish and subscribe 1:N communication

• uses a broker (server) usually runs over TCP/IP
• topics (communication channels)
• a node (thing)
• can publish a message to a topic and
• all subscribers of that topic receive the message

• with hierarchical names such as 
/device/system/interpreter/input

• wild cards in order to subscribe to a set of topics + #

• quality of service, last will, ...

• wide support by libraries, applications, community 
node red, mqtt explorer, mosquitto broker, ...

so
ur

ce
: W

ik
im

ed
ia

Message Queuing Telemetry Transport

Of course a single thing can be publisher and subscriber at the same time.

so
ur

ce
: W

ik
im

ed
ia

Message Queuing Telemetry Transport

Topic: /device/system/interpreter/output

SensorsSensorsSensorsSensors

ActorsActorsActorsActors

Publisher

publish

subscribe

Subscriber

Of course a single thing can be publisher and subscriber at the same time.

so
ur

ce
: W

ik
im

ed
ia

Message Queuing Telemetry Transport

Topic: /device/system/interpreter/input

Topic: /device/system/interpreter/output

subscribe

SensorsSensorsSensorsSensors

ActorsActorsActorsActors

Thing

publish

publish

subscribe

MQTT viewer

33

Forth things
Can we implement things in Forth? Yes

connect Forth's input and output to topics

Topic: /device/system/interpreter/input

Topic: /device/system/interpreter/output

subscribe

SensorsSensorsSensorsSensors

ActorsActorsActorsActors

MQTT client / Wrapper

Forth System +
Application

publish

output

input

Forth things
Can we implement things in Forth? Yes

connect Forth's input and output to topics

subscribe

MQTT client / Wrapper

System

publish

serial output

serial input

Topic: /device/system/interpreter/input

Topic: /device/system/interpreter/output

subscribe

MQTT client / Wrapper

System

publish

output

input

Topic: /device/system/interpreter/input

Topic: /device/system/interpreter/output

subscribe

System with MQTT client

publish

Topic: /device/system/interpreter/input

Topic: /device/system/interpreter/output

Forth things - Interactive Development

Topic: /device/system/interpreter/input

Topic: /device/system/interpreter/output

MQTT client
publish

holon.mon

HolonCode

Monitor

subscribe

SensorsSensorsSensorsSensors

ActorsActorsActorsActors

MQTT client / Wrapper

System

publish

output

input

34

DEMO

• MQTT broker is running

• MQTT explorer is connected to see messages

• seedForth is wrapped so that its

• input comes from /device/system/seedForth/input

• output goes to /device/system/seedForth/output

• MQTT explorer can send messages to seedForth

• Command line client connect can access seedForth via MQTT

Different kind of messages

• connect Forth's input and output to topics

• Forth's output must be lean. Two words

• verbose - make system ready for interactive use

• quiet - calm down system to do no echo or superfluous output.

Different kind of messages

• connect Forth's input and output to topics

• What messages to exchange?

• requests (commands) and 
data reponses?

• requests (commands) and 
program responses?

• Heinz Schnitter's Open Network Forth (ONF)

Thing 1 Thing 2

request

reponse: data

interpret data

request

reponse: program

evaluate program

X get

X get

42

42 X ! ok
ko

NaN / Error 99

35

Domain Specific Languages (DSL)

• "Forth is well suited for DSLs."

• Yes - but how?

• sealed vocabularies

• natural langage like syntax

• best practice for design of Forth DSLs?

• sandboxes?

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Domain Specific Languages (DSL)
Sealed Vocabularies

• Put all words of your DSL in word lists of their own.

• Only search these word lists, i.e. seal these vocabularies

: evaluate-in-search-order (c-addr u i*x wid1 ... widn n -- j*x)
 n>r get-order
 nr> set-order
 n>r ['] evaluate catch
 nr> set-order
 throw ;

This might be helpful:

Domain Specific Languages (DSL)
Natural Language Syntax

• Design your DSL using different kinds of words

• nouns (-- i*x)

• verbs (i*x --)

• adjectives (i*x -- j*x)

• Make your commands phrases with

• subject object1 object2 ... verb

See "In Review: FORML 1984 Asilomar Conference", FD, Vol. VI, No. 5, p34ff, 1984

elbow 30 degrees clockwise turn

36

Domain Specific Languages (DSL)
Best practices and sandboxes?

• Who has a systematic structured aproach to Forth DSLs?

• please contact me ->

• Sandboxing

• We want to evaluate Forth source code.

• How can this be restricted to be save?

• Certainly no unrestricted @ and ! 🙂

• Work on best practices to do sandboxes

• Again: please contact me ->

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Conclusion

• The Internet of Things 	 	 connected embedded systems

• MQTT	 	 	 	 publish and subscribe via broker

• Forth Things	 	 	 connect input and output to topics

• Demo	 	 	 	 we've seen some stuff live

• Different Kind of Messages	 data or program responses

• Domain Specific Languages	 sealed vocabularies, nouns&verbs, sandboxes

• Conclusion	 	 	 you are here

Taming the IoT 
Forth's Role in the Internet of Things

Conclusion

• The Internet of Things 	 	 connected embedded systems

• MQTT	 	 	 	 publish and subscribe via broker

• Forth Things	 	 	 connect input and output to topics

• Demo	 	 	 	 we've seen some stuff live

• Different Kind of Messages	 data or program responses

• Domain Specific Languages	 sealed vocabularies, nouns&verbs, sandboxes

• Conclusion	 	 	 you are here

Taming the IoT 
Forth's Role in the Internet of Things

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

Questions?

37

simulation of the Einstein-Podolsky-Rosen experiment in forth

Krishna Myneni

EuroForth 2021

V1.0

back to basics

: washer wash SPIN rinse SPIN ;

Brodie, L. (1987), Starting Forth, Prentice-Hall.

● measuring the spin (magnetic moment) of a particle

● simulating spin measurements using forth: epr-sim

● quantum theory in a couple of slides

● factoring quantum states and entanglement

● exploring strong correlations in an entangled spin state using epr-sim

● EPR argument for incompleteness of QM [using entangled spins]

● exploring hidden variables explanations with epr-sim

● correlation coefficient and Bell’s inequality for hidden variable theories

● computing Bell’s inequality with epr-sim

● epr-sim design

38

 https://de.wikipedia.org/wiki/Physikalischer_Verein
https://www.goethe-university-frankfurt.de/63113635/Physics_of_yesterday

 „Wäre es möglich, einen tüchtigen Physiker herbei [nach Frankfurt] zu ziehen, der sich mit dem
Chemiker vereinigte und dasjenige heranbrächte, was so manches andere Kapitel der Physik,
woran der Chemiker keine Ansprüche macht, enthält und andeutet; setzte man auch diesen in
Stand, die zur Versinnlichung des Phänomens nötigen Instrumente anzuschaffen, so wäre in
einer großen Stadt für wichtige, insgeheim immer genährte Bedürfnisse und mancher
verderblichen Anwendung von Zeit und Kräften eine edlere Richtung gegeben.“

– Johann Wolfgang Goethe, 1814: Am Rhein, Main und Neckar.
 In: Autobiographische Schriften. Band III, S. 297.

other kinds of spin machines

Stern-Gerlach experiment

N

S

B

oven

Ag

MRI scanner

Artwork by Shreya

H. Schmidt-Böcking, et al., arXiv:1609.09311v1 [physics.hist-ph] 29 Sep 2016

z

x

y

single spin-1/2 particle in the “spin-up” quantum state

θ

2nd S-G magnet
orientation

Simulation output from epr-sim
for 0°, 60°, and 120°.

Q2p2s new dup
z1 z0 z0 z0 init-2p2s
EM set-qstate
0.0e 60.0e 120.0e rightDet map-angles
draw-experiment go

Pu(0°) = 1

Pu(60°) =¾

Pu(120°) = ¼

39

simulating spin measurements using forth: epr-sim†

status line

tape recorder

S-G analyzer/detector

emitter

experiment configuration

† epr-sim.4th

for a particle or system of particles in a defined quantum state, quantum theory

● predicts probabilities of possible measurement outcomes, e.g. {Pu,Pd}.

● does not predict, in general, results of individual measurements.

the above restrictions follow from the axioms and intepretation

● every possible measurement outcome of an observable has a probability amplitude.

● upon measurement, one of the possible outcomes is obtained, e.g. {+ℏ/2,−ℏ/2}.

● probability amplitudes follow a dynamics law (Schrödinger eqn.).

● some observables cannot have precise values simultaneously, e.g. {x p, x }, {sx s, z}.

quantum theory in a couple of slides

the quantum state is a list of associations between measurement outcomes
and probability amplitudes

((mo1 c1) (mo2 c2) … (mo_n c_n))

ex1: single spin-1/2 particle state observed along a specified axis

((up c1) (down c2))

ex2: two spin-1/2 particles state observed along a specified common axis

(((upA upB) c1) ((upA downB) c2) ((downA upB) c3) ((downA downB) c4))

quantum states for computer scientists

ci are complex numbers

require |c1|2 + |c2|2 + … = 1

40

can we factor two-particle states as a product of separate one particle states?

 (equal ‘(((uA uB) c1) ((uA dB) c2) ((dA uB) c3) ((dA dB) c4))

 (product ‘((uA z1) (dA z2)) ‘((uB z3) (dB z4))))

for consistency with probability interpretation, product must use the relations

c1 = z1 z3 |c1|2 = |z1|2|z3|2

c2 = z1 z4 |c2|2 = |z1|2|z4|2

c3 = z2 z3 |c3|2 = |z2|2|z3|2

c4 = z2 z4 |c4|2 = |z2|2|z4|2

then, our Lisp expression evaluates to T.

two-particle states can be factored if measurement of one particle is independent
of measurement of the other.

factoring two-particle quantum states

unfactorable two-particle quantum states

example of an unfactorable (entangled) state:

singlet two-particle spin state c1 = 0 c, 2 = 1/√2 c, 3 = −1/√2 c, 4 = 0

c1 = z1 z3 = 0

c2 = z1 z4 = 1/√2

c3 = z2 z3 = −1/√2

c4 = z2 z4 = 0

no assignment of z1, z2, z3, z4 can satisfy the above equations.

our Lisp expression evaluates to NIL for entangled states.

exploring strong correlations in an entangled state using epr-sim

41

magic of the singlet state

● each particle, (left and right-going) has equal chance (50%) of spin U or D
with respect to any axis.

● measurements for both are perfectly anti-correlated when both
detectors are set to the same angle – this is the case for all angles.

EPR argument for incompleteness of QM [using entangled spins]

● left and right detectors can be arbitrarily far apart, and at different distances from the source.

● after a measurement is made on the left, result of measurement on the right, along the same
axis, may be predicted with certainty.

● measurement on the left cannot in any way disturb the measurement made on the right.

● The axis selection may be random, for example along z-axis (0°) or along x-axis (90°).

therefore, the result of spin measurement on the right exists independently of the measurement on
the left, and the quantum state description is incomplete.

A. Einstein, B. Podolsky, and N. Rosen, Physical Review 47, 777 (1935).
D. Bohm and Y. Aharonov, Physical Review 108, 1070 (1957).

let λ be a random bit (0 or 1) generated at source, and state be specified by

λ s>z zvalue λ1
λ 0= s>z zvalue λ2

(((u u) 0) ((u d) λ1) ((d u) λ2)) ((d d) 0))

which is a factorable (unentangled) state.

λ = 0: (((d u) -1))
λ = 1: (((u d) 1))

outcomes are fully determined along 0° when hidden variable λ is known:

A(λ=0, 0°) = D, A(λ=1, 0°) = U, B(λ=0, 0°) = U, B(λ=1, 0°) = D

can we find deterministic laws which agree with QM statistics for singlet state?

possible assignments for spin measurements are shown in table

i, j Puu Pud Pdu Pdd

1, 1 0 ½ ½ 0

2, 2 0 ½ ½ 0

3, 3 0 ½ ½ 0

hidden variable explanations for spin correlations

assume there exists a complete state description with parameter(s) we don’t know.

λ A(λ, θi) B(λ, θj)

1 2 3 1 2 3

0 D D D U U U
0 D D U U U D
0 D U D U D U
0 D U U U D D
1 U D D D U U
1 U D U D U D
1 U U D D D U
1 U U U D D D

42

exploring hidden variables explanations with epr-sim

λ A(λ, θi) B(λ, θj)

1 2 3 1 2 3

0 D D D U U U
0 D D U U U D
0 D U D U D U
0 D U U U D D
1 U D D D U U
1 U D U D U D
1 U U D D D U
1 U U U D D D

i, j Puu Pud Pdu Pdd

1, 2 ¼ ¼ ¼ ¼
1, 3 ¼ ¼ ¼ ¼
2, 3 ¼ ¼ ¼ ¼

when detector settings are different, QM statistics
do not match the table statistics.

i, j

1, 2

1, 3

2, 3

E is defined to be the average of the product of the two spin measurements, with U +1 and D ≡ −1.

E = Puu + Pdd – Pud – Pdu

E is also the correlation coefficient (reflective correlation coefficient†).

E depends on the two detector angles, θL and θR (left and right).

J. S. Bell proved‡ that any local hidden variable theory must give Es satisfying the following
inequality for the singlet state

|E(1,2) − E(1,3)| − E(2,3) ≤ 1

where (1,2), (1,3), and (2,3) correspond to left and right detector angle selector settings.

correlation coefficient and Bell’s inequality for hidden variable theories

† https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
‡ J. S. Bell, Physics 1, 195 – 200 (1964).

computing Bell’s inequality with epr-sim

10000 value NTRIALS
Singlet EM set-qstate
: f3dup 2 fpick 2 fpick 2 fpick ;

: measure-along (leftaxis rightaxis --) (F: -- E)
 reset-counts
 rightDet set-axis leftDet set-axis
 NTRIALS run-fixed-trials drop
 expectation-value ;

: measure-lhs (--) (F: deg1 deg2 deg3 -- lhs)
 f3dup
 leftDet map-angles
 rightDet map-angles
 2 3 measure-along
 1 2 measure-along
 1 3 measure-along
 f- fabs fswap f- ;

0.0e 60.0e 120.0e measure-lhs

|E(1,2) − E(1,3)| − E(2,3) = 1.5 ≤ 1

43

Consider the two-particle spin state:

c1 = ½ c2 = i(½) c3 = i(½) c4 = −½

Obtain the joint probabilities Puu, Pud, Pdu, Pdd and the correlation, E, for the following pairs of
axes:

1, 1 ≔ 0°, 0°

2, 2 ≔ 60°, 60°

3, 3 ≔ 120°, 120°

1, 2 ≔ 0°, 60°

1, 3 ≔ 0°, 120°

2, 3 ≔ 60°, 120°

Do the measurements appear to show any correlation for these settings?

Is the two-particle state entangled, or is it factorable into independent one particle states
(Bell’s inequality cannot be used for this state)?

exercise in using epr-sim

Setup commands:

0.0e 60.0e 120.0e f3dup
leftDet map-angles rightDet map-angles
Q2p2s new constant TestState
z1/2 zdup i* zdup z1/2 znegate TestState init-2p2s
TestState EM set-qstate
draw-experiment go

epr-sim design: forth libraries

forth libraries

mini-oof.x compact, object-oriented programming word set by Bernd Paysan†

ansi.x ANSI terminal control library‡

strings.x simple strings library‡

forth scientific library‡

 fsl-util.x
 complex.x (#60)
 ran4.x (#24)

† Detailed Description of Mini-OOF
‡ kForth-64 forth source examples
††The Forth Scientific Library ; Forth-94 and Forth-2012 compliant Forths may also use kForth versions
 of FSL modules with the addition of a few compatibility definitions.

object class
 complex var C1 \ amplitude of |11> component
 complex var C2 \ amplitude of |10> component
 complex var C3 \ " |01> component
 complex var C4 \ " |00> component
 method init-2p2s (o --) (F: z1 z2 z3 z4 --)
 method normalize (o --)
 method exchange (o --) \ exchange particle labels
 method P_up (o --) (F: stheta ctheta -- P_up)
 method M_up (o --) (F: stheta ctheta -- C1' C2' C3' C4')
 method M_down (o --) (F: stheta ctheta -- C1' C2' C3' C4')
end-class Q2p2s \ two-particle, bipartite quantum state

epr-sim design: two-particle spin-1/2 state

method normalize ensures total probability = 1
method P_up computes Puu(θ1) + Pud(θ1)

44

epr-sim design: oop

virtual experiment components are derived from the text-graphic class

text-graphic
tape

detector
emitter

histogram

InformationBox

statistics

some visual elements inspired by N. D. Mermin, Physics Today, April 1985, pp 38 -- 47.

dedication

My presentation is dedicated to the memory of professors from whom I learned quantum theory,

Prof. Shi-Yu Wu

Prof. Eugen Merzbacher

we have to map ci f= i z(1 z, 2 z, 3 z, 4) with following constraints

Puu P+ ud P+ du P+ dd = |c1|2 + |c2|2 + |c3|2 + |c4|2 = 1

Pu
A P= uu P+ ud → |z1|2 = |c1|2 + |c2|2

Pd
A P= du P+ dd → |z2|2 = |c3|2 + |c4|2

Pu
B P= uu P+ du → |z3|2 = |c1|2 + |c3|2

Pd
B P= ud P+ dd → |z4|2 = |c2|2 + |c4|2

appendix: product state of single particles

45

1

46

2

47

The case for <BUILDS

Brad Rodriguez
EuroForth Conference

12 September 2021

Resident Forth on small embedded microcontrollers
e.g. MaxForth on DSP5680x,
CamelForth on MSP430

Typically code space in Flash ROM, and a small amount of RAM
(e.g. MSP430G2553: 16 K Flash ROM, 0.5K RAM)

Resident Forth compiler needs to compile directly to Flash ROM.

Primary characteristic: each memory location can be written once.
Locations cannot be changed once written;
Flash can be erased but only in large blocks.
Usually erased to all ones.

48

For most compiler actions this is a minor change, e.g.,

: IF [‘] ?BRANCH I, IHERE 0 I, ; IMMEDIATE
becomes

: IF [‘] ?BRANCH I, IHERE CELL IALLOT ;
IMMEDIATE

(“I” prefix refers to Instruction space, i.e., Flash ROM)

The problem is CREATE ... DOES> . CREATE leaves the run-time
action DOCREATE in the newly defined word’s code field. This
means that DOES> cannot change that action.

: CREATE HEADER DOCREATE I, HERE I, ;

(Note ROMable variables/data compile a pointer to HERE.)

CREATE is overloaded!

CREATE currently overloads two functions:
1. To define a data strucutre.
2. To define a “defined word” in a CREATE...DOES> construct.

These are conceptually distinct uses, and it is an accident of history
that we use CREATE for both (because it has been easy for DOES> to
change the action of a CREATEd word).

The solution is to bring back <BUILDS , which performs the function
of CREATE but does not store anything in the code field (i.e., leaves
that cell unprogrammed).

: <BUILDS HEADER CELL IALLOT ;

49

This does not solve the problem of applying DOES> a second time to
a defined word’s code field, but that is an extremely rare usage.

Standards Compliance:
This becomes a non-standard-compliant Forth system, as
CREATE...DOES> cannot be used.

But applications are modified easily, by changing CREATE...DOES>
to <BUILDS...DOES> wherever used.

Alternatives:
1. Make DOCREATE (the run-time action of a CREATEd word) test a
second cell for a DOES> pointer.
2. Make the inner interpreter test for CFA=$FFFF and invoke
DOCREATE.
3. Make $FFFF the code address for CREATE. (Rarely viable.)

50

microCore progress

kschleisiek at freenet.de

Finally, microCore has been published:
https://github.com/microCore-VHDL

gforth_0.6.2 has been wrapped into a docker file (thanks Ulli).
It turned out to be completely useless for Windows10, because
the serial interface can not be connected.

In order to support the IoT, a 10baseT ethernet interface has been
realized.

It just uses a couple of passive components as PHY.
- 10baseT is realised in the FPGA consuming 500 XP2 LUTS.
- (R)ARP and UDP is realised in software consuming 2030

instructions including the multi tasker.

51

Where does X spend its time?
A small Forth profiler

EuroForth 2021
Philip Zembrod - pzembrod@gmail.com

Motivation

● cc64 compiler written in ITC VolksForth on C64 felt slow …
● … unreasonably slow …
● Solution: optimize hotspots ...
● … which were unknown

Where did cc64 spend its time?

Wish for a profiler that works

● at different levels - module group, module, word group, word
● ideally self-hosted

Prior art & tips

● timing individual words
● let NEXT log all words to stdout
● a C-written VM could be instrumented
● per-word e2e time tracking

https://sourceforge.net/p/forth-brainless/code/HEAD/tree/trunk/profiler.fs
○ gross time rather than net time

No clear fit for my problem …
… there seemed to be an opportunity^wexcuse for a new tool. :-)

52

What could I do with NEXT?

● count invocations of a word
● count NEXT cycles within a word

○ # of IP fetches at addresses between : and ;
● count NEXT cycles and sum up time within a word
● count NEXT cycles and sum up time within a range of words
● split cc64 code into N ranges aka buckets

○ count NEXT cycles and sum up time per bucket
● split a bucket into N sub-buckets, rinse & repeat

… this could fly ...

Some details

● NEXT should remain fast
○ only single-interval buckets
○ only 8 buckets -> 3-cmp binary search
○ unrolled loop

● What about Forth core code?
○ core NEXT cycles & time added to calling bucket

● What about non-core code outside buckets?
○ default bucket 0 collects rest of NEXT cycles & time

● Time measurement
○ 2 cascaded 16-bit timers (MOS 6526 CIA) running at CPU clock

: compareIp
 IP 1+ lda >buckets[,x cmp 0= ?[IP lda <buckets[,x cmp]? ;

: findBucket
 0 # ldx compareIp CC ?[
 currentBucket ldx
][inx compareIp CC ?[
 dex
][
 5 # ldx
 compareIp 0<> ?[CC ?[dex dex][inx inx]?
 compareIp 0<> ?[CC ?[dex][inx]?
 compareIp CC ?[dex]?]?]?

 IP 1+ lda >]buckets ,x cmp 0= ?[IP lda <]buckets ,x cmp]?
 CS ?[0 # ldx]?

 txa .a asl .a asl tax
]?
 currentBucket stx
]? ;

53

Label prNext
 timerActrl lda pha $fe # and timerActrl sta
 calcTime
 findBucket
 incCountOfBucket
 addTimeToBucket
 setPrevTime
 incMainCount
 pla timerActrl sta
 0 # ldx clc IP lda Next $c + jmp

Code install-prNext
 prNext 0 $100 m/mod
 # lda Next $b + sta
 # lda Next $a + sta
 $4C # lda Next $9 + sta
 Next jmp end-code

Buckets defined inline in code

● Easy & straightforward
○ for both start & end of bucket

● Only defined in instrumented mode

Alternative considered:
● define bucket with ‘ word

○ end of bucket less intuitive
○ difficult with headerless words

\prof profiler-bucket [input]
include input.fth
\prof [input] end-bucket

\prof profiler-bucket [scanner]
include scanner.fth
\prof [scanner] end-bucket

\prof profiler-bucket [symtab]
include symboltable.fth
include preprocessor.fth
\prof [symtab] end-bucket

Nested buckets for drilling down

\prof profiler-bucket [scanner-nextword]
\prof profiler-bucket [scanner-fetchword]

: fetchword (-- tokenvalue token) BEGIN (nextword is-comment? WHILE
 2drop skip-comment REPEAT \ ." fetchword: " 2dup u. u. word' 2! ;

: accept (--) 1 word# +! fetchword ;

\prof [scanner-fetchword] end-bucket
\prof profiler-bucket [scanner-thisword]

: thisword (-- tokenvalue token) word' 2@ ;

\prof [scanner-thisword] end-bucket
\prof [scanner-nextword] end-bucket

54

Up to 8 active buckets

Buckets grouped in metrics
\prof include prof-metrics.fth

prof-metrics.fth:
profiler-metric:[profile-cc64
 [strings]
 [memman-etc]
 [file-handling]
 [input]
 [scanner]
 [symtab]
 [parser]
 [pass2]
]profiler-metric

profiler-metric:[profile-scanner
 [scanner-alphanum]
 [scanner-identifier]
 [scanner-operator]
 [scanner-char/string]
 [scanner-(nextword]
 [scanner-comment]
 [scanner-nextword]
 [scanner-rest]
]profiler-metric

profiler-metric:[
profile-scanner-nextword
 [scanner-nextword-vars]
 [scanner-fetchword]
 [scanner-thisword]
 [scanner-nextword-mark]
 [scanner-nextword-advanced?]
]profiler-metric

Design overview

● Hooks into NEXT routine

● Max 8 buckets active per measurement
○ e.g. per instrumented e2 test run
○ 16 or 32 buckets also feasible

● Define arbitrary # buckets inline

● Metrics: bundles of max 8 buckets
○ defined in separate central file

● A metric, invoked interactively, activates its buckets
○ same compiled turn-key binary can run different metrics

Result #1: Don’t list source during compile

profiler report PROFILE-CC64-1
timestamps
919.522.732 1.078.906.060

buckets
b# nextcounts clockticks name
0 475419 52822277 (etc)
1 1037243 114416784 [MEMMAN]
2 1384162 153154008 [FILE-HDL]
3 797224 122822197 [INPUT]
4 2695157 299076306 [SCANNER]
5 153639 17403250 [SYMTAB]
6 1826434 197679185 [PARSER]
7 1100491 121509788 [PASS2]
8 0 0 [SHELL]

profiler report PROFILE-CC64-1
timestamps
830.786.988 989.908.172

buckets
b# nextcounts clockticks name
0 475419 52854657 (etc)
1 1035458 114210370 [MEMMAN]
2 1384162 153117590 [FILE-HDL]
3 313708 34373231 [INPUT]
4 2695157 299094501 [SCANNER]
5 153639 17396511 [SYMTAB]
6 1826434 197594285 [PARSER]
7 1100491 121235385 [PASS2]
8 0 0 [SHELL]

55

Result #2: Eliminate loops in operator scanning

profiler report PROFILE-SCANNER2
timestamps
831.180.204 990.563.532

buckets
b# nextcounts clockticks name
0 6291642 691659740 (etc)
1 247516 29308255 [ALPHANUM]
2 66366 7040651 [ID]
3 1075233 116814924 [OPERATOR]
4 27320 3487498 [NUMBER]
5 237738 26065205 [CHR/STR]
6 150400 15851841 [NEXTWORD]
7 43874 5189985 [COMMENT]
8 844379 95121698 [REST]

profiler report PROFILE-SCANNER2
timestamps
725.077.164 884.722.893

buckets
b# nextcounts clockticks name
0 6294398 692597293 (etc)
1 247516 29374038 [ALPHANUM]
2 66366 7035251 [ID]
3 93760 10011918 [OPERATOR]
4 27320 3483433 [NUMBER]
5 237738 26075738 [CHR/STR]
6 150400 15872668 [NEXTWORD]
7 43874 5198813 [COMMENT]
8 844379 95104859 [REST]

Result #3: nextword/backword -> thisword/accept

profiler report PROFILE-SCANNER3
timestamps
725.011.628 884.395.213

buckets
b# nextcounts clockticks name
0 6322534 695897987 (etc)
1 247516 29341777 [ALPHANUM]
2 66366 7045787 [ID]
3 93760 9996178 [OPERATOR]
4 237738 26092982 [CHR/STR]
5 150400 15872100
[(NEXTWORD]
6 43874 5190433 [COMMENT]
7 844359 95006489 [NEXTWORD]
8 20 2405 [REST]

profiler report PROFILE-SCANNER3
timestamps
635.489.452 794.873.037

buckets
b# nextcounts clockticks name
0 6225621 685133179 (etc)
1 247524 29335672 [ALPHANUM]
2 66366 7032118 [ID]
3 93760 9997433 [OPERATOR]
4 237738 26098202 [CHR/STR]
5 150422 15861717 [(NEXTWORD]
6 43885 5193847 [COMMENT]
7 149888 16295019 [NEXTWORD]
8 14 1679 [REST]

Result #4: alphanum? in code, len-indexed string search

profiler report PROFILE-CC64-1
timestamps
644.730.028 805.359.052

buckets
b# nextcounts clockticks name
0 216494 22948435 (etc)
1 480396 56645293 [STRINGS]
2 947278 104421341 [MEMMAN]
3 1396465 154541959 [FILE-HDL]
4 316896 34711112 [INPUT]
5 832390 90610649 [SCANNER]
6 155294 17603763 [SYMTAB]
7 1858844 201343115 [PARSER]
8 1109617 122555758 [PASS2]

profiler report PROFILE-CC64-1
timestamps
579.980.460 740.543.948

buckets
b# nextcounts clockticks name
0 216506 22950222 (etc)
1 114310 12976436 [STRINGS]
2 742175 83029931 [MEMMAN]
3 1396517 154575151 [FILE-HDL]
4 316896 34740882 [INPUT]
5 832390 90869725 [SCANNER]
6 155294 17623890 [SYMTAB]
7 1858844 201608564 [PARSER]
8 1109737 122235615 [PASS2]

56

Result overall: 31% time saved, 45% speed gain

profiler report PROFILE-CC64-1
timestamps
919.522.732 1.078.906.060

buckets
b# nextcounts clockticks name
0 475419 52822277 (etc)

1 1037243 114416784 [MEMMAN]
2 1384162 153154008 [FILE-HDL]
3 797224 122822197 [INPUT]
4 2695157 299076306 [SCANNER]
5 153639 17403250 [SYMTAB]
6 1826434 197679185 [PARSER]
7 1100491 121509788 [PASS2]
8 0 0 [SHELL]

profiler report PROFILE-CC64-1
timestamps
579.980.460 740.543.948

buckets
b# nextcounts clockticks name
0 216506 22950222 (etc)
1 114310 12976436 [STRINGS]
2 742175 83029931 [MEMMAN]
3 1396517 154575151 [FILE-HDL]
4 316896 34740882 [INPUT]
5 832390 90869725 [SCANNER]
6 155294 17623890 [SYMTAB]
7 1858844 201608564 [PARSER]
8 1109737 122235615 [PASS2]

Links

All to be found under https://github.com/pzembrod/cc64:

● profiler: src/common/profiler.fth
● profiler activation: src/cc64/invoke.fth
● instrumented code: src/cc64/cc64.fth & src/cc64/scanner.fth
● metrics definitions: src/cc64/prof-metrics.fth
● profiling results: tests/e2e/profile-register
● cc64 input scripts for different metrics: tests/e2e/*.pfs

Conclusion

● Profiler proved practical & easy to use
● Good overview & drilldown with multiple metrics
● Different metrics within one compiled binary
● Result: Small to moderate optimizations yielded 45% speed increase
● 190 lines of code
● Gross runtime penalty for instrumentation < 4x
● Prerequisite: ITC or DTC

Thank you for your attention!

Questions?

57

Copying Bytes

M. Anton Ertl, TU Wien

Myths

• Copying bytes efficiently is simple

• Cmove is faster than move

• Implementing cmove efficiently is simple

• Implementing move efficiently is more complex

Cycles for 50-byte non-overlapping copy
Skylake Zen 3

sf gforth vfx32 vfx64
95 36 34 24 232 move

100 87 32 21 27 cmove
83 90 33 21 224 cmove>

byte loop memmove() cell loop rep movsb

58

Words and C functions
Forth C
move memmove() to-range contains original from-range contents
cmove propagates patterns if to ∈ [from, from+ u)
cmove> propagates patterns if from ∈ [to, to + u)

memcpy() undefined behaviour on overlap
move< don’t call if to ∈ [from, from+ u)
move> don’t call if from ∈ [to, to + u)

Efficient implementations

: move (from to u --)
over 3 pick - 2 pick u< if \ to in [from,from+u)

move>
else

move<
then ;

: cmove (afrom ato u --)
dup 0= if exit then
begin (afrom1 ato1 u1)

over 3 pick - 2>r
2dup 2r@ umin move<
2r@ 1 rot within while

2r> /string repeat
2r> 2drop 2drop ;

Extend 2-byte pattern to 1000 bytes with cmove

Zen 3 cycles/cmove
VFX64 VFX32

rep movsb cell loop
orig new orig new
3360 965 4273 386

59

Conclusion

• Moving bytes efficiently is simple

• Cmove is faster than move? Sometimes

• Implementing cmove efficiently is simple

• Implementing move efficiently is more complex

60

Forth - The New Synthesis  
progress report

disaggregating the stacks and memory

EuroForth'21 conference 2021-09-12
Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

uho@ .de

Forth the New Synthesis

Forth disaggregating synthesizing

Latest work

• investigate in input and output

• connection between host and target

• communicating commands between host and target

• screens

• do not need to be 1kB BLOCKs form-feed separated files

• b n l list load can work as usual

• playing with unicode

• disaggregating stacks

• disaggregating memory

Current work

61

playing with Unicode

playing with Unicode

Disaggregating the Stacks

• data stack and return stack are used for different purposes in
different situations.

• disaggregating the stacks means separating these purposes and
look at them in isolation.

62

Disaggregating the Stacks

| | Interpreting | Compiling | Executing | comment |

|--------------|---------------------------|-------------------|---------------------|---------------|

| Data Stack | parameter passing | | parameter passing | |

| | (unsigned) integers | | (unsigned) integers | |

| | characters | | characters | |

| | floats | | floats | |

| | addresses | | addresses | |

| | | control flow | | BEGIN IF ... |

| | | compiler security | | : ; |

| | | constant folding | | |

| | | | | |

| Return Stack | internal return addresses | return addresses | return addresses | |

| | | | temporary storage | >R R> R-ALLOT |

| | | | loop parameters | DO LOOP |

| | | | exception frames | CATCH THROW |

| | | | locals | >X X X! |

Disaggregating the Stacks

• data stack and return stack are used for different purposes in
different situations.

• disaggregating the stacks means separating these purposes and
look at them in isolation.

Disaggregating the Stacks
- interferences of the the different purposes lead to
restrictions such as:

 - no passing of parameters to definitions at compile time
(interference of control flow/compiler security and parameter
passing)

 - no use of >R R> across DO-LOOP-boundaries (interference
of temporary storage usage and loop parameters)

 - no use of >R R> across definitions (interference of
temporary storage and return addressses).

 - specialized stack operators to deal with floating point
numbers on the return stack (FDUP, FSWAP, swap cell and float)

63

Disaggregating the Stacks
Separate stacks for each purpose 
Possible disaggregations are
- split data stack into
 - a separate stack for parameter passing that holds
(unsigned) integers, characters and also addresses
 - a separate floating point stack for holding floating point
numbers (the route Forth-200x went)
 - a separate control flow stack for managing control
structures
 - a seperate object stack for handling references to data
structures and objects

- split the return stack into
 - a seperate stack for return addreses
 - a seperate stack for temporary data (>R R> R-ALLOT)
 - a seperate stack for loop parameters (DO LOOP)
 - a seperate stack for exception handling (CATCH THROW)
 - a seperate stack for local variables

Disaggregating the Memory

• xlerb

: Buffer: (u --)
 Create allot ;

: Buffer: (u --)
 here swap allot \ RAM { c0 | ... | cu-1 }
 Create , \ ROM { 'rom }
 Does> (-- addr) @
;

: Buffer: (u --)
 here swap allot \ RAM
 Constant \ ROM
;

<BU
ILD

S

Questions?
T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

64

DSLs - power & challenge
The underestimated need for design

Lightning talk EuroForth 2021
Philip Zembrod - pzembrod@gmail.com

DSLs are powerful but come at a cost

● With great power comes great responsibility
● "A well-designed language is its own Heaven; a poorly-designed language is

its own Hell." *
● Designing a language isn't easy
● Design is a valuable skill

○ … and it takes time and effort

* me, inspired by The Dao of Programming

The underestimated need for design in Forth

● Design is essential in almost every word
○ or else the stack will devour you
○ In Forth I need to think carefully about things I just write down in C or Python

● Impact of design effort:
○ If done well: exceptionally expressive code
○ If not done: write-only code pain

● Beginners should be told this
○ or they will be frustrated
○ for they’ll discover the costs anyway

65

Thoughts on things to acknowledge wrt beginners

● absence of syntax handrails
○ needs design work to mitigate

● absence of type check etc. guard rails
○ needs more testing to mitigate

● freedom and flexibility can be a challenge
● Forth is easy in some ways and hard in others

○ and a great design training field

66

	Preface
	Contents
	M. Anton Ertl: Practical Considerations in a Static Stack Checker
	Peter Knaggs: Using Test Driven Development to build a new Forth interpreter
	Klaus Scheisiek: The Linguistics of Forth
	Ulrich Hoffmann: Taming the IoT — Forth's Role in the Internet of Things
	Krishna Myneni: simulation of the Einstein-Podolsky-Rosen experiment in forth
	Bernd Paysan: net2o Progress Report — Decentralized Censorship
	Brad Rodriguez: The case for <BUILDS
	Klaus Scheisiek: microCore progress
	Philip Zembrod: Where does X spend its time? A small Forth profiler
	M. Anton Ertl: Copying Bytes
	Ulrich Hoffmann: Forth — The New Synthesis — progress report — disaggregating the stacks and memory
	Philip Zembrod: DSLs — power & challenge

