
39th EuroForth Conference

September 15 – 17, 2023

Hotel Villa Aricia
Rome
Italy





Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 39th EuroForth
finds us in Rome where we finally meet again in person, after three years of online
meetings. Information on earlier conferences can be found at the EuroForth
home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there have been no submissions to the refereed track. Nevertheless, I want to
thank the program committee for their willingness to review papers.

In addition to the papers available before the conference, these online pro-
ceedings also contain presentation handouts that were provided at or after the
conference. Also, some of the papers included in the printed proceedings were
updated for these online proceedings. I thank the authors for their papers and
slide handouts.

You can find these proceedings, as well as the individual papers and slides,
and links to the presentation videos on http://www.euroforth.org/ef23/

papers/.
Workshops and social events complement the program. This year’s Euro-

Forth has been organized by Gerald Wodni.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Ulrich Hoffmann, FH Wedel University of Applied Sciences
Jaanus Pöial, Tallinn University of Technology
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas

3

http://www.euroforth.org/
http://www.euroforth.org/ef23/papers/
http://www.euroforth.org/ef23/papers/


Contents

Non-Refereed Papers
Bill Stoddart and Frank Zeyda: Prospective values and Forth . . . . . 5
François Laagel: On Solving Hexadoku and Debugging Recursive Pro-

grams with Message Digests of the Data Stack . . . . . . . . . . 16
Nick J. Nelson: Accessing an Oracle database using Forth . . . . . . . 20
Nick J. Nelson: A proposed standard Forth style enumeration word

set, using recognisers . . . . . . . . . . . . . . . . . . . . . . . . . 29
M. Anton Ertl: Fix Spectre in Hardware! Why and How . . . . . . . . 38

Presentation Slides
Glyn Faulkner: 4g and F.A.I.L.: Writing all the Forths . . . . . . . . . 48
M. Anton Ertl: The Performance Effects of Virtual-Machine Instruc-

tion Pointer Updates . . . . . . . . . . . . . . . . . . . . . . . . . 56

4



Prospective values and Forth

Bill Stoddart, Frank Zeyda

October 12, 2023

Abstract

We use S ⋄ E to represent the value expression E would have were
it to be evaluated after the execution of program S. We call this the
prospective value of E after S. This form is expressive enough to describe
the semantics of an extended form of sequential programming language
that incorporates backtracking and speculative computations. Here we
try it out with Forth.

1 Introduction

We write S ⋄ E for the value expression E would have were it to be evaluated
after the execution of program S. We call this the prospective value of E after
S. In this paper, where we apply this idea to Forth, S is a Forth program, i.e.
some self contained Forth code, and E is a mathematical expression.

For example x 1 + to x ⋄ 10 ∗ x = 10 ∗ (x + 1)

Note the large equals = is a very low priority equals symbol. The symbol ⋄ is
next lowest in priority.

We have developed the theory of prospective value semantics (PV semantics)
in a series of papers, most recently in [DFM+23], and shown that it provides
a sufficient formalism for describing backtracking and reversible computations.
Our theory is developed as an extension of the B-Method. [Abr96]. We have
developed a reversible Forth [SZL10] to act as an implementation platform, and
developed some compilation techniques that make special use of Forth’s essen-
tial features, for example executing type tagged parse trees as Forth programs
[RS10]. One motivation for providing a PV semantics for Forth itself would
be to provide a means of checking the validity of the code produced by such a
compiler.

When constructing a PV semantics for Forth we have to take into account the
following:

• The way Forth expressions are written, in an extended postscript notation
with explicit stack manipulations, is so different from how expressions are
written in mathematics that we will have to abandon the convenient and

5



unspoken fiction that program expressions and mathematical expressions
are one and the same.

• Forth has an explicit stack so we need a way to represent the stack as a
mathematical expression,

2 The stack, part 1

Our semantics uses the typed set theory of B. A stack may hold items of different
type, and this prevents us from representing it as a sequence. However, we can
represent a stack containing different types of value as a tuple 1.

We use the symbol ε to represent the empty parameter stack, and in our math-
ematical universe we give the parameter stack the name s.

Here are some examples showing the value taken by the stack following some
simple Forth code.

SP! ⋄ s = ε
SP! 1 ⋄ s = ε 7→ 1
SP! 1 2 ⋄ s = ε 7→ 1 7→ 2
SP! 1 2 10 ⋄ s = ε 7→ 1 7→ 2 7→ 10
SP! 1 2 10 + ⋄ s = ε 7→ 1 7→ 12

Since the stack always consists of a tuple that commences with ε we can take
the liberty of omitting the ε when the stack is non-empty and replacing the
maplet symbol 7→ by a space. This allows the above results to be expressed as
follows.

SP! ⋄ s = ε
SP! 1 ⋄ s = 1
SP! 1 2 ⋄ s = 1 2
SP! 1 2 10 ⋄ s = 1 2 10
SP! 1 2 10 + ⋄ s = 1 12

3 Expressions and the semantics of assignment

Let E be Forth code that’s only effect is to leave one item on the stack, i.e. it
causes no change of state of program variables or any memory; we will call such
a fragment of code an “expression”. We will want to use the value left by E in
some of our semantic equations.

In the form S ⋄ E , The text to the left of the diamond is Forth code, and
that to the right is a mathematical expression, i.e. the diamond separates Forth
code from mathematical text, and we need a notation to translate the Forth
expression E into the mathematical world. We enclose E in semantic brackets
JEK to represent this translation. Some examples will make this clear.

1This means the type of the stack will change every time we push or pop a value. Thus
the stack has no identifiable type, but every state of the stack does have a type.

6



Suppose x is a Forth VALUE holding an integer. We translate x into the math-
ematical value x

JxK = x

Next consider the translation of a simple expression:

Jx 10 +K = x + 10

In the next example we use a symbolic stack trace to perform the translation
Jx DUP DUP ∗ +K = x 2 + x

Forth commands Stack
x x
DUP DUP x x x
∗ x x 2

+ x 2 + x

Here is an symbolic trace for an example where three arguments a b c are
provided from the stack:

J a b c -- 2DUP * -ROT + SWAP -ROT * + 2* K
Forth commands Stack
a b c - - 2DUP a b c b c
∗ a b c b∗c
−ROT a b∗c b c
+ a b∗c b+c
SWAP a b+c b∗c
−ROT b∗c a b+c
∗ b∗c a∗(b + c)
+ b∗c + a∗(b + c) = a∗b + a∗c + b∗c
2∗ 2 ∗ (a ∗ b + a ∗ c + b ∗ c) = 2 ∗ ab + 2 ∗ ac + 2 ∗ bc

4 Assignment

To avoid continual use of the semantic brackets J..K we will use a change in
typeface, by which the Forth expression E is translated as the mathematical
expression E .

The semantics of changing variable states is expressed in lambda notation. (λ x •
F )E represents the rewriting of F with with the term E substituted for each
occurrence of x in F . For example (λ x • 2 ∗ x )(y + 10) = 2 ∗ (y + 10) .

In Forth, and with E an expression as defined above (i.e. Forth code that leaves
a value on the parameter stack and caused no other change of state) E to x
represent the assignment of the value left by E to the Forth VALUE x. We can
give its semantics by describing its effect on a general expression F:

E to x ⋄ F = (λ x • F )E

For example:

7



x 10 + to x ⋄ 2 ∗ x + y = by rule for assignment
(λ x .2 ∗ x + y)Jx 10 +K = by semantics of expression
(λ x .2 ∗ x + y)(x + 10) = by lambda evaluation
2 ∗ (x + 10) + y

5 The stack, part 2

We represent the stack mathematically as a tuples, so let us review tuple no-
tation. We write x 7→ y for the tuple consisting of the pair of values x and y ,
x 7→ y 7→ z for the tuple consisting of the triple of values x , y , and z . The tuple
operator is a left associative binary operator, so x 7→ y 7→ z = (x 7→ y) 7→ z .

We can decompose a tuple into its first and second components with the func-
tions L (left) and R (right).

In line with Forth usage in referring to the top and next from top elements of

the stack we define the following functions. top(s) =̂ R(s)
next(s) =̂ R(L(s))

Unlike an assignment to a VALUE, e.g. 3 to X, which changes the whole of
X, stack operations may affect only part of s. So our approach will be to use
“helper functions” to describe the whole new stack, and assign this whole new
state.

For following are examples of these helper functions:

drop(s) =̂ L(s)
twodrop(s) =̂ L2(s)
nip(s) =̂ L2(s) 7→ R(s)
swap(s) =̂ L2(s) 7→ top(s) 7→ next(s)
plus(s) =̂ L2(s) 7→ (next(s) + top(s))
minus(s) =̂ L2(s) 7→ (next(s)− top(s))

and so on

Then to describe the value of expression E after a stack operation OP we have

OP ⋄ E = (λ s.E )op(s)

Where E is a stack expression, such as L(s), or just s. An example in the next
section should help to make this clear.

6 Sequential Composition

Our semantic rule for sequential composition is:

sequential composition S T ⋄ E = S ⋄ T ⋄ E

Note that ⋄ is right associative, so:

S ⋄ T ⋄ E = S ⋄ (T ⋄ E )

8



We can use this rule to show that the effect of NIP on the stack s is equivalent
to that of SWAP DROP.

SWAP DROP ⋄ s = by rule for sequential composition
SWAP ⋄ DROP ⋄ s = by semantics of DROP
SWAP ⋄ (λ s • s)drop(s) = by lambda evaluation
SWAP ⋄ drop(s) = by semantics of SWAP
(λ s • drop(s))swap(s) = by lambda evaluation
drop(swap(s)) = applying swap
drop(L2(s) 7→ top(s) 7→ next(s)) = applying drop
L2(s) 7→ top(s) = semantics of NIP
NIP ⋄ s

It seems strange that we compute the effect of SWAP DROP on the stack by
first computing the effect of DROP and then computing the effect of SWAP, but
intermediate result step drop(swap(s)) shows the helper function for SWAP is
applied before that of DROP in obtaining the result.

7 Guard, choice and backtracking

Let g be a condition test that leaves either a true flag or a false flag on the stack
and has no other side effect. The construct g --> is a guarded no-op. If g leaves
a true flag, the guarded no-op removes the flag and execution continues ahead.
If g leaves a false flag, its effect is to reverse computation. In this case there is no
state after g. Mathematically. we represent this as null , where null represents
nothing. In our mathematical semantics we capture the idea of nothing by using
Eric Hehner’s Bunch Theory [Heh93]; this is a reformulation of set theory in
which the collection and packaging of elements are orthogonal activities. This
gives us access to unpackaged collections. We use ∼S to represent the unpacking
of set S . For example ∼{1, 2} = 1, 2 where 1, 2 is an unpackaged collection.
The comma in 1, 2 is now a mathematical operator, known as bunch union. We
obtain null by unpacking the empty set.

null = ∼{ }
Bunch union has the properties: S ,T = T ,S and S ,null = S , and an
additional property of null is { null } = { }.
Corresponding to the programming guard --> , we have a bunch guard _ in our
mathematical notation, defined by the following equations:

true _ E = E , false _ E = null

so the expression x = 1 _ x has the value 1 if x=1, and is equal to null for
any other value of x .

Admittedly, this is pretty weird till you get used to it, and these concepts are not
widely known. When we asked chatGPT about "nothing" we got the following
response:

9



Our semantic rule for guard is

g --> ⋄ E = g _ E

here g is the mathematical translation of the Forth guard g, which for any
specific g we can represent more fully using our semantic brackets, e.g.

J x 1 = K = x = 1

Guards combined with choice can describe control structures, including back-
tracking.

We introduce a Forth choice operation. S1 [] S2 presents a choice between
executing S1 or S2. This choice has to be bracketed, rather like an IF construct,
as

<CHOICE S1 [] S2 [] ... CHOICE>

The semantic rule for choice is:

S [] T ⋄ E = (S ⋄ E ) , (T ⋄ E )

Here the comma on the RHS is the bunch union operator that we defined above.
the rule does not say which choice is tried first.

For example:

<CHOICE 1 to x [] 2 to x CHOICE> ⋄ x = 1, 2

The combination of choice and guard allows us to express backtracking. Con-
sider:

<CHOICE 1 to x [] 2 to x CHOICE> x 2 = --> ⋄ x

This has the following operational interpretation: a choice is made to assign
either 1 of 2 to x, then a guard checks if x=2, and if not forces backtracking.
Computation returns to the previous choice and continues ahead once more
with the unused choice being selected. this time the guard lets computation
continue ahead, with x=2. This simple example shows how we can use a guard
to retrospectively select from two choices.

The semantic analysis goes as follows:

<CHOICE 1 to x [] 2 to x CHOICE> x 2 = --> ⋄ x = by semantics of
sequential composition

<CHOICE 1 to x [] 2 to x CHOICE> ⋄ x 2 = --> ⋄ x = by semantics of
program guard

10



<CHOICE 1 to x [] 2 to x CHOICE> ⋄ x = 2 _ x = by semantics of choice

1 to x ⋄ x = 2 _ x , 2 to x ⋄ x = 2 _ x = by semantics of assignment

1 = 2 _ 1 , 2 = 2 _ 2 = by property of bunch guard

null , 2 = by property of null

2.

7.1 Conditionals

We can think of IF S ELSE T THEN ⋄ E as a bunch union of two terms,
corresponding to the two branches of the conditional, and with the term corre-
sponding to the branch not taken being equal to null . In our semantics this is
expressed as follows:

IF S ELSE T THEN ⋄ E = (top(s) ̸= 0 _ S ⋄ E ) , (top(s) = 0 _ T ⋄ E )

8 Speculative computation

In our semantics S ⋄ E expresses the value E would take after executing S.
We can use the same semantics to describe a speculative computation which
executes S, evaluates and saves the result of E, then reverses, restoring any
changes made in the forward execution of S. Thus we obtain, in our program,
the value E would have after S but without incurring any of the side effects
produced by executing S.

As with choice we needs brackets to express this:

<RUN S E RUN>

is a programming structure which adds to the stack the value E produces if
executed after S, but without incurring the side effects that execution of S may
produce. Its semantics is:

<RUN S E RUN> ⋄ s = s 7→ (S ⋄ E )

If S contains choices there may be a plurality of values that E could take, and
we can collect. If these are integer values the construct to do this is:

INT { <RUN S E RUN> }

In this case S ⋄ E will be a bunch, and we have the following semantic rule:

INT { <RUN S E RUN> } ⋄ s = s 7→ {S ⋄ E}

8.1 Example, Pythagorean triples, with a new concept of
function application

We need to introduce some additional aspects of the RVM sets package.

11



The mathematical notation m..n where n ≥ m, represents the set of numbers
{m, m +1, ... n} We provide this as a postfix operator in RVM Forth, used as,
e.g.

1 4 .. .SET <cr> {1,2,3,4} ok

We have CHOICE from a set, used as in the following example. CHOICE makes
a provisional choice fom a set that may be revised by backtracking.

INT { <RUN 1 4 .. CHOICE 10 * RUN> } .SET <cr> {10,20,30,40} ok

We now consider a program to produce a set of Pythagorean triples {a, b, c}
where a2 + b2 = c2. In the code we choose values for a and b, calculate a2+b2

and then apply a perfect square root function PERF. This function illustrates
the "new concept of function application" we mentioned above. The idea of n
PERF is that it returns the perfect square root of n, if that exists, or otherwise
triggers backtracking. In the following examples we see that if backtracking
continues back to the user console, we get the prompt ko rather than ok.

0 PERF .<cr> 0 ok
1 PERF .<cr> 1 ok
2 PERF .<cr> ko
3 PERF .<cr> ko
4 PERF .<cr> 4 ok

This may seem a programming trick - we have just included the guard that
triggers backtracking within the code for PERF. However, we have mathematical
reason to claim that this is indeed a new idea of function application. Working
with integers and using

√
n to represent the perfect integer square root of n,

it is clear for example that no integer satisfies
√
2, and we capture this in our

theory by saying
√
2 = null . We also recall that from the semantics of guards,

it is a null result that triggers backtracking. The new concept of function
application is that a function application might represent “nothing”, which we
cannot express without the null of bunch theory. To express the stack effect
of PERF we need to specify that if the stack input parameter n has an integer
square root m than that will be the stack output parameter, otherwise there
will be no stack after state. To do this we use null , as follows.

PERF ( n -- if ∃m •m2 = n then m else null end )

Now for the program to produce set of Pythagorean triples with perpendicular
sides less than n. The set we are producing here is a set of sets of numbers, and
its mathematical type is P(N). This is represented in our Forth sets package, in
postfix, by the signature INT POW.

: TRIPLES ( n -- s, s is a set of Pythagorean triples with adjacent sides ≤ n )
(: n :)
INT POW {

<RUN
1 n .. CHOICE to A
A n .. CHOICE to B
A B COPRIME -->

12



A DUP * B DUP * + PERF to C
INT { A , B , C , }

RUN>
} ;

In this code, A, B and C are global VALUEs. The COPRIME guard prevents
similar triangles being included, for example {3,4,5} and {6,8,10}.

Here is an example run

100 TRIPLES .SET <cr> {{3,4,5},{5,12,13},{7,24,25},{8,15,17},{9,40,41},
{11,60,61},{12,35,37},{13,84,85},{16,63,65},{20,21,29},{20,99,101},{28,45,53},
{33,56,65},{36,77,85},{39,80,89},{48,55,73},{60,91,109},{65,72,97}}ok

9 Preconditions

In general, in the field of formal semantics, operations are taken to have specific
conditions which render them safe for use. These “preconditions” are there to
protect us attempting to access the 20th element of a 10 element array, taking
the square root of a negative number, dividing by zero etc. Unlike a guard, a
pre-condition does not control whether an operation can take place, rather it
is part of the instructions of using the operation. In Forth the situation with
respect to pre-conditions is complex, because the programmer takes responsi-
bility for an operation being meaningful in a particular context. For example,
in 32 bit arithmetic, 7FFF 1 + violates the a precondition of + if we are us-
ing signed arithmetic, but not for unsigned arithmetic. However, one universal
precondition of + is that it requires at least two elements to be on the stack.

We use the symbol ⊥ to express the effect of violating a precondition. The idea
is that ⊥ represents absolute unpredictability - more unpredictable than just
allowing any possible result - there might be no result because the computation
does not terminate, or the machine might blow up!

We use P | S to represent P as the pre-condition for S. Our rule for preconditions
is:

P | S ⋄ E = (P _ S ⋄ E ) , (¬ P _ ⊥)

We interpret ⊥ as a maximally non-deterministic bunch. We can think of the
unpackaged collections of bunch theory as representing nondeterminism or un-
certainty, e.g. the bunch 1,2 representing a value that might be 1 or might be
2. In this knowledge based order the value ⊥ represents a value about which
nothing can be known, not even whether it exists, and null can be taken as the
object about which too much is known, to the point of contradicting its possible
existence. It is at the other end of the scale from ⊥.

13



10 Loops

We consider the treatment of a WHILE loop

BEGIN g WHILE S REPEAT

Here g is some for code which leaves a flag in the stack and otherwise leaves the
program state unchanged.

Following the B-Method (and adapting it to Forth) the programmer is required
to provide formal comments which identify a an invariant expression I and a
variant expression V for the loop.

The invariant expression must have the property

S ⋄ E = E

When the loop terminates the invariant expression will still have the same value,
but the condition reported by g is false. This allows us to draw a conclusion
about the effect of the loop.

The variant expression serves the purpose of ensuring that the loop does ter-
minate. It has to be an expression that is greater than 0 and decreased by S.
Obviously this cannot continue for ever, so the existence of such an expression
implies that the loop must terminate. Its formal property is:

V > 0 ∧ S ⋄ V < V

We illustrate this method using Euclid’s algorithm for the calculation of the
greatest common divisor of two numbers.

: GCD ( a b – c, a>0 ∧ b>0 | c = gcd(a,b) )
BEGIN (
INVARIANT gcd(top(s),next(s))
VARIANT top(s) + next(s) )

2DUP ̸=
WHILE

2DUP > IF SWAP THEN
OVER -

REPEAT DROP ;

First note that we have a pre-condition that requires a>0 and b>0. Since
a, b are names for the top two stack elements, this ensures that our variant
property V > 0 holds. Depending on the branch taken by the IF, we have S ♢
V = top(s) or S ⋄ V = next(s), and since V = top(s) + next(s) in both
cases we have S ⋄ V < V . So the variant properties are satisfied and we can
be sure the loop terminates.

That the loop invariant holds follows from the mathematical property y > x ⇒
gcd(x , y) = gcd(x , y − x ). When the loop terminates the loop condition tells
us that next(s) = top(s) and the loop invariant tells us gcd(top(s),next(s) =
gcd(a, b) Thus we have two copies of the required result on the stack and just
have to drop one of them to complete the computation.

14



11 Conclusions

When transporting prospective value semantics from our usual B like environ-
ment to Forth, the extended postfix used in Forth forces us to distinguish more
clearly between programming and mathematical notations. Forth has a finer
grained semantics, where an expression is defined as as a sequence of opera-
tions, rather than in the mathematical notation of an expression sub-language.
This additional detail can be captured in two ways by the semantics we in-
vestigate here. Either we can translate postfix expressions to infix in order to
describe their effect (and this might require us to write our Forth in a particular
way, and might be particularly useful in analysing the output of a compiler for
our backtracking language bGSL [DFM+23]), or we can process them at the
level of the individual Forth operations of which they are comprised. In both
cases we can include the effect of stack manipulations in our analysis.

The mathematical expression of nothing as the constant null plays a key role in
our semantics. We also illustrate a new form of function application, in which a
mathematical function application can yield null to indicate that the described
object does not exist, with the matching computational interpretation being
that such an application triggers backtracking.

We have shown how prospective value semantics provides a description of stack
based operations, but a full description of Forth semantics, covering interpre-
tation and compilation, memory access, and the definition of defining words, is
beyond the theory presented here. Nevertheless we can extend this investigation
to provide a semantics that is usable) for developing Forth applications, and we
hope to report on the best way to do this in our future work.

References

[Abr96] J-R Abrial. The B Book. Cambridge University Press, 1996.

[DFM+23] S E Dunne, J F Ferreira, A Mendes, C Ritchie, W J Stoddart, and
F Zeyda. bGSL: An imperative language for specification and re-
finement of backtracking programs. Journal of Logical and Algebraic
Methods in Programming, 130, 2023.

[Heh93] E C R Hehner. A Practical Theory of Programming. Springer
Verlag, 1993. 2023 edition available on-line.

[RS10] C Ritchie and W J Stoddart. A compiler which creates type tagged
parse trees and executes them as Forth programs. In 26th EuroForth
Conference Proceedings, 2010.

[SZL10] W J Stoddart, F Zeyda, and A R Lynas. A virtual machine
for supporting reversible probabilistic guarded command languages.
ENTCS, 253, 2010.

15



On Solving Hexadoku and Debugging Recursive Programs with
Message Digests of the Data Stack

François Laagel∗
Institute of Electrical and Electronics Engineers

Abstract
Debugging Forth code is difficult, especially when
dealing with recursive code. One has to main-
tain invariants and ensure that the data stack is
not unduly modified. This document presents a
new technique called stack digesting which helps the
programmer quickly converge on coding errors. It
is based on a cryptographic message digest algo-
rithm that is completely specified in [1]. Although
the NIST deprecated this message digest genera-
tion mechanism in 2011, it serves our debugging
purposes well enough. The idea is based on the
insertion of strategically placed probing points in
the code being debugged so as to make sure that
invariants are actually preserved.

1 Problem Statement
Recursion often is the most natural way to express
an algorithm when dealing with intrinsically com-
binatorial problems (see [2]). Elektor Magazine is a
publication that caters to electronics enthusiasts of
all kinds. Every two months they publish an issue
which includes a puzzle called Hexadoku. The rules
are similar to the traditional Sudoku puzzle. How-
ever Hexadoku extends the regular 3 by 3 nature of
Sudoku to a 4 by 4 use case. As a result we end
up with a 16 by 16 grid instead of the traditional
9 by 9. Each spot in the grid can be any digit ex-
pressed in hexadecimal. The usual Sudoku integrity
constraints apply; they are simply extended:

• digit uniqueness in a 4 by 4 sub-quadrant.

• digit uniqueness in an horizontal row.

• digit uniqueness in a vertical column.

This kind of puzzle begs for an automated prob-
lem solver and one way to approach it is to think
of the problem in a three dimensional manner. The
grid itself is implemented as a two dimension array
of cells. Each cell of the array is interpreted either
as a known value (a power of two corresponding to
a resolved value) or a bitmask corresponding to the

∗f.laagel@ieee.org

sum of viable alternatives for that spot. This is
similar to the notion of “sum over all possibilities”,
a central tenet of the path integral formulation of
quantum theory (see [3]).

The automated solver I implemented works not
by looking for a solution but by converging on one
by systematic elimination of unviable alternatives.
It does so by alternating between phases of infer-
ence and speculation until eventually all spots are
resolved (have a cell value that is a power of two).

• infer goes systematically over the whole grid
and updates bitmasks based on resolved spots
values, taking into account the constraints de-
fined by the rules of the puzzle. In effect, this
greatly reduces the size of the search space.

• speculate selects a currently unresolved spot
location and recursively explores the space of
open possibilities for that spot. It uses feed-
back supplied by infer to detect constraints
violations and backtrack when appropriate. An
application specific transaction stack is used to
record all inferred changes to the grid and to
undo them when constraints are detected as
being violated. A transaction boundary occurs
(and is flagged as such) whenever a speculative
decision is made. Basically a transaction in-
cludes all inferred changes to the grid since the
latest speculation.

In essence it works as a greedy minimalization
algorithm aiming at reducing the number of unre-
solved spots values to zero. Its kernel is as outlined
in figure 1. Some implementation details need to be
elaborated on at this point.

• rl+/rl- increment and decrement a global
variable that holds the current recursion level.
The maximum recursion level also is main-
tained.

• get-unresolved selects the first unresolved
grid cell for which the number of set bits is
minimal but stricly greater than one. This is
where the greedy aspect of the algorithm origi-
nates from since we always attack the problem
from an angle where the number of options is
the smallest at any given point in time.

16



Laagel Stack Digests

Figure 1: The Core Speculation Engine

• tstk-push/tstk-pop take care of handling the
transaction stack. speculate goes over the al-
ternatives for one selected spot only. Which
explains the 16 0 DO ... LOOP construct.
Whenever a speculative decision is made, that
change is logged to the the transaction stack
under a boundary marker. Changes later in-
ferred will also be stacked up so that that they
can be undone, should the current speculative
decision prove not to be conducive to a work-
able solution.

• |visual updates the on-screen representation
of the current solution state. It is stack neutral
but uses the next of stack as the new grid cell
value for the spot pointed to by the top of stack.

• +ul/-ul select and deselect the underline font
style in order to display the speculation spots
in a way that stands out.

• infer will deduce all the consequences of a
speculative decision until either a constraint vi-
olation is detected or the number of unresolved
spots can no longer be decreased (a viable sit-
uation).

During the execution of the loop in speculate,
it is essential that the top two values of the data
stack be preserved. They are the cell address of the
unresolved spot we are working on and that spot’s
original superposition of possible states.

I quickly devised a working implementation that
ultimately converged on a solution matching the
constraints defined by the rules of the game. Yet, it
was not entirely satisfying since zeroes–a zero grid
cell value indicates an impossible condition for the

Figure 2: Failure at Recursion Level 16

associated spot–started surfacing in the grid and I
thought that this situation was not detected early
enough, thereby negatively impacting the overall
performance of the solver.

So I worked on early detection and avoidance of
zero grid cell values. Associated changes to the
source code were mostly in the infer code. As it
turned out, this is where things started going side-
ways. I had introduced a bug somewhere in the 650
lines or so of code of the solver.

In any sufficiently complex code, these things are
bound to happen and I think it is no secret that the
classic ways of handling such a conundrum are:

• systematic verification of assumptions. Pre-
conditions can easily be verified by extra tests
and references to ABORT". Working code should
already have this defense mechanism built-in
but if it does not, this is definitely the first
step to be taken toward fixing a bug.

• an efficient logging mechanism. This is price-
less and also should be an integral part of the
original code. Logging should be conditional
based on some ad’hoc debug vector flag.

• last resort measures such as improved code
documentation and/or third party code re-
views. These are either time consuming, ex-
pensive or both– definitely not practical ways
to address the problem at hand.

Post-condition verification is somehow more elu-
sive and the object of this paper is precisely to
describe one, with respect to data stack integrity
preservation.

After having implemented a reasonable logging
mechanism, I realized the code failed to preserve
the key invariant speculate relies on. It did so at
recursion level 16, as illustrated in figure 2. In order
to fix this bug rapidly, I introduced the concept of
stack digests.

17



Laagel Stack Digests

Figure 3: infer code is the culprit

2 Proposed Solution and
Proof of Concept

The original concept was proposed on the Forth2020
Facebook group and was well received by some of its
most respected contributors. [4] proposed a stack
checking mechanism that only covers stack depth
changes. Later on, [5] developed a complete testing
framework for ANS94 compliance. To this day, it
remains a reference tool for most testers.

Stack digesting covers both depth and actual
stack contents but it does not try to perform stack
effect characterization at all. It is a debugging aid
only meant to be used as an integrity checking tool.

Basically, a stack digest is just what its name sug-
gests: a cryptographic message digest of the state of
the data stack (or a subset of it) as it is when sam-
pled or verified–in this paper support for automated
verification is not addressed; visual inspection of the
logging output is required for this concept to be of
any use. The API is restricted to a single word:

SDIGEST ( i*x u – i*x ) Prints a crypto-
graphic digest of the contents of the data
stack, omitting the topmost u cells. The
algorithm used for producing this digest is
implementation defined.

A quick survey of commonly off the shelf available
hashing algorithms revealed those most generally
agreed upon were crytographic signatures. Among
them, it turned out that the easiest to implement
and the best documented one was SHA1. [6] pro-
vides a detailed pseudo-code description for SHA1.

Once equipped with this new technology, we are
now in a position to instrument the application code
and to quickly converge on the problem’s root cause
(figure 3).

The inference code is about 200 lines long but
its primary routine is reduceall (see figure 4).
Through additional code instrumentation, it was
determined that an extraneous 2DROP reference in
reduce4x4 was responsible for this unwarranted
data stack corruption.

Figure 4: The reduceall word

3 Status and Further Work
An actual implementation for SDIGEST and the un-
derlying SHA1 message digest generation is avail-
able at [7]. It has been validated against well known
test vectors on 64 and 32 bit cell targets, regardless
of their endianness. This framework has been suc-
cessfully used to fix a nasty bug in the inference
code of my unpublished proprietary Hexadoku au-
tomated solver.

The concept could be further extended by having
a dedicated digest stack and manually coded verifi-
cation checkpoints. Each entry on the digest stack
would be the output of the SHA1 message digest
code (5 cells). This would most likely require some
extension of the API and is left as an exercise to
the interested reader.

4 Conclusion
This article was written in the hope that stack di-
gesting could become a useful tool in the Forth pro-
grammer’s toolbox. It provides a convenient syn-
thetic overview of the state of the data stack, which
can be very deep indeed.

Recursion is a powerful technique which allows
the developer to formulate solutions to complex
problems in very simple terms. However, its use is
generally frowned upon in the context of embedded
systems software development because stack uti-
lization is basically unpredictable, especially when
dealing with heavily data driven algorithms.

References
[1] D. Eastlake 3rd, P. Jones

RFC 3174: US Secure Hash Algorithm 1
(SHA1)

The Internet Society, September 2001.

18



Laagel Stack Digests

https://www.rfc-editor.org/rfc/rfc3174
[2] Donald L. Kreher, Douglas R. Stinson

COMBINATORIAL ALGORITHMS Genera-
tion, Enumeration and Search

Chapter 4, Backtracking Algorithms
CRC Press, 2019.

[3] Markus Pössel
The sum over all possibilities: The path inte-

gral formulation of quantum theory
Einstein Online, 2006.
https://www.einstein-online.info/en/

spotlight/path integrals/
[4] Ulrich Hoffmann

Stack checking - A debugging aid
euroFORML Conference Proceedings, 1991.
http://www.euroforth.org/

ef91/hoffmann.pdf
[5] John Hayes S1I

Core ANS94 Test Harness
Online contents, November 27, 1995.
http://www.forth200x.org/

tests/ttester.fs
[6] National Security Agency (original designers)

SHA-1
Wikipedia.org, various contributors.
https://en.wikipedia.org/wiki/SHA-1

[7] François Laagel
SHA-1 sample code for GNU Forth 0.7.3 or

SwiftForth 3.7.9
Online contents, August 15, 2023.
https://github.com/forth2020/

frenchie68/blob/main/
sdigest-generic.4th

19



EuroForth 2023

Accessing an Oracle database using Forth

Abstract

It is occasionally necessary to access an Oracle database from a Forth applications. 
This paper illustrates the techniques we have used.

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Email njn@micross.co.uk

1. Introduction

Within our own automation applications, we use the MySQL database. In previous 
papers, I have described the method that we use for accessing a MySQL database 
from Forth, which we refer to as "Forth Query Language" or FQL.

Despite the many benefits of MySQL, there are some of our customers who insist on 
using an Oracle database for their office systems.

It is therefore necessary for us sometimes to access an Oracle database, for the 
exchange of data about such things as category information and machine efficiency.

The technique required for Oracle is quite different from that required for MySQL.

20



2. A brief comparison of Oracle and MySQL

Oracle MySQL

Cost Very expensive Free

License Proprietary GPL

Paid support Yes Available

Free support None Strong

Performance 4.3/5 4.4/5

Indexing Full text, hashed, binary Full text, hashed

Learning curve Very steep Modest

Almost everything else Same Same

3. The available Oracle APIs

For many years, there were only two possible methods for accessing an Oracle 
database - the "Oracle Call Interface", and ODBC.

For anyone accustomed to the "C" API for MySQL, the  Oracle Call Interface feels 
extremely complex and very hard to master.

ODBC adds an additional layer to the interface, and in the past we have experienced 
problems with versioning compatibilities of libraries and drivers.

Recently, a new API has been introduced - "Oracle Database Programming Interface 
for C" (ODPI-C). This is essentially a simplified wrapper that sits on top of the  
Oracle Call Interface. It is still more complex that the MySQL interface, but much 
more manageable than before. This is therefore the method we have chosen.

4. Typical tasks that are required

The actual database tables are not normally exposed on an Oracle system. To retrieve 
data from Oracle, one would normally use a SELECT statement, applied to a 
specially constructed "view". To insert data into Oracle, typically a prepared 
statement is called. The prepared statement would carefully constrain the provided 
parameters, in order to stop anything nasty from being inserted.

21



5. Declaring the necessary library function

Given the restricted types of operations normally required, only a small subset of the 
available ODPI-C functions needs to be declared in Forth, in just four different 
classes. This is still more than the number of functions needed for a comprehensive 
MySQL interface, but not too onerous.

For example, in the "statement" class, just six functions are needed.

It will be seen that there are a large number of bespoke data types, and in order to 
ensure the accuracy of the external declarations, I always define these explicitly in 
the usual way, for example:

\ DPISTMT

extern: int dpiStmt_execute( dpiStmt * stmt, dpiExecMode mode, uint32_t *            
                             numQueryColumns );
extern: int dpiStmt_getRowCount( dpiStmt * stmt, uint64_t * count );
extern: int dpiStmt_fetch( dpiStmt * stmt, int * found, uint32_t * bufferRowIndex );
extern: int dpiStmt_defineValue( dpiStmt * stmt, uint32_t pos, 
                                 piOracleTypeNum oracleTypeNum, 
                                 dpiNativeTypeNum nativeTypeNum,

                           uint32_t size, int sizeIsBytes, 
                                 dpiObjectType * objType );
extern: int dpiStmt_getQueryValue( dpiStmt * stmt, uint32_t pos, 
                                   dpiNativeTypeNum * nativeTypeNum, 
                                   dpiData * *data );
extern: int dpiStmt_release( dpiStmt * stmt );

also types definitions
: dpiContext void ;
: dpiCommonCreateParams void ;
: dpiContextCreateParams void ;
: dpiConn int ;
: dpiErrorInfo int ;
...
previous definitions

22



A small number of structures also need to be replicated in Forth, and these need to be 
carefully checked for offset values against the equivalent "C" structures, so as to 
avoid any possible alignment problems. A typical structure is:

Note that on a 64 bit system, an INT is still 32 bits!

Finally a selection of constants is required, and in this case they can be copied 
directly from the "C" header file and into Forth, for example:

STRUCT dpiErrorInfo
  INT dei.code
  INT dei.offset16
  POINTER dei.message
  INT dei.messageLength
  POINTER dei.encoding
  POINTER dei.fnName
  POINTER dei.action
  POINTER dei.sqlState
  INT dei.isRecoverable
  INT dei.isWarning
  INT dei.offset
END-STRUCT

\ Native type numbers

#define DPI_NATIVE_TYPE_INT64                       3000
#define DPI_NATIVE_TYPE_UINT64                      3001
#define DPI_NATIVE_TYPE_FLOAT                       3002
#define DPI_NATIVE_TYPE_DOUBLE                      3003
#define DPI_NATIVE_TYPE_BYTES                       3004
#define DPI_NATIVE_TYPE_TIMESTAMP                   3005
...

23



6. A Forth wrapper for an Oracle query

We first made some design decisions in order to simplify the wrapper.

a) Our interface does not need to be thread safe. Only one thread will be used to 
access the Oracle system. Therefore all data such as handles of connections or 
statements can he held in Forth VALUEs. If a thread safe interface were required, 
these could be moved into Forth user variables.

b) Because we query the Oracle database relatively infrequently (e.g. once every 
10s), and because individual connections do not appear to be very costly in terms of 
processing time, we opted to create a new connection for each query. This greatly 
simplifies the error handling.

c) The Oracle server PC and its connections are not under our control. The server 
may occasionally be down for maintenance. If that happens, it is important that no 
data is lost. We therefore maintain a queue of data to be sent to Oracle, and offer the 
queries one by one with automatic retry, including backoff.

: ORACLE-QUERY { pzquery -- f } \ True if query prepared and executed
  FALSE \ Assume failed
  ORACLE-INITCONTEXT IF \ Initialise Oracle context
    ORACLE-RELEASE \ Release any previous statement
    ORACLE-DISCONNECT \ New connection for each query
    ORACLE-CONNECT IF \ Connected OK
      pzquery ORACLE-PREPARE IF \ Statement prepared OK
        ORACLE-EXECUTE IF \ Statement executed OK

  ORACLEMINRETRYTIME -> ORACLERETRYTIME \ Set error retry time to minimum
          DROP TRUE \ Success
        THEN
      THEN
    THEN
  THEN
  DUP IF \ Success
    ORACLEMINRETRYTIME -> ORACLERETRYTIME \ Set error retry time to minimum
  ELSE \ Failure
    ORACLECREATEDCONTEXT dpiContext_destroy DROP \ Destroy context
    0 -> ORACLECONTEXT \ Clear context
    ORACLE-RETRYWAIT \ Wait before retry
  THEN
;

24



The first step is to check for a connection "context", re-creating one if necessary. 
Then we ensure that everything is tidy after any previous query. The connection is 
then established. 

Unlike in MySQL, query statements in Oracle have to be explicitly prepared first 
before being submitted for execution.

If all the above steps are successful, we can exit with a true flag, and as we go, reset 
the backoff time setting.

In the event of failure, we destroy the connection context (if the failure was due to 
some change in the configuration of the Oracle server, then a new context will be 
required). We then leave a gradually increasing amount of time before trying again.

We can look at one of those steps in slightly more detail, for example:

The connection parameters are normally regarded as valuable information, so need to 
be kept somewhere secure.

Note the recovery of the address of the full text of an error, from the error information
structure as shown earlier. This is then added to our own log file, so we can see in 
detail about anything that goes wrong.

: ORACLE-ERROR ( ---zperror ) \ Returns an Oracle error message
  ORACLECONTEXT ORACLEERRORINFO dpiContext_getError \ Populate error info struct
  ORACLEERRORINFO dei.message @ \ Return error message
;

: ORACLE-CONNECT ( ---f ) \ True if Oracle connection established
  ORACLECONTEXT ORACLE-USER ORACLE-PASSWORD ORACLE-DATABASE NULL NULL
  ADDR ORACLECONNECTION dpiConn_create DPI_FAILURE = IF
    Z" Failed to connect to Oracle, " ORACLE-ERROR Z+ ERROR
    FALSE
  ELSE
    TRUE
  THEN
;

25



7. A typical SQL INSERT query

Because the insert queries are normally quite short and straightforward, we have not 
attempted to replicate the FQL system for constructing queries. Instead, the query is 
simply put together using the zero-terminated string concatenator Z+, which uses a 
scratchpad formed by dividing PAD into three sections. This is fine when the query 
can be guaranteed to be shorter than /PAD 3 / but would be no use in the MySQL 
general case, where queries can be very long.

Note that the SQL INSERT statement is not used directly, instead a statement is 
prepared by the Oracle database supervisor, which we are able to use through an SQL
CALL statement.

8. A typical SQL SELECT query

Here, the SQL SELECT statement is used directly, but is applied to a view rather than
to a table directly. The view is declared by the Oracle database supervisor and 
contains the subset of the table columns that we are permitted to see.

Having run the query, we now need to analyse the results. In Oracle, results are 
provided in a completely different way from MySQL.

: EXAMPLE-EXPORTDATA ( ---f ) \ Send data to Oracle
  Z" CALL EXPORT_MICROSS(" \ EXPORT_MICROSS cust, …, system
  ZQ Z+ EXPORTCUSID Z+ ZQ Z+ ZCOMMA Z+ \ Customer ID
  ...
  EXPORTAREA ZFORMAT Z+ \ Sorting area
  Z" )" Z+
  ORACLE-QUERY
;

: IMPORTPRODUCTS { | pcusid[ LENCUSID 1+ ] pcatid[ LENCATID 1+ ] -- } 
\ Import products from Oracle
  FALSE \ Assume fail
  Z" SELECT CUSTOMERID, PRODUCTID "
  Z" FROM IMPORTPRODUCTS" Z+
  ORACLE-QUERY IF
    BEGIN
      ORACLE-FETCH
    WHILE
      1 ORACLE-NUMBER ZFORMAT ZCOUNT pcusid[ LENCUSID ZPUT \ Get customer ID
      2 ORACLE-STRING                pcatid[ LENCATID ZPUT \ Get category ID
      ...
    REPEAT
    DROP TRUE \ Success
  THEN
;

26



Let us first look at our wrapper word that fetches one row of results.

It is worth looking at this carefully, because it illustrates a frequent source of bugs 
when using Forth. 

Like all "C" functions, dpiStmt_fetch can return only one parameter, and this is 
always a code to indicate if the function worked or not (e.g. DPI_SUCCESS). This 
function however also needs to tells us if it actually returned a row of data or not. We 
therefore need to provide as a parameter an address of where to put that information. 
This information is needed only within the Forth word, so we use a local value 
"pfound" and pass ADDR pfound to our "C" function.

Assuming that dpiStmt_fetch executes OK, then it will have written either true or 
false into "pfound".

But here is where the problem lies. We are in 64 bit Forth, therefore "pfound" is a 64 
bit value. But  dpiStmt_fetch writes a boolean value, which in 64 bit Linux is 
represented by an INT, which is a 32 bit value. Forth local values are not initialised, 
so at the start of the function "pfound" is random. After the "C" function returns, 
"pfound" still returns nonsense.

It is essential to remember (but very easy to forget) that local values like these must 
be explicitly initialised in the code "0 -> pfound".

This is such a common source of errors, that I would propose that the Forth standard 
should be changed to require that local values are automatically zeroed.

: ORACLE-FETCH { | pfound -- f } \ True if row of query result fetched
  0 -> pfound
  ORACLESTATEMENT ADDR pfound ADDR ORACLEINDEX dpiStmt_fetch
  DPI_SUCCESS = pfound 0<> AND
;

27



9. Analysing the Oracle result set

In MySQL, there is only one data type in a result set. The set consists solely of an 
array of pointers to zero terminated strings.

In Oracle, it is much more complicated because each column data type returns a 
different structure, and the result set consists of pointers to structures.

In the example above, we recover a string result. This is a three stage process. 

First we have to get the data type, and a pointer to the data. For simplicity, we have 
not included any error checking here - we assume we have read the customer's 
specification of the view correctly.

Then, from the data pointer, we extract a pointer to the string structure.

Finally, from the string structure, we extract the base address and length of the string. 
Note that though when tested we find that the string is in fact zero terminated, the 
documentation does not actually say so, therefore, we need to assume that it isn't.

10. Conclusion and future work

This set of wrapper functions make it reasonably easy to make simple queries to an 
Oracle database. If more complex queries are needed, it would be possible to extend 
the FQL system to accommodate Orace as well as MySQL. A further development 
would be to make the word set thread safe.

: ORACLE-STRING { pcol | pbytes -- p$ plen } \ Get string value at column
  ORACLESTATEMENT pcol ADDR ORACLETYPE ADDR ORACLEPDATA dpiStmt_getQueryValue DROP
  ORACLEPDATA dpiData_getBytes -> pbytes
  pbytes dpiBytes.ptr @ pbytes dpiBytes.length I@
;

28



EuroForth 2023

A proposed standard Forth style enumeration word set, using recognisers

Abstract

The lack of an ENUM word in the Forth standard has been previously noted.
The paper describes a solution that is fully faithful to Forth styling.
The implementation uses recognisers. Some potentially useful extensions will be 
discussed.

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Email njn@micross.co.uk

1. Introduction

An enumeration is a data type which consists of a set of named members. Each 
member acts like a constant integer. A variable or value of the enumeration type can 
hold only integers within the named set. Enumerations are very useful, firstly for the 
elimination of "magic" numbers in code, and secondly for alerting any attempt to 
store an invalid number into an enumerated variable.

ANSI Forth does not include an enumeration word set.

The VFX implementation of Forth includes two enumeration words, but these are 
intended primarily for the import of "C" header files.

29



2. The existing VFX implementation

The two VFX enumeration words have the following form:

ENUM <enumname> {
  <membername>[=<integer>], [// <comment>]
  ...
};

For example:

There is also a similar type without an enumeration name:

ENUM{
  <membername>[=<integer>], [// <comment>]
  ...
};

These enable code to be copied directly from a "C" header file and pasted into Forth 
code. They work reasonably well, though a certain amount of adjustment if often 
required. For example, in the original header file, the above example looked like:

ENUM GSignalMatchType {
  G_SIGNAL_MATCH_ID        = 1, // The signal id must be equal
  G_SIGNAL_MATCH_DETAIL    = 2, // The signal detail must be equal
  ...
  G_SIGNAL_MATCH_UNBLOCKED = 32, // Only unblocked signals may be matched
                };

/**
 * GSignalMatchType:
 * @G_SIGNAL_MATCH_ID: The signal id must be equal.
 * @G_SIGNAL_MATCH_DETAIL: The signal detail must be equal.
 ...
 * @G_SIGNAL_MATCH_UNBLOCKED: Only unblocked signals may be matched.
 
...

typedef enum
{
  G_SIGNAL_MATCH_ID    = 1 << 0,
  G_SIGNAL_MATCH_DETAIL    = 1 << 1,
  ...
  G_SIGNAL_MATCH_UNBLOCKED = 1 << 5
} GsignalMatchType;

30



But, even after adjustment, this does not look like Forth!
a) comma separators
b) equals sign assignment
c) right-to-left assignment
d) "C" style comments

This is not a problem when they are used as intended, for imported code.
But when creating one own enumerations, this is a distraction. We use enumerations 
extensively, and there are approximately 60 different types in the code of our main 
application.

When an enumeration name is supplied, this cannot be used in subsequent code. The 
name is placed in a dedicated dictionary. Its only purpose is so that all the 
enumerations can be listed, using the word .NAMEDENUMS.

3. A proposed enumeration in the Forth style

We aimed for a solution that is as concise and easy to type as possible:

ENUM<< <enumname>
   [<Forth expression>] <membername> [\ <comment>]
   ...
>>

The previous example then becomes:

Now we look more Forth like:

a) white space separators
b) no equals sign
c) left-to-right assignment
d) Forth style comments
e) any Forth expression may be used, thus the original intention can be made clear

ENUM<< GSignalMatchType
  1 0 LSHIFT G_SIGNAL_MATCH_ID       \ The signal id must be equal
  1 1 LSHIFT G_SIGNAL_MATCH_DETAIL     \ The signal detail must be equal
  ...
  1 5 LSHIFT G_SIGNAL_MATCH_UNBLOCKED  \ Only unblocked signals may be matched
 >>

31



4. Implementation idea

It will be seen in the example that all Forth words between enumerator name and the 
terminator >> need to function exactly as normal, in interpretation mode. Only the 
new member names need to be dealt with, by creating new words that act like 
constants.

In effect, we need to "recognise", and process, only the new words.

This led to the idea of creating a new recogniser, which acts in effect as an 
"unrecogniser".

5. Understanding recognisers

It is not clear how recognisers suddenly turned into recognizers, but it seems we have
to put up with that.

The first description of recognisers at a Euroforth conference was by Bernd Paysan in
2012. They became the standard technique for text interpretation in VFX Forth as 
from version 5.1

The first thing to notice is which recognizers are normally at work. In our case, using 
the SSE64 floating point package, these are:

The text interpreter offers a parsed word to each of the recognisers in turn, until one 
of them accepts it. Any word that is not accepted by any of the recognisers throws an 
undefined word error.

So, in the list above, a word is offered first to REC-FIND which deals with 
predefined Forth words, then REC-VOCDOT which deals with words in a specified 
vocabulary, then REC-NUM which deals with single and double length integers, and 
finally REC-SSEFLOATS which deals with 64 bit floating point numbers.

Each recognisers has a set of three possible actions, one for interpretation, one for 
compilation and one for postponement.

The key feature of recognisers is that they can be dynamically attached and detached 
during compilation.

.recognizers REC-FIND  REC-VOCDOT  REC-NUM  REC-SSEFLOATS   ok

32



6. Starting and ending enumeration

What is needed therefore, is for ENUM<< and >> to attach and detach respectively, a
recogniser that deals with the enumeration members.

Looking at the above line by line:

a) We can clearly only define an enumeration while interpreting
b) In VFX, recognisers are handled using a standard stack mechanism
c) Our enumeration recogniser goes at the bottom of the stack, to be dealt with 

last
d) The value of enumeration members starts by default at zero
e) All enumerations should be named
f) We make provision for a list of the enumeration members
g) We make provision for special compiling and interpreting actions when using a

child of ENUM<< i.e. an enumeration name.

7. The enumeration recogniser

Each recogniser receives the parsed word as a caddr,u pair. It returns the handle of a 
recogniser structure, preceded by any necessary parameters. This is an opportunity to 
check for the validity of the optional Forth expression (if any). The only restriction on
this expression is that it must result in either zero or one item on the number stack.

: ENUM<< ( <name>--- ) \ Start an enumeration
  ?EXEC  \ Only when interpreting
  ['] REC-ENUM FORTH-RECOGNIZER +STACK-BOT \ Add enumeration to the recogniser stack
  0 -> ENUMVAL  \ Initialise enumeration value
  PARSE-NAME ($CREATE)  \ Name of the enumeration
  HERE -> ENUMLIST  \ Set root address of list
  0 ,  \ Initialise list
  ['] ENUMCOMP, SET-COMPILER  \ When an enumeration is being compiled
  INTERP> ENUMINTERP  \ Interpret action
;

: >> ( --- ) \ End an enumeration
  ['] REC-ENUM FORTH-RECOGNIZER -STACK  \ Remove from the recogniser stack
;

: REC-ENUM ( ??,caddr,u---??,caddr,u,r:??? ) \ The enumeration recogniser
  DEPTH 2 3 WITHIN IF \ Zero or one new enumeration values defined
    R:ENUM
  ELSE
    CR ." Error defining new enumeration value"
    R:FAIL
  THEN
;

33



8. The enumeration recogniser action

Only one action is required in this case, for interpret.

Looking at the above line by line:

a) If an optional Forth expression exists, and it results in one item on the number 
stack, then that number becomes the value for the next enumerated member

b) The member is then created. and the value is set
c) The value is then incremented ready for the next member
d) The member is added to the list of members for that enumerations
e) We make provision for special compiling and interpreting actions when using a

child of ENUMACTION i.e. an member name

The interpret and compilation actions are, for the time being, simply those of a 
constant i.e.

: ENUMINTERPACTION ( ??,caddr,u--- ) \ Interpreter action for enumeration recogniser
  DEPTH 3 = IF \ A new enumeration value defined
    ROT -> ENUMVAL \ Set it
  THEN
  ($CREATE) \ Create the enumerated name
  ENUMVAL , \ Set the constant value
  INC ENUMVAL \ Next enumeration number
  LATEST-XT ENUMLIST ATEXECCHAIN \ Add to list
  ['] ENUMVALCOMP, SET-COMPILER \ When enumerated constant is being compiled
  INTERP> ENUMVALINTERP \ When enumerated constant is being interpreted
;

' ENUMINTERPACTION  ' NOOP  ' NOOP  RECTYPE: R:ENUM ( ---struct ) 
\ Contains the three recogniser actions for enumeration

: ENUMVALCOMP, ( xt--- ) \ Compiling action of an enumeration value
  >BODY @ CLIT,
;

: ENUMVALINTERP ( addr--- ) \ Interpret action of an enumeration value
  @
;

34



9. Showing the list of enumeration members

Initially, I simply defined the  interpret and compilation actions of an enumeration 
name as "do nothing" - they just return the address of the member list.

This means that the members of the enumeration can be easily shown, as in the 
example below:

: ENUMCOMP, ( xt--- ) \ Compiling action of an enumeration
  >BODY CLIT,
;

: ENUMINTERP ( addr--- ) \ Interpret action of an enumeration
;

ENUM<< TESTENUM \ Name of the enumeration
  AZERO \ By default, the enumeration starts at zero
  AONE \ Standard Forth comments are allowed
  1 2 + ATHREE \ Any Forth expression can be used to set the enumeration
            AFOUR \ The enumeration increments
>> \ Enumeration terminator

TESTENUM SHOWCHAIN 
AFOUR 
ATHREE 
AONE 
AZERO  ok

35



10. More useful ideas - to do

One possibility might be to make the enumeration name create a value that is only 
allowed to hold the member numbers, for example:

The list could still be shown by adding a modifier, such as:

Another modifier might check if a number is a member of the enumeration, e.g.

Alternatively, the enumeration name could specify the field of a STRUCT, e.g.

where the myenum field was only allowed to hold the members of TESTENUM.

TESTENUM MYENUMVAL
1 -> MYENUMVAL ok
2 -> MYENUMVAL 
Invalid member 2 for enumeration MYENUMVAL ok

MEMBERSOF TESTENUM 
AFOUR 
ATHREE 
AONE 
AZERO  ok

1 MEMBEROF TESTENUM . 1 ok
2 MEMBEROF TESTENUM . 0 ok 

STRUCT MYSTRUCT
  VINT my1
  VWORD myword
  VBYTE  mybyte
  100  VFIELD mystring
  TESTENUM        myenum
END-STRUCT

36



11. Conclusion

The use of recognisers makes it easy to create a Forth friendly enumeration word set.
The use of modifiers allows an enumeration name to carry out a variety of functions.

37



Fix Spectre in Hardware!
Why and How

M. Anton Ertl∗
TU Wien

Abstract
Spectre can be fixed in hardware by treating
speculative microarchitectural state in the same
way as speculative architectural state: On mis-
speculation throw away all the speculatively-
performed changes. The resource-contention side
channel needs to be closed, too. This position pa-
per also explains how Spectre works, why software
mitigations are not sufficient.

1 Introduction
Spectre [SSLG18] is a hardware vulnerability that
has been reported to hardware manufacturers such
as AMD and Intel in June 2017, and to the gen-
eral public on January 3, 2018. Unlike Meltdown,
which has been published at the same time and has
been fixed in hardware relatively quickly1 (or, in the
case of AMD, not built into the hardware from the
start), even the latest CPUs with speculative execu-
tion from all manufacturers are vulnerable to Spec-
tre, and hardware manufacturers leave it to software
to “mitigate” these vulnerabilities.

New Spectre variations that bypass existing miti-
gations are discovered regularly, e.g., the recent dis-
coveries of Intel’s DownFall [Mog23] and AMD’s
Inception [TWR23] vulnerabilities. Intel lists2 6
“transient execution attacks” published in 2018–
2021, and, as of this writing (August 2023), 5 pub-
lished in 2022-2023 that require software mitiga-
tions (sometimes with hardware support) even on
Intel’s most recent Sapphire Rapids server CPU.
This includes the original two Spectre variants (v1
and v2) reported to Intel in June 2017.

In this position paper I present a general ap-
proach to fix Spectre in hardware (Section 9) that
would fix not only Spectre v1 and v2, but also, e.g.,
the recently-discovered Downfall and Inception vul-
nerabilities. In order to make this work understand-
able to a wide audience, Section 2 explains architec-

∗anton@mips.complang.tuwien.ac.at
1https://www.anandtech.com/show/13450/intels-new-

core-and-xeon-w-processors-fixes-for-spectre-meltdown
2https://www.intel.com/content/www/us/en/developer/

topic-technology/software-security-guidance/processors-
affected-consolidated-product-cpu-model.html

ture and microarchitecture, Section 3 side channels,
Section 4 speculative execution, Section 5 Spectre
and Section 6 its relevance. Section 7 argues why
we should not seek the solution to the problem in
software mitigations. One possible hardware fix for
Spectre is to eliminate speculative execution, but
the performance impact is unacceptably big (Sec-
tion 8). Instead, a better fix is to eliminate the side
channels back from the speculative world into the
committed world (Section 9). Section 10 discusses
the costs of this fix. Finally, Section 11 is a call to
action for computer buyers, researchers and CPU
manufacturers.

2 What is architecture and
microarchitecture?

The architecture (aka instruction-set architecture,
ISA) is the interface between the hardware and the
software. Software sees main memory and registers,
and instructions that work on them (see Fig. 1).

On the hardware side of this interface the highest
design level is called microarchitecture. Microarchi-
tecture is generally not visible in the functionality
presented to the software, only through the perfor-
mance. I.e., instructions generally deal only with
architectural features such as memory and regis-
ters, not with microarchitectural features such as
caches.3

E.g., the cache is a microarchitectural feature,
and the CPU works functionally in the same way
with the cache as without it (or with caches with
different sizes); the only difference is that CPUs
with caches run faster. While an access to main
memory takes several hundred cycles on a mod-
ern general-purpose CPU, accessing the level-1 (L1)
data (D) cache costs 3–5 cycles. However, the (L1)
D-cache is much smaller (32-128KB on recent CPU
cores), and contains only recently-accessed data.

3There are a few cases where microarchitectural features
are managed by software, and there are instructions for that,
e.g., instructions for fetching data into caches (prefetch),
instruction-cache management, or for draining the pipeline
to ensure strictly in-order execution, but these instructions
are not relevant for the rest of this paper.

138



Ertl Fix Spectre in Hardware!

#r8=0x1000 r9=0xff8
mov (%r9), %r10
add 1, r10
mov %r10, (%r8)

PC=0x200a
...
r8=0x1000
r9=0xff8
r10=5
...

0xff8
0x1000

4
5

registers memory
0x2000
0x2003
0x2007
0x200a

Figure 1: Architectural state: register and memory contents; this example shows the architectural state
right after the instrucion at 0x2007

#r8=0x1000 r9=0xff8
mov (%r9), %r10
add 1, r10
mov %r10, (%r8)

PC=0x200a
...
r8=0x1000
r9=0xff8
r10=5
...

0xff8
0x1000

4
5

registers memory
0x2000
0x2003
0x2007
0x200a

0x1000
0xff8

5
4

D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

Figure 2: Microarchitecture (yellow background) is normally invisible to software, apart from its perfor-
mance effects

Speculative execution is another microarchitec-
tural feature and is discussed in Section 4.

3 What are side channels?
A side channel (aka covert channel) reveals data not
directly by letting attacker read the secret data, but
through ancillary properties of data processing.

E.g., if the run-time a program takes depends on
the secret, an attacker can often use this fact to
extract the secret (this kind of attack is known as
a timing attack). E.g., a program could contain an
if-statement where the condition depends on the
secret, and the run-time of the two branches differs.
For program code that deals with the dearest secrets
(encryption keys and passwords), avoiding secret-
dependent branches has long been best practice.

More generally, the best practice has been to
write code that runs in constant time with respect
to the secret.

The timing of memory accesses depends on the
input address, thanks to caches. Caches provide
such a big performance boost that we prefer to

keep them and deal with the security implications
in some other way rather than use CPUs without
caches.

One case where memory access timing has played
a role is AES encryption. It has been designed in a
way that is hard to implement without loads from
an address that depends on the secret key. While
that dependence is quite convoluted, Bernstein has
found a way to use the timing variation due to loads
in such AES implementations to extract the key
[Ber05].

3.1 Defending against side-channel
attacks

The defense against side-channel attacks first re-
quires realizing that there is a side-channel, and
then taking measures that eliminate the leakage of
secret information through that side channel.

As mentioned above, for timing side channels this
has usually been done by writing the pieces of code
that deal with the dearest secrets as constant-time
code. These pieces of code tend to be miniscule
(hundreds of lines) compared to the huge amounts

39



Ertl Fix Spectre in Hardware!

of code (millions of lines) for complete programs like
a web browser or an operating system.

While this makes the defense sound like being
the responsibility of the software people alone (and
this perception may have contributed to the lack of
efforts on hardware fixes for Spectre), the software
people cannot do it without support from hardware
manufacturers.

In order to write constant-time code, the pro-
grammer needs guarantees that the timing of the
used instructions does not depend on the input.
Such guarantees have been historically hard to come
by (and were only specified for specific implementa-
tions rather than the architecture), but recently In-
tel has guaranteed the input-independence of a sub-
set of instructions for all of its implementations.4

In the AES case, the hardware manufactur-
ers helped, not by making load timing address-
independent (which would be impractical, as men-
tioned above), but by providing instructions that
perform the problematic steps of AES in constant
time without needing loads.

The discipline of writing constant-time code is
used only for cryptographic and password-handling
code, because it requires additional effort and spe-
cialized competencies, because it often results in
slower run-time, but also because it is too limiting
and impractical for implementing the requirements
of most code. E.g., while the contents of spread-
sheets of big companies and intelligence agencies
may be considered by their users to be at least as
secret as the encryption keys of ordinary citizens, to
my knowledge nobody has tried to write a spread-
sheet program with content-independent timing.

4 What is speculative execu-
tion?

Most modern general-purpose CPU core use spec-
ulative execution, a microarchitectural technique
that works as follows:

The core’s branch predictor predicts a likely fu-
ture execution path and then executes (but does
not commit) instructions on that path. The catch
is that the prediction may turn out to be incorrect.
In that case the architectural state (registers and
memory) must not be changed in the way indicated
by the misprediction prediction. If the speculation
turns out to be correct, the changes can be commit-
ted (see Fig. 3).

Modern CPUs with speculative execution do this
by conceptually dividing the core into a specula-
tive part, which contains architectural results-to-be

4https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/best-
practices/data-operand-independent-timing-isa-
guidance.html

of unconfirmed speculative execution, and a com-
mitted part which contains the actual architectural
state at the current architectural program counter
(PC). So when the core architecturally processes
an instruction (by committing (aka retiring) it in
the reorder buffer), that instruction has often been
speculatively executed some time earlier, and its re-
sult is lying around, waiting to be committed; and
the commit takes this result and turns it into com-
mitted architectural state.

However, when a branch turns out to be mispre-
dicted, and this branch is committed, all the spec-
ulative results after the branch (i.e., on the wrong
path) are thrown away, and the processor starts ex-
ecuting on the correct path.

Note that this speculative execution not only con-
tains register updates, but also stores to memory,
possibly including several stores to the same mem-
ory location, and (speculative) loads from that lo-
cation in between.

There have been many speculative-execution im-
plementations of various architectures since the
1990s, and almost5 all of them implemented the
handling of architectural state correctly, both for
correctly predicted branches and for mispredictions,
for various kinds of registers, and for memory.

5 What is Spectre?
For microarchitectural state, e.g., the contents of
the cache, existing processor cores do not discern
between speculative and committed changes. After
all, the idea is that microarchitectural state is in-
visible anyway. If a speculative load puts a line in
the D-cache (and evicts another line), this has no
architectural significance, so the hardware design-
ers have had no qualms at performing this change
speculatively, without a mechanism that cancels it
in case of a misprediction.

Unfortunately, this approach opens a side chan-
nel that allows to leak data from the otherwise
ephemeral world of misspeculation.

Figure 4 shows an example: The cmp and ja in-
structions architecturally prevent an out-of-bounds
access to the array in r8, but if the branch is mispre-
dicted to be not-taken, the following code is spec-
ulatively executed, and it reads the address 0xff8
speculatively; by using any other index, any other
64-bit value in the address space of the process
could be accessed, including, e.g., secret keys or
passwords that are there for cryptographic or au-
thentication purposes. Let us assume that the se-
cret is in memory location 0xff8. In itself the
load of the secret value into the speculative r10

5The recently-published Zenbleed bug in AMD’s Zen2
core (https://lock.cmpxchg8b.com/zenbleed.html) is the
exception that proves the rule.

40



Ertl Fix Spectre in Hardware!

# r8=0x1000 r9=2 r11=0x1080
# m[0x1010]=5 
# m[0x10a8]=10
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=2
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=2
r10=5
r11=0x1080
r12=10
...

0xff8

0x1010
...

0x10a8

14

5
...
10

registers memory

speculative architectural state

# r8=0x1000 r9=-1 r11=0x1080
# m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

Figure 3: Two examples of speculative execution, in both cases the ja instruction is predicted as being not
taken. Above: The prediction is correct, and the speculative architectural state is eventually committed.
Below: The prediction is incorrect, and the speculative architectural state is squashed.

does not appear a problem, because this is still the
ephemeral world of misspeculation, and it cannot
get out, right?

Unfortunately, on current hardware it can get out
through a cache-based side channel: The second mov
instruction loads a value into the D-cache, and the
address of this load depends on the secret. The
loaded cache line replaces a line that used to be in
the cache, and which cache line is replaced depends
on the address. An attacker can repeatedly access
a number of memory locations in order to prime
the cache, and can see from the timing of the cache
accesses whether a cache line has been replaced, and
in this way learn something about the secret.

There are a number of steps involved in Spectre
attacks:

S1 The speculation itself: In this example (which
is a Spectre v1 attack) a conditional branch
causes speculative execution, but there are oth-
ers. E.g., Spectre V2 uses indirect branches.
There are also other speculative mechanisms
in modern cores, such as speculating whether
a memory load is to a different or the same ad-
dress as an earlier store, and this has also been
used in a number of attacks.

S2 The mechanism for getting the secret data into
speculative architectural state. In the example
above it is the load from a[i]. In the recently-
published Downfall vulnerability [Mog23], it’s

gather instructions as implemented on some In-
tel microarchitectures.

S3 The sending side of the side channel for get-
ting the data out of the misspeculation realm.
In the example above it’s the access to b[j]
that channels information about j through the
cache side channel. But other microarchitec-
tural state can also be used, such as the power
state of the AVX unit [SSLG18].

S4 The receiving side of that side channel. For a
cache side-channel this consists of the attacker
priming the cache and monitoring through tim-
ing which lines are replaced by the victim.

There is a lot of variation on all of these steps,
leading to the stream of vulnerabilities that have
been found up to now and continue to be found. For
more details (and more aspects) there is a survey of
the Spectre and Meltdown attacks until December
2020 [XS21]. A term that has been used to cover
all these vulnerabilities and attacks against them is
“transient execution vulnerabilities/attacks”, but in
this paper I just use “Spectre” in the same meaning
as referring to all of these speculation-based side-
channel attacks.

41



Ertl Fix Spectre in Hardware!

0x3010
0x10f0

0xff8

25
11

14

D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

# r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

S4

Attacker’s architectural state

Figure 4: A Spectre v1 attack starts with a misprediction (S1), loads the secret (in 0xff8) into speculative
architectural state (S2), changes the cache state in a secret-dependent way (S3), and finally uses cache
timing to extract the secret into the architectural state of the attacker (S4).

6 How relevant is Spectre?
Has Spectre been used in the wild? It’s hard to
know. Consider the case where attackers use Spec-
tre to determine your password or encryption key.
If they use that to decrypt your files, you may never
know; maybe it was bad luck that your competitor
undercut you by a narrow margin. But even if some-
body does something very blatant like publish your
documents on the Internet or encrypt your files and
demand ransom, you usually don’t know how the
attacker got at your password or your encryption
key.

However, a working exploit for reading normally
unaccessible files on Linux has been discovered by
Julien Voisin.6 There is no proof that this exploit
has been used for an actual attack, but given that
it is widely available, it would be surprising if it has
not.

Some people argue that Spectre is not relevant
because there are many software vulnerabilities that
may be used for subverting your system; so why,
they argue, should an attacker bother with Spec-
tre, which is supposedly harder to use. On the
other hand, software vulnerabilities may be discov-
ered and fixed at any moment, while Spectre exists
unfixed on all desktop and server hardware, and is
not even mitigated against in most software. So
Spectre may be more attractive to attackers than
some people give it credit for.

6

https://dustri.org/b/spectre-exploits-in-the-wild.html

7 Why is software mitigation
not a good way to deal with
Spectre?

The mitigation of non-speculative timing attacks is
to write the few hundred lines of code that deals
with keys and passwords in a constant-time way.
Can we not just deal with Spectre in the same way?

Unfortunately, for Spectre all the software that
has the secret in its address space can potentially
be used for an attack, and consequently would have
to be hardened. For a web browser or an OS kernel
that is typically millions of lines of code.

As an example of a mitigation, for the Sprectre
V1 example in Fig. 4, speculative load hardening
has been proposed. A simple variant would change
the code as follows:

cmp 15,%r9
ja end
mov $0x0,%rax
cmova %rax, %r9
mov (%r8,%r9,8),%r10
mov (%r11,%r10,8),%r12

end:

Here the cmova hardens the following load, by set-
ting r9 to 0 if r9>15. While this condition cannot
architecturally be true at that place, it can be true
during misspeculation. The cmova instruction uses
the same flags as the ja branch, but the mitigation
assumes that cmova does not speculate.

In reality speculative load hardening is substan-
tially more complicated, because it also has to also

42



Ertl Fix Spectre in Hardware!

deal with possible speculation on earlier branches
[ZBC+23].

Software mitigations have apparently led to the
impression that Spectre is under control and no
hardware fix is necessary, but they have a number
of problems:

7.1 Still vulnerable
It has often turned out that many mitigations
do not even completely close the vulnerability for
which they are designed.

One reason for that is that the mitigation de-
fends against a too-narrow attack scenario. E.g.,
speculative load hardening (SLH) has been imple-
mented in the LLVM compiler and is intended to
close the Spectre V1 vulnerability presented above,
but it still has some leakage; this was then improved
in Strong SLH [GP19] and recently Ultimate SLH
[ZBC+23].

Another reason is that the mitigation relies on
assumptions about microarchitectural mechanisms
that turn out to be wrong; e.g., earlier Spectre
V2 mitigations assumed that returns would only be
predicted from the return stack, but there are some
microarchitectures that use the general indirect-
branch predictor to predict returns when the return
stack is empty (so returns can also be used in Spec-
tre V2 attacks).

Also, these mitigations tend to work only against
a specific variant, but new variants are discovered
all the time.

7.2 Performance
These mitigations cost performance, for the whole
program (because with Spectre the whole program
can be used to reveal the secret). E.g., Zhang et al.
report a factor of around 2.5 slowdown (compared
to no mitigation) for SPEC CPU 2017 (int and fp,
rate and speed) [ZBC+23]. I saw a slowdown (com-
pared to using no mitigation) by a factor 2–9.5 from
compiling Gforth with the fastest retpoline mitiga-
tion against Spectre V27.

7.3 Effort
Because the slowdowns that you get from apply-
ing compiler-based mitigations across the board are
often considered to be unacceptable, there is the
idea that programmers should be more selective
and analyse whether each specific place in a pro-
gram can actually be used by an attacker, and only
harden those places, lowering the performance cost.

However, this requires a huge amount of effort,
and it takes only one place in the potential attack

7news://<2023Jan15.105348@mips.complang.tuwien.ac.at>

surface that the programmer mistakenly has not
hardened, and the program is still vulnerable.

And when the next vulnerability and mitigation
shows up, you have to do it all again. And when
the program is changed (due to, e.g., new require-
ments), you have to analyse more than just the
changed lines.8

8 Why is the first idea for a fix
not so great?

The first idea many people have for fixing Spec-
tre is to eliminate speculative execution. While
this certainly fixes Spectre by preventing step 1 of
the exploits, the performance impact of this mea-
sure is pretty bad: E.g., the core without spec-
ulation that shows the best performance on our
LATEXbenchmark9 is the 1800MHz Cortex-A55 on
the Rock 5B single-board computer. The Cortex-
A76 core (with speculative execution) running at
2275MHz on the same computer is 3.3× as fast for
this benchmark, and the 3000MHz Apple Firestorm
is 7.8× as fast.

Given the performance impact, it’s no surprise
that we have not seen a resurgence of microar-
chitectures without speculation. The number of
customers that would exchange this much perfor-
mance for security against Spectre is small. The
customers’ reasoning is as follows: There are lots
of vulnerabilities in the software we use, so fixing
Spectre is not going to make our computers that
much safer. Therefore we are not willing to sacri-
fice that much performance for this benefit.

9 How to fix Spectre in hard-
ware?

It costs much less performance to prevent step S3.
This is therefore a better way to fix Spectre. This
approach has been explored in a number of research
papers, and is known as invisible speculation. There
are several variants of that, and in the following I
outline one.

9.1 Side channels based on microar-
chitectural state

In particular, for the side channels through microar-
chitectural state, we can use the same approach for
microarchitectural state as for architectural state:
keep the speculative state separate from the com-
mitted state, and squash it when it turns out that

8The idea that you do not have to reanalyse code when
the requirements change resulted in the Ariane 501 explosion.

9https://www.complang.tuwien.ac.at/franz/latex-bench

43



Ertl Fix Spectre in Hardware!

0x3010
0x30f0

25
33

D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

# r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

speculative microarchitectural state

inst333: mem[0xff8]=14
inst334: mem[0x10f0]=11

Figure 5: Separating speculative microarchitectural state from committed microarchitectural state elim-
inates the S3 part (and therefore also S4) of a Spectre attack, as far as microarchitectural state is
concerned; resource-limitation side channels also need to be addressed, see text.

the speculation is wrong. This goes for all microar-
chitectural state: D-cache, I-cache, branch predic-
tor, TLBs, etc.

In the case of D-cache, several papers [YCS+18,
KKS+19, AJ20] have already proposed ways of do-
ing that, probably because the cache side channel
has been the most popular one for Spectre-type at-
tacks. But of course, the other state-based side
channels need to be closed, too.

Some attempts at fixes for state-based side chan-
nels have tried to undo the changes when a specula-
tion turns out to be false, e.g., CleanupSpec [SQ19].
However, I think that it is better to keep the spec-
ulative changes separate until commit time, for the
following reasons:

• The microarchitectural state is changed, albeit
only for a short time, and this is visible to po-
tential attackers, given enough effort.

• It is harder to reason about the correctness
of an undoing approach than about an ap-
proach that never speculatively changes the
non-speculative state.

• Undoing approaches have been tried for ar-
chitectural state [DA92], but committing ap-
proaches have won. It is likely that the same
reasons will make undoing of microarchitec-
tural state unattractive.

9.2 Side channels based on resource
contention

Apart from the popular state-based side channels,
another kind of side channel is contention for re-

sources such as execution ports, functional units,
or cache ports. SMoTherSpectre [BSN+19] attacks
another SMT thread on the same core by using ex-
ecution port contention by the speculatively exe-
cuting victim as a side channel. Even worse, spec-
ulative interference attacks [BSP+21] use resource
contention to affect the timing of an older (eventu-
ally committing) instruction in the same thread.

For the SMT side channel, a solution is to have a
fixed partitioning of resources between the threads,
so that no thread can use resource contention as a
side channel. This means that resources that exist
only once have to be time-shared. E.g., if there is
an non-pipelined divider that takes 20 cycles for the
division, there are fixed 20-cycle time slots for each
thread, and when a thread does not have a division
ready at the start of its time slot, that time slot
goes unused. This fixed partitioning will cost some
performance; it could be made optional, allowing
the full benefit of SMT to be used in settings where
the sibling threads are believed to not spy on each
other.

For the same-thread problem, Behnia et al.
[BSP+21] describe the high-level principle: “a spec-
ulative instruction must not influence the execution
of a non-speculative instruction”. And they describe
two rules that ensure that:

• “No instruction ever influences the execution
time of an older instruction.” They propose
to achieve this by giving priority to older in-
structions in case of resource contention. They
discuss several options how to deal with non-
pipelined execution units. The slot idea above
is another way to deal with that: If a thread

44



Ertl Fix Spectre in Hardware!

can start using the execution unit only at the
start of a slot, the priority approach works for
non-pipelined units (although one might wish
for better performance).

• “Any resources allocated to an instruction at
the front end and the execution engine are not
deallocated until the instruction becomes non-
speculative”. This rule ensures that misspec-
ulated code cannot produce timing variations
by congesting the front end.

9.3 Other side channels
Another known side channel is energy consumption.
In particular, Meltdown-Power [KJG+23] uses spec-
ulation for S1 and S2, and then a power-based side
channel for S3 and S4. However, it requires that the
speculative load updates the cache, which does not
happen with the fix for speculative microarchitec-
tural state outlined above, so fixed hardware would
be immune against this particular attack.

Still, one can imagine that the energy con-
sumption of e.g., functional units working on mis-
speculatively loaded data could reveal something
about the data. At the moment I have no good
hardware answer for that. On the other hand, the
question is if such an attacks can be made practical
(i.e., leak relevant amounts of data in realistic time
frames).

10 How much does the fix
cost?

The fixes certainly cost design complexity. Hard-
ware architects have been remarkably good at han-
dling the increasing complexity of modern high-
performance CPUs, and I expect them to rise to
the challenge of designing fixed hardware, if they
are given the task.

The resulting CPU cores will require more area,
for the speculative state. E.g., if we want to be
able to buffer, say, 30 cache lines loaded from outer
cache levels in speculative microarchitectural state,
the memory for these 30 cache lines is needed, as
well as the infrastructure to look up data in them
and deal with snoop messages. Compared to the
224 physical ZMM registers (each with 64 bytes) in
Intel’s Sunny Cove core, this does not seem to add
that much area; and I expect that the area for other
microarchitectural features will be even smaller.

Concerning performance, the additional buffers
can even help, and for MuonTrap [AJ20] the Par-
sec benchmarks indeed see a speedup by a factor
1.05. However, SPEC 2006 sees a slowdown by a
factor 1.04 compared to vulnerable hardware. And
then there is the question of how much speed the

additional area could have produced if it was in-
vested just in performance. On the other hand,
compared to applying software mitigations to all
software (e.g., a factor 2.5 for defending only against
Spectre v1), even the SPEC slowdown and the op-
portunity performance cost of the additional area
are small.

One may want to compare with the more selec-
tive hardening approach that is used in, e.g., the
Linux kernel. This kind of hardening has not been
applied to the SPEC benchmarks, and the hard-
ware fixes have not been measured on the bench-
marks that are typically used for measuring the
Linux kernel performance, so a direct comparison
is not possible. Looking at Michael Larabel’s re-
sults for how the kernel mitigation of just Incep-
tion10 and the firmware mitigation of just Down-
fall 11 slows down applications, the slowdowns are
often larger than what has been reported as slow-
down from hardware fixes for the cache side chan-
nel. While these are numbers for different programs
and mitigations/fixes for different vulnerabilities,
and both comprehensive software mitigations and
comprehensive hardware fixes will have higher cost,
I expect that the majority of the performance cost
of a hardware fix is in dealing with the cache (be-
cause of stuff like cache coherence), so I don’t ex-
pect the cost of a comprehensive hardware fix to be
that much higher than the cache-only approaches
we have seen up to now, while on the software miti-
gation side, every vulnerability seems to require its
own mitigation, with a program-dependent perfor-
mance impact, sometimes very expensive, as dis-
cussed above.

11 What should I do?
As computer customers, we should keep asking the
CPU manufacturers when they will finally fix Spec-
tre in hardware; we should tell them that software
mitigations are not good enough.

And when one of the manufacturers comes out
with a CPU with a Spectre fix, we should prefer
these CPUs in our buying decisions even if they are
a little slower at running unmitigated software (or
software with mitigations that are unnecessary for
the fixed CPUs). After all, such a CPU will be
safer than an unfixed CPU when both run unmit-
igated software (the usual case). And such a CPU
will be faster and at least as safe (probably safer)
when the fixed CPU runs software without mitiga-
tions and the unfixed hardware runs software with
mitigations.

When CPU manufacturers claim that they have
fixed Spectre, only believe them when they explain

10https://www.phoronix.com/review/amd-inception-benchmarks
11https://www.phoronix.com/review/intel-downfall-benchmarks

45



Ertl Fix Spectre in Hardware!

how they did it (and only if that explanation does
not have holes); don’t accept hand-waving along
the lines of “Differences in AMD architecture mean
there is a near zero risk of exploitation”12.

As computer architecture researcher, you
can work at designing and evaluating mechanisms
for fixing Spectre. Even if there is already some
work in that direction, there is probably still some
microarchitectural state or other side channels that
have not been covered yet. And even for the mi-
croarchitectural state that has been covered, there
are probably ways to improve on it, i.e., a solution
that costs less area and/or less performance.

If your research leans more towards theory, you
could work out a formal description of speculative
side channels, and a way how computer architects
could prove that they have closed these side chan-
nels. I do not know if they worked out such an
approach to make sure that speculation works cor-
rectly for architectural state; it may be (usually)
good enough to validate the architectural design by
running test programs, but for microarchitectural
state and other side channels, such an approach is
needed, because the side channel does not show up
in the usual architectural validation.

If you work at a CPU manufacturer (or CPU
design house), you have the best opportunity to fix
this problem. If the decision is up to you, go ahead
and decide that you will make a Spectre-immune
high-performance CPU core. If the decision is up
to someone else, make a case that convinces them
that the fix is worth the development and man-
ufacturing costs by making your CPU safer than
the competition, and to put a stop to the constant
stream of new Spectre- and Meltdown-type vulnera-
bilities (and the slowdowns from firmware and soft-
ware mitigations). Also, imagine what happens if
your competition is first at presenting a Spectre-
immune CPU.

12 Conclusion
Attacks like Spectre that extract speculative state
through a side channel are different from earlier
side-channel attacks in being impractical to miti-
gate in software: not just the small piece of code
that deals with the secret, but all software in
the same address space as the secret (including li-
braries) needs to mitigate these attacks; E.g., an au-
tomatic compiler approach against Spectre v1 alone
costs a factor 2.5 in performance, and that does not
defend against all Spectre attacks (e.g., not against
Spectre v2). One way to reduce this cost taken in,
e.g., the Linux kernel, is to try to identify places
that can be attacked and only harden those; this

12https://web.archive.org/web/20180104014617/https://
www.amd.com/en/corporate/speculative-execution

costs a lot of programmer effort, has the potential
danger of leaving a hole open, and when another
attack is discovered, this effort often has to be re-
peated.

Therefore the right way to deal with Spectre is
to fix it in hardware. For speculative microarchi-
tectural state, it should be treated just like specu-
lative architectural state: During speculation, keep
it separate from the committed state; and when the
speculation turns out to be wrong, just squash the
speculative state (including speculative microarchi-
tectural state). When the speculation is correct,
turn the speculative state into commited state (e.g.,
during instruction commit).

In addition to state-based side channels, resource
contention can also provide a side channel. This can
be addressed with a fixed partitioning of resources
in an SMT setting, by always prioritizing older in-
structions in resource conflicts, and by managing
front-end resources in a specific way.

A hardware fix for Spectre costs some chip area
and often also performance compared to a vulner-
able core, but much less than applying a software
mitigation against just Spectre v1 across the board.

References
[AJ20] Sam Ainsworth and Timothy M. Jones.

MuonTrap: Preventing cross-domain
Spectre-like attacks by capturing spec-
ulative state. In International Sympo-
sium on Computer Architecture (ISCA),
pages 132–144, 2020. 9.1, 10

[Ber05] Daniel J. Bernstein. Cache-timing at-
tacks on AES. 2005. 3

[BSN+19] Atri Bhattacharyya, Alexandra San-
dulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus.
SMoTherSpectre: Exploiting specula-
tive execution through port contention.
In Conference on Computer and Com-
munications Security, 2019. 9.2

[BSP+21] Mohammad Behnia, Prateek Sahu,
Riccardo Paccagnella, Jiyong Yu,
Zirui Neil Zhao, Xiang Zou, Thomas
Unterluggauer, Josep Torrellas, Carlos
Rozas, Adam Morrison, Frank Mckeen,
Fangfei Liu, Ron Gabor, Christo pher
W. Fletcher, Abhishek Basak, and Alaa
Alameldeen. Speculative interference
attacks: Breaking invisible speculation
schemes. In Architectural Support for
Programming Languages and Oper-
ating Systems (ASPLOS ’21), pages
1046–1060, 2021. 9.2

46



Ertl Fix Spectre in Hardware!

[DA92] Keith Diefendorff and Michael Allen.
Organization of the Motorola 88110 su-
perscalar RISC microprocessor. IEEE
Micro, pages 40–63, April 1992. 9.1

[GP19] Marco Guarnieri and Marco Patrignani.
Exorcising Spectres with secure compil-
ers. CoRR, abs/1910.08607, 2019. 7.1

[KJG+23] Andreas Kogler, Jonas Juffinger, Lukas
Giner, Lukas Gerlach, Martin Schwarzl,
Michael Schwarz, Daniel Gruss, and Ste-
fan Mangard. Collide+Power: Leaking
inaccessible data with software-based
power side channels. In 32nd USENIX
Security Symposium (USENIX Security
23), pages 7285–7302, Anaheim, CA,
August 2023. USENIX Association. 9.3

[KKS+19] Khaled N. Khasawneh, Esmaeil Mo-
hammadian Koruyeh, Chengyu Song,
Dmitry Evtyushkin, Dmitry Pono-
marev, and Nael Abu-Ghazaleh. Safe-
Spec: Banishing the Spectre of a Melt-
down with leakage-free speculation. In
Design Automation Conference, 2019.
9.1

[Mog23] Daniel Moghimi. Downfall: Exploit-
ing speculative data gathering. In 32th
USENIX Security Symposium (USENIX
Security 2023), 2023. 1, 5

[SQ19] Gururaj Saileshwar and Moinuddin K.
Qureshi. CleanupSpec: An undo ap-
proach to safe speculation. In Interna-
tional Symposium on Microarchitecture,
page 73–86, 2019. 9.1

[SSLG18] Michael Schwarz, Martin Schwarzl,
Moritz Lipp, and Daniel Gruss. Net-
Spectre: Read arbitrary memory over
network. CoRR, abs/1807.10535, 2018.
1, 5

[TWR23] Daniël Trujillo, Johannes Wikner, and
Kaveh Razavi. Inception: Exposing new
attack surfaces with training in tran-
sient execution. In 32nd USENIX Secu-
rity Symposium (USENIX Security 23),
pages 7303–7320, Anaheim, CA, August
2023. USENIX Association. 1

[XS21] Wenjie Xiong and Jakub Szefer. Survey
of transient execution attacks and their
mitigations. ACM Computing Surveys,
54(3), May 2021. 5

[YCS+18] Mengjia Yan, Jiho Choi, Dimitrios
Skarlatos, Adam Morrison, Christopher

Fletcher, and Josep Torrellas. InvisiS-
pec: Making speculative execution invis-
ible in the cache hierarchy. In Interna-
tional Symposium on Microarchitecture,
page 428–441, 2018. 9.1

[ZBC+23] Zhiyuan Zhang, Gilles Barthe,
Chitchanok Chuengsatiansup, Peter
Schwabe, and Yuval Yarom. Ultimate
SLH: Taking speculative load hardening
to the next level. In 32nd USENIX
Security Symposium (USENIX Security
23), pages 7125–7142, Anaheim, CA,
August 2023. USENIX Association. 7,
7.1, 7.2

47



4g and FAIL
(or: Be careful what you joke about!)

Glyn Faulkner
EuroForth 2023

2023-09-15

Historical context

My final slide last year:
Where next?
How about a parameterised Forth interpreter generator?
[marsu@celaeno 4g]$ ./4g -t ITC -T -m ANSI -o forth
Indirect-threaded x86_64 Linux ANSI Forth
Options: top-of-stack in register, linked-list dictionary
Generating forth.S
gcc -m64 forth.S -o forth
Done
[marsu@celaeno 4g]$ ./forth
Ask me how this is going next year!

This is how it’s going. . .

48



4g, the Forth-generator
Used approach from Peter Knaggs’ EuroForth paper1 to build a
“matched-pair” of ANSI-ish Forths, sharing as much source code as
possible:
Direct-threaded:
.macro $next

lodsl
jmp *%eax

.endm
#include "common.S"
.section .flat
.align 4
docol:

$pushrs %esi
pop %esi

$next

Indirect-threaded:
.macro $next

lodsl
jmp *(%eax)

.endm
#include "common.S"
.section .text
.align 4
docol:

$pushrs %esi
lea 4(%eax), %esi

$next
1Peter Knaggs Using Test Driven Development to build a new Forth

interpreter, http://www.euroforth.org/ef21/papers/knaggs.pdf

Problems. . .

I Not a scaleable approach!
I new-runtime system required for every possible configuration or

mapping of Forth to machine registers
I multiple inter-dependent source files makes development slow

and painful

It gets worse. . .
“common.S” is not so common!
With SP mapped to %esp, dup
looks like this. . .
code dup ( x -- x x )

pop %eax
push %eax
push %eax

end-code

. . . but with SP in %esi it might
look like this. . .
code dup ( x -- x x )

lodsl
lea -4(%esi), %esi
mov %eax, (%esi)
lea -4(%esi), %esi
mov %eax, (%esi)

end-code

Assembler Macros!

code dup ( x -- x x )
$popds RegX
$pushds RegY
$pushds RegY

end-code

But if we have top-of-stack in a
register, we want dup to look
something like this:
code dup ( x -- x x )

push %ebx
end-code

What reasonable definition of $pushds and $popds can give us
this?
I Macro complexity rapidly explodes!
I Debugging becomes a nightmare.
I Generated code is hard to read and modify.

What a mess!

49



F.A.I.L.: The Forth Abstract Instruction Language

The original insight:

code dup ( x -- x x )
...

Hmm. That stack comment looks suspiciously compilable!

( x -- x x )

1. Move top-of-stack to register X
2. Re-pack the stack with two copies of register X

Stack shuffling 1

: dup ( x -- x x ) ;

. . . becomes. . .

code dup
# pop stack to x
pop %eax
# push x to stack twice
push %eax
push %eax
$next

end-code

Stack shuffling 2

Data stack pointer is somewhere exotic? No problem?

code dup
# pop stack to x
mov (%eax), %edi
add $4, %eax
# push x to stack twice
sub $4, %eax
mov %edi, (%eax)
sub $4, %eax
mov %edi, (%eax)

end-code

The assembly output is less than optimal, but quite readable.

Recall that my goal is to automate the boring parts of bringing up a
new Forth-like language.

50



Stack shuffling 2

Data stack pointer is somewhere exotic? No problem?

code dup
# pop stack to x
mov (%eax), %edi
add $4, %eax
# push x to stack twice
sub $4, %eax
mov %edi, (%eax)
sub $4, %eax
mov %edi, (%eax)

end-code

The assembly output is less than optimal, but quite readable.

Recall that my goal is to automate the boring parts of bringing up a
new Forth-like language.

Return stack 1

Works also with the return stack

: >r ( x -- ) (r: -- x ) ;

code >r
# pop stack to x
pop %eax
# push x to return stack
sub $4, %ebp
mov %eax, (%ebp)
$next

end-code

Return stack 2

Using both stacks at once. . .

: r@ ( -- x ) (r: x -- x ) ;

code r@
mov (%ebp), %eax ; add $4, %ebp
push %eax
sub $4, %ebp ; mov %eax, (%ebp)
$next

end-code

51



Return stack 3

What about a word with atypical behaviour. . .

: exit (r: IP -- ) ;

(IP is the hardware register holding the Forth instruction pointer)

code exit
# pop return stack to IP
mov (%ebp), %esi
add $4, %ebp
$next

end-code

Words that actually do something 1
Stack shuffling isn’t Turning complete! (probably)

We can already map the stack onto virtual registers. . .

: dup ( x -- x x ) ;

. . . which map onto machine-registers.

: dup ( %eax -- %eax %eax ) ;

So what if we imagine an assembly-like syntax that works on virtual
registers?

: + ( a b -- c ) a b c + ;

Borrowing ideas from QEmu’s TCG intermediate representation,
(almost) all of my primitives have separate parameters for source
and destination registers.

(I regret my syntax choice here: the first + is defining the Forth
word and the second is a FAIL primitive).

Words that actually do something 1
Stack shuffling isn’t Turning complete! (probably)

We can already map the stack onto virtual registers. . .

: dup ( x -- x x ) ;

. . . which map onto machine-registers.

: dup ( %eax -- %eax %eax ) ;

So what if we imagine an assembly-like syntax that works on virtual
registers?

: + ( a b -- c ) a b c + ;

Borrowing ideas from QEmu’s TCG intermediate representation,
(almost) all of my primitives have separate parameters for source
and destination registers.

(I regret my syntax choice here: the first + is defining the Forth
word and the second is a FAIL primitive).

52



Words that actually do something 2

The resulting assembly looks like this. . .

code +
pop %ecx
pop %eax
add %ecx, %eax
push %eax
$next

end-code

push and pop
push and pop have their own instructions (of course!).

<dest> <ptr> pop
<src> <ptr> push

Special case:
I the only FAIL instructions that modify a register in-place.
I <ptr> follows target register in both cases for ease of reading

which stack is being accessed.

Common uses:

\ pop the data-stack to x
x SP pop
\ push y to the return-stack
y RP push
\ threaded-code NEXT
W IP pop
W execute

Branching
: (brn) ( -- )

IP IP @
;
: (brz) ( n -- )

\ "pop" through IP
\ to reg b
b IP pop
n (0=) if

b IP move
then

;

code (brn)
mov (%esi), %esi
$next

end-code
code (brz)

pop %eax
mov (%esi), %ecx
add $4, %esi
test %eax, %eax
jnz 1f

mov %ecx, %esi
1:
$next

end-code
Condition specification syntax using (0=) as an “argument” to if is
awkward. Is there a better way?

53



Complications! 1
x86 has some nasty instructions:
I div and idiv have four

implicit arguments (two
source and two destination)

I mul and imul can clobber
%edx (which might be
Forth’s stack- or
instruction-pointer!)

I shl shr sar and sal
require the number of
places shifted to be in %cl

. . . and lots of register aliasing:
I %eax, %ax, %ah and %al all

refer to the same hardware
register!

: sm/rem ( a b c -- d e )
a b c d e sm/rem ;

. . . needs to produce something
like this:
code sm/rem ( l h d -- r q )

pop %ecx
pop %edx
pop %eax
idiv %ecx
push %edx
push %eax
$next

end-code
h, l, r, and q must be in the
correct machine registers.
How to solve?

Complications! 2
Current answer: cheat!
I Check abstract instruction’s

register affinity
I Run rudimentary liveness

analysis.
I Allocate required registers

if possible.
I Otherwise throw a

compilation error.
Two possible solutions
I QEmu-style “helper

functions”
I compilation guaranteed

to succeed
I but run-time overhead of

switching out of
“Forth-mode” and into
e.g. “C-mode”

I More advanced register
allocator
I spilling registers could

handle some tricky cases
I some x86 instructions

can work directly with a
value in memory, no
register allocation
required.

I but compilation failure is
still a possibility

I unanswered questions:
how does spilling work if
our stack pointers are
the registers we want to
spill?

What next?
F.A.I.L.
I Port the start-up code for

the runtime to FAIL.
I Easier configuration

(currently requires editing
an Awk script!)

I Use FAIL words inside FAIL
words (currently $next has
to be an assembly macro!)

I Better register allocation
I Support more threading

models: Token,
Subroutine. . .

I x86_64 and ARM support
I Re-write in Forth!

(currently Awk!)

I More flexible instruction
generation (optimise for
size, speed, readability. . . )

I Abstract away the
dictionary implementation

I Selectable back-end (GNU
as, nasm, C, machine
code. . . )

4g
I Package as a commandline

tool (currently a Makefile!)
I More complete and correct

ANSI support
I Add other Forth “models”:

eForth, F83, F77?
I Port some of my own

Forths!
54



Any Questions?

55



The Performance Effects of

Virtual-Machine Instruction Pointer Updates

M. Anton Ertl, TU Wien

Example: matrix.fs

: innerproduct ( a[row][*] b[*][column] -- int)
0 row-size 0 do

>r over @ over @ * r> + >r
swap cell+ swap row-byte-size +
r>

loop
>r 2drop r>

;

1
threaded code unopt. opt. threaded code unopt. opt.
>r 1->1 sd s7,-8(rp) sd s7,-8(rp) cell+ 2->2 addi ip,ip,8

ld s7,8(sp) ld s7,8(sp) addi s0,s0,8 addi s0,s0,8
addi sp,sp,8 addi sp,sp,8 swap 2->1 addi sp,sp,-8 addi sp,sp,-8
addi rp,rp,-8 addi rp,rp,-8 addi ip,ip,8
addi ip,ip,8 sd s0,8(sp) sd s0,8(sp)

over 1->2 ld s0,8(sp) ld s0,8(sp) lit+ 1->1 ld a5,0(ip) ld a5,104(ip)
addi ip,ip,8 1600 addi ip,ip,16

@ 2->2 ld s0,0(s0) ld s0,0(s0) add s7,s7,a5 add s7,s7,a5
addi ip,ip,8 r> 1->1 sd s7,0(sp) sd s7,0(sp)

over 2->3 mv s3,s7 mv s3,s7 addi sp,sp,-8 addi sp,sp,-8
addi ip,ip,8 ld s7,0(rp) ld s7,0(rp)

@ 3->3 ld s3,0(s3) ld s3,0(s3) addi ip,ip,8
addi ip,ip,8 addi rp,rp,8 addi rp,rp,8

* 3->2 mul s0,s0,s3 mul s0,s0,s3 (loop) 1->1 ld a5,0(rp) ld a5,0(rp)
addi ip,ip,8 start ld a4,8(rp) ld a4,8(rp)

r> 2->3 ld s3,0(rp) ld s3,0(rp) ld a3,0(ip) ld a3,128(ip)
addi ip,ip,8 addi a5,a5,1 addi a5,a5,1
addi rp,rp,8 addi rp,rp,8 addi a6,ip,8 sd a5,0(rp)

+ 3->2 add s0,s0,s3 add s0,s0,s3 beq a4,a5,end beq a4,a5,end
addi ip,ip,8 sd a5,0(rp)

>r 2->1 addi rp,rp,-8 addi rp,rp,-8 ld a4,0(a3) ld a4,0(a3)
addi ip,ip,8 addi ip,a3,8 mv ip,a3
sd s0,0(rp) sd s0,0(rp) jr a4 jr a4

swap 1->2 ld s0,8(sp) ld s0,8(sp) end: end:
addi ip,ip,8 addi ip,a6,8
addi sp,sp,8 addi sp,sp,8 sd a5,0(rp) 2

56



Optimize away most ip updates

• Normal case: Don’t insert ip-update

• Remember which threaded-code cell ip points to

• If ip must be up-to-date, insert ip-update
(Taken branch)
Superblock end
Calls
non-relocatable native code
immediate arguments (in some cases)

• Versions of ip-updates for 1–24 cells

• Versions of primitives with immediate arguments with varying ip offsets
lit call ?branch lit@ branch (loop) lit-perform lit+ does-xt

• No architecture-specific code
3

Instructions

b
e
n
c
h
g
c

b
ra

in
le

s
s

b
re

w
c
d
1
6
s
im

le
x
e
x

fc
p

s
ie

v
b
u
b
b
le

m
a
tr

ix
fi
b

ff
t-

b
e
n
c
h

p
e
n
to

m
in

o
s
h
a
5
1
2

b
e
n
c
h
g
c

b
ra

in
le

s
s

b
re

w
c
d
1
6
s
im

le
x
e
x

fc
p
s
ie

v
b
u
b
b
le

m
a
tr

ix
fi
b

ff
t-

b
e
n
c
h

p
e
n
to

m
in

o
s
h
a
5
1
2

b
e
n
c
h
g
c

b
ra

in
le

s
s

b
re

w
c
d
1
6
s
im le

x
e
x

fc
p

s
ie

v
b
u
b
b
le

m
a
tr

ix
fi
b

ff
t-

b
e
n
c
h

p
e
n
to

m
in

o
s
h
a
5
1
2

AMD64 ARM A64 RV64GC

instructions
left: unopt/stage1
right: unopt/opt

1

1.1

1.2

1.3

1.5

4

Performance (modern high-performance cores)

b
e
n
c
h
g
c

b
ra

in
le

s
s

b
re

w
c
d
1
6
s
im

le
x
e
x

fc
p

s
ie

v
b
u
b
b
le

m
a
tr

ix
fi
b

ff
t-

b
e
n
c
h

p
e
n
to

m
in

o
s
h
a
5
1
2

b
e
n
c
h
g
c

b
ra

in
le

s
s

b
re

w
c
d
1
6
s
im le

x
e
x

fc
p

s
ie

v
b
u
b
b
le

m
a
tr

ix
fi
b

ff
t-

b
e
n
c
h

p
e
n
to

m
in

o
s
h
a
5
1
2

b
e
n
c
h
g
c

b
ra

in
le

s
s

b
re

w
c
d
1
6
s
im

le
x
e
x

fc
p

s
ie

v
b
u
b
b
le

m
a
tr

ix
fi
b

ff
t-

b
e
n
c
h

p
e
n
to

m
in

o
s
h
a
5
1
2

zen3 rocketlake firestorm

cycles
left: unopt/stage1
right: unopt/opt

0.9

1

1.1

1.2

1.3

1.5

1.8

2.2

5
57



Questions

• Why is the speedup much higher than instruction reduction
(for some benchmarks)?

• Why only for some benchmarks?

• Why is the speedup of sha512 bigger on Firestorm?

6

Performance components

• Branch mispredictions (solved)

• Resource limitations

• VM data dependences

• sp-update dependences

• rp-update dependences

• ip-update dependences

7

Data flow graph of innerproduct

8
58



Why do we not see such speedups for all benchmarks?

loop-back

call call

call
return

return

return

9

Alternative: Keep do loop-back address on return stack

do
loop

loop
loop
loop
loop

10

Performance of do loop alternative vs. ip-update optimization

b
e

n
c
h

g
c

b
re

w
c
d

1
6

s
im

fc
p

s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

s
h

a
5

1
2

b
e

n
c
h

g
c

b
re

w
c
d

1
6

s
im

fc
p

s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

s
h

a
5

1
2

b
e

n
c
h

g
c

b
re

w
c
d

1
6

s
im

fc
p

s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

s
h

a
5

1
2

zen3 rocketlake firestorm

cycles
left: unopt/loops
right: unopt/opt

0.9

1

1.1

1.2

1.3

1.5

1.8

2.2

11
59



Why is the speedup of sha512 bigger on Firestorm? Stack caching!

b
e

n
c
h

g
c

b
ra

in
le

s
s

b
re

w
c
d

1
6

s
im

le
x
e

x
fc

p
s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

b
e

n
c
h

g
c

b
ra

in
le

s
s

b
re

w
c
d

1
6

s
im le

x
e

x
fc

p
s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

b
e

n
c
h

g
c

b
ra

in
le

s
s

b
re

w
c
d

1
6

s
im

le
x
e

x
fc

p
s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

b
e

n
c
h

g
c

b
ra

in
le

s
s

b
re

w
c
d

1
6

s
im

le
x
e

x
fc

p
s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

zen3 rocketlake firestorm firestorm-S01

cycles
left: unopt/stage1
right: unopt/opt

0.9

1

1.1

1.2

1.3

1.5

1.8

2.2

12

Conclusion

• Optimizing ip updates can be done portably

• Reduces executed instructions by ≈ 1.2×

• Increases performance by up to 2.2×
because ip-updates are the critical path in looping benchmarks
Alternative: optimize loops

• Synergy between stack caching and ip-update optimization

13

60


	Preface
	Contents
	Bill Stoddart and Frank Zeyda: Prospective values and Forth
	François Laagel: On Solving Hexadoku and Debugging Recursive Programs with Message Digests of the Data Stack
	Nick J. Nelson: Accessing an Oracle database using Forth
	Nick J. Nelson: A proposed standard Forth style enumeration word set, using recognisers
	M. Anton Ertl: Fix Spectre in Hardware! Why and How
	Glyn Faulkner: 4g and F.A.I.L.: Writing all the Forths
	M. Anton Ertl: The Performance Effects of Virtual-Machine Instruction Pointer Updates

