
How to Implement Words (Efficiently)

M. Anton Ertl∗
TU Wien

Abstract
The implementation of Forth words has to satisfy
the following requirements: 1) A word must be rep-
resented by a single cell (for execute). 2) A word
may represent a combination of code and data (for,
e.g., does>). In addition, on some hardware, keep-
ing executed native code and (written) data close
together results in slowness and therefore should be
avoided; moreover, failing to pair up calls with re-
turns results in (slow) branch mispredictions. The
present work describes how various Forth systems
over the decades have satisfied the requirements,
and how many systems run into performance pit-
falls in various situations. This paper also discusses
how to avoid this slowness, including in native-code
systems.

1 Introduction
We all know how to implement words efficiently,
as demonstrated by our Forth system implementa-
tions. Right?

When measuring various Forth systems for an-
other work [EP24, Figure 11], I found that Swift-
Forth 4.0.0-RC87 was surprisingly slow for some
benchmarks, in particular CD16sim (written by
Brad Eckert, part of the appbench benchmark
suite1). Eventually I found the reason for the slow-
ness of CD16sim, and reported the problem and its
cause to Forth, Inc. They swiftly released Swift-
Forth 4.0.0-RC89, which fixed the CD16sim slow-
ness and also produced significant speedups for sev-
eral other application benchmarks2 (see Fig. 1).

While the fix performed in 4.0.0-RC89 is enough
to make CD16sim perform as I expect from the
small benchmarks, there are still cases where var-
ious Forth systems (including SwiftForth) experi-
ence performance pitfalls. These problems have to

∗anton@mips.complang.tuwien.ac.at
1http://www.complang.tuwien.ac.at/forth/appbench.

zip
2Interestingly, the changes doe not speed up the 6 other

benchmarks I have used recently (siev, bubble, matrix, fib,
pentomino, and sha512); the source code for these 6 bench-
marks is smaller and less typical of idiomatic Forth source
code. This is a reminder that we should also look at applica-
tion benchmarks for evaluating the performance of a Forth
system.

b
e

n
c
h

g
c

b
ra

in
le

s
s

c
d
1

6
s
im

le
x
e

x
fc

p
s
ie

v
b
u
b

b
le

m
a
tr

ix
fi
b p
e
n
to

m
in

o
s
h
a
5

1
2

speedup
SwiftForth

RC89/RC87

1

2

4

Figure 1: Speedup of SwiftForth 4.0.0-RC89 over
SwiftForth 4.0.0-RC87 on a TigerLake CPU

do with the way words are implemented in these
Forth systems. So in this paper I look at various
ways to implement words, and how they are affected
by the performance pitfalls.

Section 2 discusses some of the performance pit-
falls of modern processors. Section 3 discusses re-
quirements of Forth words that have led system im-
plementors to fall into performance pitfalls. Sec-
tion 4 discusses the implementation techniques of
indirect-threaded code, which is the base of the de-
sign of many modern systems. Section 5 takes a
look at the variety of implementation techniques
in modern systems. Section 6 shows performance
results on a number of microbenchmarks, and dis-
cusses how these results stem from the performance
pitfalls. Finally, Section 7 discusses related work.

2 Performance pitfalls
There are various reasons why acceleration mecha-
nisms do not work every time. In the present work I
have encountered the following reasons, and, as we
can see, in many cases these reasons can be avoided.

2.1 False sharing between I and D-
cache

Caches do not cache each byte individually, but
larger units called cache lines, typically 64 bytes
long. This has advantages, such as reducing hard-
ware overhead and increasing the effectiveness of

http://www.complang.tuwien.ac.at/forth/appbench.zip
http://www.complang.tuwien.ac.at/forth/appbench.zip

Ertl How to Implement Words

the cache for spatial locality, but also a disadvan-
tage: false sharing [SB93]. If two pieces of data are
in the same cache line, but are accessed through
different coherent caches, and at least one of these
pieces of data is written to, a phenomenon known
as false sharing happens:

The write to the line in cache A will invalidate the
cache line in cache B through the cache-coherence
protocol. When the access (even just a read) to the
cache line in cache B happens, it will fetch the mod-
ified line from cache A through the cache-coherence
protocol, but depending on the protocol it may take
some (expensive) broadcasting to discover where
the up-to-date contents of the cache line is, so this
is expensive.

This mechanism is designed for communicating
data between cores, i.e., one core writes some data
and the other reads it (true sharing). When the
data accessed in the two caches is actually non-
overlapping, and just happens to be in the same
cache line by accident, this is known as false shar-
ing.

Normally false sharing is something that plagues
programmers of multi-threaded programs. But in
Forth we have been plagued by false sharing be-
tween the I-cache and the D-cache on architec-
tures that have coherent I-caches (these days, IA-
32, AMD64, and s390x), ever since separate I and
D-caches were introduced with the Pentium in 1993.
That is because many Forth systems place code
close to written data. As we will see, it is possi-
ble to avoid that.

Many systems have taken measures to eliminate
the common reasons for executed code being close
to written data, but in the absence of complete sep-
aration the problem rears its head in various not so
common cases, as we will see.

The cost of one cache ping-pong between I and
D-cache (i.e. one cycle of executing and storing)
seems to be on the order of 400 cycles on recent
Intel P-cores.

2.2 Return misprediction
Modern processors predict branches, and if the pre-
diction is correct, the branch is executed in 0–1
cycles. One of the branch predictors used is the
(hardware) return-address stack3 [KE91]: a call
pushes the return address on the return-address
stack, and the return instruction predicts that it
will branch to the address it has from the hardware
return stack. However, this prediction is later ver-
ified when the return instruction actually sees the
real return address (coming from (cached) memory
indexed through %rsp in case of the AMD64 ret
instruction).

3This is a microarchitectural mechanism that should not
be confused with the Forth return stack.

The return-address stack predicts very well if ev-
ery call is paired with a return to the predicted
address.

However, if the return address pushed by a call
is pulled and used for something else, and the next
return should return to the return address pushed
by an earlier call, the return will mispredict, as will
all the returns to even earlier calls. So pulling one
return address can lead to multiple mispredictions.
Likewise for the push-return technique for perform-
ing indirect branches.

Using a return address for something other than
returning is a venerable Forth implementation tech-
nique, as we will see, but on systems that use
hardware call and return for colon definitions, they
lead to slowness ever since hardware return-address
stacks were introduced in the 1990s.

Another venerable Forth implementation tech-
nique is to change the return address for skipping
over some data or code (e.g., in implementations of
sliteral); this results in one misprediction when
returning to the changed return address with the
return instruction, but at least the remaining hard-
ware return-address stack will still predict correctly.

The cost of a branch misprediction is on the order
of tens of cycles.

3 Requirements
Forth has certain requirements for the implemen-
tation of words. One is that some words do not
just have an execution semantics (i.e., code), but
in a number of words that execution semantics
refers to data that can be written to: the words
defined with create (without and with does>),
variable, 2variable, fvariable, buffer:, and
defer. Words defined with, e.g., field: may also
deal with data (depending on the implementation)
in addition to code, but that data is read-only, and
therefore should at least not lead to false sharing
problems.

Both the code and the data of a word are repre-
sented in a single cell, the execution token (xt) of a
word. In particular, execute needs to jump to the
code and that code needs to access the data.

The xt is also used for compile,. One might
use the same mechanism for performing compile,d
code as for execute, and in indirect-threaded code
that is done, but one can also make compile, more
intelligent and let it generate better code. This
means that compiled code may suffer less from pit-
falls than executed code.

The xt is also used for deferred words; it’s pos-
sible to use an optimizing mechanism here, but it’s
not clear that the deferred word is performed of-
ten enough relative to the number of is/defer!
changes to justify an optimizing mechanism. And

Ertl How to Implement Words

: bd bdoes> @ ;
: cd cdoes> @ ;
create x 0 ,
<builds y 0 , bd
create z 0 , cd

x header
dovar

0

next:
w = *ip
ip = ip+cell
ca = *w
jmp ca

dovar:
body=w+cell
push body on data stack
next

dobdoes:
body=w+2*cell
push body on data stack
push ip on return stack
doesfield = w+cell
ip=*doesfield
nexty header

dobdoes

bd-does
0

bd header
docol

(bdoes>)
@
;s

cd header
docol

(cdoes>)
call docdoes

@
;s

z header
cd-does

0

docdoes:
body=w+cell
push body on data stack
push ip on return stack
ip=pull from CPU stack
next

Figure 2: Implementation of words with associated
data in indirect-threaded code. Code field in bold,
native (pseudo-)code in red.

if we implement words, xts, and execute to avoid
performance pitfalls, a straightforward implementa-
tion of deferred words will also avoid these pitfalls.

4 Indirect-threaded code
This section explains how the requirements are met
in Forth systems that use indirect-threaded code.
The techniques used by several modern systems are
based on those used for indirect-threaded code.

Figure 2 shows the source code and implementa-
tion of three words x, y, and z and also some of the
defining words used for defining them. In indirect-
threaded code all execution, whether with execute
or running compile,d code, performs an indirect
jump to the address in the code field for every
word; the native code that is jumped to in this
way determines the behaviour of the word, so we

have docol for colon definitions, dovar for words
that push the body address (variables and created
words), docon for constants, etc.

X is a created word (without does>), so it has
dovar in the code field, which pushes the body ad-
dress of x. How does dovar achieve this? The
dispatch code of the previous word sets a register
(called W in the Forth literature) to point to the
code field. This happens on every path that jumps
to dovar, whether it is execute, dodefer, or, in com-
piled code, the next routine at the end of the pre-
vious word (next is shown in Fig. 2). Dovar then
computes the body address from w and pushes it
on the data stack. Other doers (e.g., docon) also
use w to get access to the data, or, in the case of
docol, to the threaded code.

4.1 Does>

Words with does>, such as y and z, require access
to the threaded code after the does> (the doescode)
in addition to access to the body and the native-
code doer. There have been two solutions used in
indirect-threaded code systems; this paper uses the
names bdoes> and cdoes> (and related names) to
make it clear which solution is meant.

The first one (used for y) reserves an additional
cell (the doesfield) right after the code field. The
doesfield points to the doescode. Y’s doer dobdoes
uses w to compute the body address (which starts
two cells after the code field for y) and to load the
address of the threaded code after the bdoes> from
the doesfield. Y is defined with <builds, which allo-
cates the additional cell for the doesfield. Bdoes> is
intended to be used with <builds, and you cannot
use it with create and get the usual results. Fig-
Forth provides <builds and a does> that is equiv-
alent to bdoes>.

The disadvantage of the <builds...bdoes> solu-
tion is the extra cell necessary for every word de-
fined with <builds. So Dean Sanderson [Moo80,
page 72] and Mike LaManna4 came up with the
alternative mechanism, shown here for z: Instead
of having an extra cell, let the code field of z point
right after the cdoes>; of course, there must still be
native code there, and we have to get to the doer,
so the usual approach is to put a native-code call to
the doer docdoes right after the (cdoes>), and let
that call be followed by the threaded code for the
Forth code after the cdoes>. Docdoes pulls the re-
turn address of the call, and since call is right before
the doescode, docdoes now has the doescode. As we
will see, this call-pull technique is still widespread
and is a major cause of false sharing and return
mispredictions.

The way that doescode is determined is the main
difference between docdoes and dobdoes.

4Thanks to Leon Wagner for reporting this contributor.

Ertl How to Implement Words

cd header
docol

(cdoes>)
jmp docdoes

@
;s

z header
cd-does

0

docdoes:
body=w+cell
push body on data stack
push ip on return stack
afterdoes=*w
ip=afterdoes+jmpsize
next

Figure 3: An implementation variant for cdoes>
that uses a jmp instead of a call.

Note that in threaded code, there are no call-
return pairs around this usage of call-pull, so you do
not see mispredicted returns from this usage. And
the machines for which this technique was invented
had no caches, and therefore no false sharing.

This approach works with create, so no addi-
tional <builds is needed, and it was therefore elim-
inated. This technique was introduced in the short
time between fig-Forth and Forth-79 and apparently
took the Forth world by storm. Forth-79 already
standardized create...does>.

5 Alternative implementation
techniques

5.1 Avoiding return mispredictions
Instead of having a call right after the cdoes>, one
can have a jump. Then recovering the address of
the code after the does> is not possible with a pull.
However, you can determine the address from w (see
Fig. 3).

5.2 Direct-threaded code (ITC style)
The same techniques used for cdoes> can also be
used for the code field in order to implement direct-
threaded code: Have a jump or call at the code field
that jumps to the doer, and then get the body ad-
dress either from w or with the call-pull technique.

This approach (using jumps) has been used
for direct-threaded code in Gforth up to Gforth
0.5 [Ert93]. These versions of Gforth use
direct-threaded code on selected architectures and
indirect-threaded code on all others.

For primitives, the threaded code points directly
to the native code of the primitive, not to a jump
or call. The advantage of this direct-threaded code
over indirect-threaded code is that there is one load
less in next; this benefit works for primitives, while
for other words the load is replaced by a jump or
call.

This approach puts a piece of native code just in
front of the body of every word, and if the body
is written to, this results in false sharing between
I-cache and D-cache. Therefore Gforth switched
to indirect-threaded code for architectures with co-
herent I-cache (in particular, IA-32); after Gforth
0.5 it switched to hybrid direct/indirect threading
[Ert02], which combines the benefits of both ap-
proaches.

5.3 Subroutine-threaded code
Many native-code systems conceptually are opti-
mized subroutine-threaded code systems [For20,
Section 5.1.1], and the way words are implemented
are often based on subroutine-threaded code.

In subroutine-threaded code a primitive is in-
voked through a native-code call, both for compiled
code and for execute. For words with data, these
systems use the same approach as direct-threaded
code: a call to the doer just before the data. If
the data is written, this results in a round of cache
ping-pong.

Another problem with this approach is that the
call-pull pattern for getting the body address hurts
in a subroutine-threaded system, because such a
system actually uses return instructions that are
then mispredicted.

Both problems do not just occur with words de-
fined with does>, but, like in direct-threaded code,
with all words with a doer and data (false sharing
only results in a slowdown on modern CPUs if the
data is written to).

SwiftForth and VFX Forth use this approach,
but they often avoid calling the words with data
in the body, and therefore both performance prob-
lems. However, in some cases they fail to avoid
these problems. The CD16Sim problem of Swift-
Forth 4.0.0-RC87 was one case where the problem
was not avoided, and it was fixed in RC89 by avoid-
ing it.

Could not at least the call-pull problem be
avoided in the same way as for direct-threaded
code? Unlike in direct-threaded code, no w register
is set when running compiled subroutine threaded
code. A workaround that works for both executed
and compiled code would be quite complex, and
given that there are other options (see below), to
my knowledge nobody has used such an approach.

5.4 Avoid body
One of the ways in which subroutine-threaded and
native-code systems reduce the problems is by re-
ducing the number of words where you need a doer
and data.

In particular, colon definitions are just called di-
rectly instead of through a doer.

Ertl How to Implement Words

x header
0 body=$2348

push body on data stack
return

cd header

z header
0

body=$3458
push body on data stack
jump $1234

tos=pull from data stack
tos=*tos
push tos on data stack
return

push $1234 on data stack
jump (does>)

Figure 4: Trampolines for x and z. While the
header points to the trampoline, this pointer is not
followed at run-time (so it is not a code field), but
at text-interpretation time. The code is shown as
pushing and popping, but usually this works with
registers

For words where the data does not change, in
particular, constants and field words, it is relatively
straightforward to generate native code for the be-
haviour of the word (including the data). E.g., a
constant c with the value 5 could be defined in a
way that results in the same code as

: c 5 ;

5.5 Trampolines
For the remaining words, instead of having just a
call or jump to the doer before the body of the
word and then needing some way to recover the
body address, we can provide the body address as
a literal and then jump to the doer. This technique
is called a trampoline in gcc, and is used there for
the same purpose: to represent a tuple of code and
data with just one address.

Once the body address is provided as a literal,
there is actually no need to put the trampoline right
in front of the data. Instead, it can be put any-
where, e.g., in a separate code section, or otherwise
away from frequently-written data (see Fig. 4).

This approach solves both the false-sharing prob-
lem and the return-misprediction problem. This is
a recommended approach. It is used by ntf/lxf (by
Peter Fälth) and by FlashForth5.

5.6 Intelligent compile,

In traditional indirect-threaded code, compile,
always performs ,, and in a simple subroutine-

5news:<c2588b8c811fd3ae75d3976c3a927fc3@www.
novabbs.com>

x header
0

cd header

z header
0

tos=pull from data stack
tos=*tos
push tos on data stack
return

push $1234 on data stack
jump (does>)

: foo z x ;

foo header

body=$3458
push body on data stack
call $1234
body=$2348
push body on data stack
return

Figure 5: Code compiled for foo with an intelligent
compile,.

threaded system, it compiles a call to the word.
An intelligent compile, generates code special-

ized for the word type or possibly even the individ-
ual word [Ert02, PE19]. In the present discussion,
an intelligent compile, can compile x as the literal
that pushes the body address of x, and z as the lit-
eral that pushes the body address followed by a call
to the doescode (not to z), see Fig. 5.

This means that in compiled code uses of x and z
result neither in false sharing nor in return mispre-
dictions. SwiftForth uses this approach for does>-
defined words since SwiftForth 4.0.0-RC89 and it
solves the CD16sim slowdown that earlier versions
suffered from.

With compile, implementations for dovar and
does>-defined words as suggested, the trampolines
for our examples can be generated by producing the
same code as:

:noname x ; \ trampoline for x
:noname z ; \ trampoline for z

In case you are wondering whether the tram-
poline is needed for this code generation: It is
not: X and z are only compile,d, not executed in
this code. Tail-call optimization is needed to turn
the call to the doescode for z into a jump to the
doescode.

One useful property of the intelligent compile,
is that it allows to use completely different mech-
anisms for compile, and execute. E.g., since
version 0.6 Gforth uses primitive-centric direct-
threaded code (plus a long list of optimiza-
tions based on that) for compile,d code, but
uses indirect-threaded dispatch for execute and
deferred words [Ert02].

If the different implementations of execute and
compile, lead to different dispatch mechanisms,
the trampoline-generating approach outlined above

news:<c2588b8c811fd3ae75d3976c3a927fc3@www.novabbs.com>
news:<c2588b8c811fd3ae75d3976c3a927fc3@www.novabbs.com>

Ertl How to Implement Words

x header
dovar

0

cd header
cdnative

z header
cddoes

0

execute:
w = pull from data stack
ca = *w
jump ca

dovar:
body = w+cell
push body on data stack
return

cdnative:
push $1234 on data stack
jump (does>)
cd-does:
tos=w+cell
tos=*tos
push tos on data stack
return

Figure 6: A native-code system with a code field
containing a code address (as in ITC)

does not work or needs to change. But ideally you
design the mechanism for execute such that tram-
polines are unnecessary (see Section 5.8)

However, the difference between the mechanisms
also means that just because we don’t see perfor-
mance problems in compiled code, does not mean
that they don’t appear in executed code. We will
see examples in Section 6. In particular, Swift-
Forth’s compile, avoids the performance problems
in compiled code in RC89, but such problems still
are present when executeing words.

5.7 Deferred words

A straightforward way to implement deferred is
with a simple one-cell body that contains the xt,
and that xt is invoked with the same kind of dis-
patch as execute. This results in all the perfor-
mance pitfalls of the execute implementation on
that system, but one can build a system without
such performance pitfalls, e.g., with trampolines,
so this is the recommended approach.

Another approach is to implement a deferred
word in a native-code system as a jump to the cur-
rent target of the deferred word. This means that
is (and defer!) change the code, resulting in true
sharing between the data and instruction cache,
which causes slowdowns on all architectures, and
cannot be eliminating by separating code and data.
Lxf-1.6 uses this approach.

5.8 Native-code address field
Fforth6, which is in its infancy, is going to be a
native-code system that uses a code field that con-
tains the code address for use with execute and for
deferred words. The dispatch of execute and for
calling deferred words first sets w to the code field
address (CFA), then loads the contents of the CFA
(the code address), and jumps to the code address.
The doer then can determine the body from the
contents of w, like in indirect-threaded code. Since
Fforth is a native-code system there is no difference
between a system-defined doer and the doescode;
the doescode starts with computing the body from
w, and making the body the top-of-stack, then con-
tinues with the native code for the Forth code after
the does>.

For compiled code, Fforth uses an intelligent
compile,. A simple way to call a word is to load
the CFA of the compile,d word into w and then
call the doer, but I expect that in most cases faster
implementations will be used. See Fig. 6.

This approach can avoid all the usual perfor-
mance pitfalls of native-code systems, just like the
trampoline, but costs only one data cell per word,
whereas the trampoline approach typically con-
sumes more memory and is a little more work to
implement.

5.9 Always have a doesfield
Memory is no longer as tight as when
create...does> was introduced at the end of
the 1970s, so Gforth has had two cells between
the header of a word and its body from the get-go
in 1992; in indirect-threaded code engines before
the new header [PE19], the first cell is used for
the code field and the second cell is used for the
doesfield [Ert93], always allowing to use bdoes> for
such engines, rather than the cdoes> variants used
with direct-threaded code engines.

With the new header, there are again two cells in
the neck: the code field, and the hm field (header
methods, which we previously called vt [PE19]).
Hm points to a method table that contains the does-
field as one of its fields. This means that dodoes
performs one more indirection for getting to the
doescode than with the old header. However, in
the usual case (compiled code) the extra indirec-
tion is resolved at compile time, so it does not cost
in that case.

5.10 Double-indirect threaded code
Returning to threaded-code systems, another way
to deal with the need in does>-defined words for

6https://github.com/AntonErtl/fforth

https://github.com/AntonErtl/fforth

Ertl How to Implement Words

doer, body, and doescode without needing a does-
field is to repeat the benefit of the indirection in
indirect-threaded code by introducing another indi-
rection [Ert02]. The xt in w is close to the body,
w @ (stored in w2) is close to the doescode, and
w2 @ points to dodoes, which is then performed
and accesses the body through w and the doescode
through w2.

This approach would cost an additional indirec-
tion over indirect-threaded code on every execute
or deferred word, but the idea was that this would
not happen for compiled code, because that would
use direct-threaded code [Ert02]. We did not go
with this approach in Gforth, and instead stayed
with always having a doesfield. To my knowledge,
nobody has implemented this approach.

6 Measurements
This section presents some microbenchmarks and
reports how different systems perform. As always,
microbenchmarks are not intended to represent ap-
plication performance, but to shine a spotlight on
certain performance characteristics.

The measurements were done on a Xeon E-2388G
(Rocket Lake); I measured similar results on a
Golden Cove and a Tiger Lake (all three are Intel P-
cores). The Forth systems measured are gforth-fast
0.7.9_20240817 (gforth), iforth 5.1-mini (iforth),
lxf 1.6-982-823 (lxf-1.6), SwiftForth 4.0.0-RC89 (sf
RC89), SwiftForth 4.0.0-RC87 (sf RC87) and VFX
Forth 64 5.43 (vfx). When both SwiftForth versions
produced similar results, only one of them is shown,
under the name sf.

Shortly before EuroForth, I also received lxf 1.7-
172-983 from Peter Fälth, and I repeated the mea-
surements of deferred words with that, and list the
results of the new version as lxf-1.7.

The columns shown are the cycles, instructions, I-
cache load misses, D-cache load misses, and branch
mispredictions performed per iteration of the mi-
crobenchmark.

Here are the Forth words that the microbench-
marks measure:

create x 0 ,

: d1 ("name" --)
create 0 ,

does> (-- addr)
;

d1 z1

: d2 ("name" --)
create 0e f,

does> (--)
1e dup f@ f+ f! ;

d2 z2

0 constant my0

defer w ’ my0 is w

For each of the words x, z1 and z2 there
is a microbenchmark that compiles it and one
that executes it. Moreover, for w we have two
comp/exec pairs of microbenchmarks: One that
changes what w performs once per invocation of w;
and one that keeps that word always the same.

6.1 The original problem
: bench-z1-comp (--)

iterations 0 ?do
1 z1 +!

loop ;

cache misses branch
cycles inst. I D mispred system

8.2 34.0 0.0 0.0 0.0 gforth
9.0 6.6 0.0 0.0 0.0 iforth
6.4 15.0 0.0 0.0 0.0 lxf-1.6
6.5 14.0 0.0 0.0 0.0 sf RC89

434.2 15.0 2.0 2.0 1.0 sf RC87
7.7 4.6 0.0 0.0 0.0 vfx

This is the microbenchmark inspired by CD16sim.
SwiftForth RC87 suffers from false sharing and mis-
predicted returns, and RC89 fixed that problem.

6.2 ... and it’s execute variant
: bench-z1-exec (--)

[’] z1 iterations 0 ?do
1 over execute +!

loop
drop ;

cache misses branch
cycles inst. I D mispred system

9.4 41.0 0.0 0.0 0.0 gforth
16.5 49.6 0.0 0.0 0.0 iforth
7.0 17.0 0.0 0.0 0.0 lxf-1.6

431.1 24.0 2.0 2.0 1.0 sf
449.8 17.6 2.0 2.0 1.0 vfx

When executeing z1, both sf and vfx suffer from
false sharing and return mispredictions thanks to
using the call-pull technique.

Ertl How to Implement Words

6.3 Is VFX always fine on compiled
code?

: bench-z2-comp (--)
iterations 0 ?do

z2
loop ;

cache misses branch
cycles inst. I D mispred system

15.4 42.0 0.0 0.0 0.0 gforth
11.4 9.6 0.0 0.0 0.0 iforth
12.1 17.0 0.0 0.0 0.0 lxf-1.6
12.6 17.0 0.0 0.0 0.0 sf RC89

248.8 22.0 2.0 1.0 1.0 sf RC87
231.6 15.6 1.0 1.0 1.0 vfx

One might expect that z2 has the same performance
pitfalls as z1, and that’s roughly true for the Swift-
Forth variants. However, VFX manages to avoid
the performance pitfalls for z1 with inlining, but in
the z2 case the FP code apparently disables inlin-
ing in VFX, it calls the call in the header of z2, and
therefore suffers from the usual slowdowns of the
call-pull technique.

6.4 What about iForth?
: bench-z2-exec (--)

[’] z2 iterations 0 ?do
dup execute

loop ;

cache misses branch
cycles inst. I D mispred system

10.4 49.0 0.0 0.0 0.0 gforth
449.5 49.6 2.0 2.1 0.0 iforth
13.5 19.0 0.0 0.0 0.0 lxf-1.6

428.3 26.0 2.0 2.0 1.0 sf RC89
249.5 30.0 2.0 1.0 1.0 sf RC87
228.2 16.6 1.0 1.0 1.0 vfx

Looking at the code, iforth seems to use the call-
pull technique, too, and therefore suffers from false
sharing; it does not suffer from return mispredic-
tions, because it does not use ret for implementing
Forth’s exit and ;.

It’s unclear why the two sf versions produce such
differences in the number of cycles; a wild guess
is that the actual slowdown depends on the exact
placement of the word within the cache line. In any
case, neither result is good, and we should try to
avoid even the smaller slowdown.

6.5 Compiled created words are fast
: bench-x-comp (--)

iterations 0 ?do
1 x +!

loop ;

cache misses branch
cycles inst. I D mispred system

6.9 11.0 0.0 0.0 0.0 gforth
8.6 6.6 0.0 0.0 0.0 iforth
7.8 5.0 0.0 0.0 0.0 lxf-1.6
1.4 3.0 0.0 0.0 0.0 sf
7.7 4.6 0.0 0.0 0.0 vfx

None of the systems exhibit a big performance prob-
lem for a compiled created word, but the perfor-
mance of iforth, lxf-1.6, and vfx may still merit an
investigation.

6.6 ... but once you execute ...
: bench-x-exec (--)

[’] x iterations 0 ?do
1 over execute +!

loop drop ;

cache misses branch
cycles inst. I D mispred system

7.0 28.0 0.0 0.0 0.0 gforth
16.5 49.6 0.0 0.0 0.0 iforth
6.0 17.0 0.0 0.0 0.0 lxf-1.6

442.8 24.0 2.0 2.0 1.0 sf
221.1 17.6 1.0 1.0 1.0 vfx

Both sf and vfx run into false sharing here, as well
as a return misprediction.

6.7 What about defer and is?
: bench-w-comp (--)

[’] my0 [’] drop iterations 0 ?do
w over is w

loop
2drop ;

cache misses branch
cycles inst. I D mispred system

7.0 22.5 0.0 0.0 0.0 gforth
9.2 19.6 0.0 0.0 0.0 iforth

427.0 21.5 2.0 1.0 0.3 lxf-1.6
6.7 10.5 0.0 0.0 0.0 lxf-1.7

435.9 19.5 2.7 2.0 1.0 sf
205.3 11.1 1.0 1.0 0.5 vfx

In this benchmark sf and vfx suffer from false shar-
ing and return misprediction resulting from the call-
pull technique.

Lxf-1.6 suffers from true sharing due to writing
to the jump that is then executed. CPUs also
don’t have as good branch prediction mechanisms
for code that patches jumps as they have for indirect
branches, so the patching results in a significant in-
crease in branch mispredictions compared to, e.g.,
Gforth, which uses an indirect jump in dodefer and
lit-perform (the primitive used by the compile,
implementation of deferred words).

Ertl How to Implement Words

Lxf-1.7 uses the indirect jump approach, and
therefore does not suffer from the performance pit-
falls of lxf-1.6.

6.8 ... in combination with execute

: bench-w-exec (--)
[’] w dup [’] my0 [’] drop
iterations 0 ?do

3 pick execute over is w
loop
2drop drop ;

cache misses branch
cycles inst. I D mispred system

6.9 28.5 0.0 0.0 0.0 gforth
16.4 40.6 0.0 0.0 0.0 iforth

429.0 22.5 2.0 1.0 0.3 lxf-1.6
11.1 15.5 0.0 0.0 0.0 lxf-1.7

445.2 28.5 2.5 2.0 1.0 sf
228.9 21.1 1.0 1.0 1.5 vfx

The results in this case are very similar to the
bench-w-comp case, but vfx suffers from an addi-
tional return misprediction: it’s execute implemen-
tion uses push-ret instead of an indirect branch to
branch to its target.

6.9 What about defer without is?

: bench-w-nois-comp (--)
iterations 0 ?do

w drop
loop ;

’ z1 is w bench-w-nois-comp

cache misses branch
cycles inst. I D mispred system

8.4 35.0 0.0 0.0 0.0 gforth
15.5 42.6 0.0 0.0 0.0 iforth
5.4 12.0 0.0 0.0 0.0 lxf-1.6
5.0 12.0 0.0 0.0 0.0 lxf-1.7

29.4 16.0 0.0 0.0 1.0 sf
27.2 11.6 0.0 0.0 1.0 vfx

In this microbenchmark no data is written, so there
is no cache-consistency traffic from false or true
sharing. This allows us to see the undiluted penalty
of the return mispredictions resulting from call-pull
in SwiftForth and VFX.

This is the best case for the lxf-1.6 defer imple-
mentation (patching jump), but the fact that the
more mainstream lxf-1.7 defer implementation is
just as fast (actually slightly faster) even in this
case means that the cost of cache consistency traf-
fic from the jump-patching implementation cannot
be compensated, even if is is used rarely.

6.10 ... in combination with execute

: bench-w-nois-exec (xt --)
iterations 0 ?do

dup execute drop
loop
drop ;

’ z1 is w ’ w bench-w-nois-exec

cache misses branch
cycles inst. I D mispred system

8.4 41.0 0.0 0.0 0.0 gforth
25.5 62.6 0.0 0.0 0.0 iforth
6.0 13.0 0.0 0.0 0.0 lxf-1.6

10.0 17.0 0.0 0.0 0.0 lxf-1.7
32.2 24.0 0.0 0.0 1.0 sf
65.9 21.6 0.0 0.0 2.0 vfx

With execute, vfx suffers from an additional mis-
prediction per iteration, which is reflected in the
cycle count.

Lxf-1.7 takes 4 instructions more and consumes
4 cycles more per iteration than lxf-1.6 for this mi-
crobenchmark. I looked at the resulting code, and
communicated some improvement suggestions7 to
Peter Fälth; he then produced three implementa-
tion variants for deferred words that perform this
benchmark in 13–14 instructions and 7 cycles, and
two of them perform as well or better than lxf-1.7
on the other defer-based microbenchmarks. This
demonstrates that the disadvantage of a defer im-
plementation that uses indirect jumps can be made
very small in the cases where the deferred word is
executed or called through another deferrred word,
too. The code for implementing these variants con-
sisted of a few lines each.

7 Related work
While indirect-threaded code has been used in
Forth by 1971 at the latest, the canonical papers on
direct-threaded code [Bel73] and indirect-threaded
code [Dew75] came only later.

Kogge [Kog82] describes the path from
subroutine-threaded code to indirect-threaded
code (and the benefits of these steps in the
memory-constrained systems of the time).

The Forth mainstream went the other direction
and went to direct-threaded code [Ert02] and dy-
namic superinstructions (a kind of native code)
with stack caching [EG04] in Gforth, or for native-
code compilers in iForth, lxf, SwifthForth, and VFX
Forth. The reasons are that with increasing RAM
size the pressure to minimize program memory be-
came smaller; moreover, with increasing cell size the

7Generate specialized code for the deferred word rather
than using a trampoline to a generic dodefer, and eliminate
a tail call while doing that.

Ertl How to Implement Words

size advantage of threaded code dwindled or even
became a size disadvantage.

While there are several works describing the
header structure and execution mechanisms of
early Forth systems [Moo74, Kog82, Tin13b, Zec84,
Tin13a, Tin17], most widely-used systems since
the 1990s except Gforth [Ert93, Ert02, PE19] have
seen relatively little material published about the
parts that correspond to the inner interpreter in
a threaded-code system. Faulkner has sketched a
generator that allows exploring a variety of imple-
mentation options [Fau23].

Scott and Bolosky [SB93] quantified the cost of
false sharing. Kaeli and Emma [KE91] proposed
the return-address stack for predicting return tar-
gets, which appeared in actual hardware a few years
later.

8 Conclusion
For subroutine-threaded and native-code compil-
ers, the trampoline approach avoids problems with
cache consistency and return mispredictions. An al-
ternative is to use a code field even in a subroutine-
threaded or native-code system.

Either approach is best combined with an intelli-
gent compile, for efficient compiled code.

Deferred words should be implemented with an
indirect jump (or call) rather than a direct jump
that is patched by is.

References
[Bel73] James R. Bell. Threaded code. Communi-

cations of the ACM, 16(6):370–372, 1973.
7

[Dew75] Robert B.K. Dewar. Indirect threaded
code. Communications of the ACM,
18(6):330–331, June 1975. 7

[EG04] M. Anton Ertl and David Gregg. Combin-
ing stack caching with dynamic superin-
structions. In Interpreters, Virtual Ma-
chines and Emulators (IVME ’04), pages
7–14, 2004. 7

[EP24] M. Anton Ertl and Bernd Paysan. The
Performance Effects of Virtual-Machine
Instruction Pointer Updates. In Jonathan
Aldrich and Guido Salvaneschi, editors,
38th European Conference on Object-
Oriented Programming (ECOOP 2024),
volume 313 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages
14:1–14:26, Dagstuhl, Germany, 2024.
Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. 1

[Ert93] M. Anton Ertl. A portable Forth engine.
In EuroFORTH ’93 conference proceed-
ings, Mariánské Láznè (Marienbad), 1993.
5.2, 5.9, 7

[Ert02] M. Anton Ertl. Threaded code varia-
tions and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002. 5.2, 5.6, 5.10, 7

[Fau23] Glyn Faulkner. 4g and FAIL. In 39th Eu-
roForth Conference, 2023. 7

[For20] Forth, Inc. SwiftForth Reference Manual,
2020. 5.3

[KE91] David R. Kaeli and Philip G. Emma.
Branch history table prediction of moving
target branches due to subroutine returns.
In The 18th Annual International Sympo-
sium on Computer Architecture (ISCA),
pages 34–42, Toronto, 1991. 2.2, 7

[Kog82] Peter M. Kogge. An architectural trail to
threaded-code systems. Computer, pages
22–32, March 1982. 7

[Moo74] Charles H. Moore. Forth: A new way to
program a mini-computer. Astron. Astro-
phys. Suppl., 15:497–511, 1974. 7

[Moo80] Charles H. Moore. FORTH, the last ten
years and the next two weeks. Forth Di-
mensions, I(6):60–75, March/April 1980.
4.1

[PE19] Bernd Paysan and M. Anton Ertl. The
new Gforth header. In 35th EuroForth
Conference, pages 5–20, 2019. 5.6, 5.9,
7

[SB93] M. Scott and W. Bolosky. False shar-
ing and its effect on shared memory
performance. In Proceedings of the
USENIX Symposium on Experiences with
Distributed and Multiprocessor Systems
(SEDMS), volume 57, page 41, 1993. 2.1,
7

[Tin13a] C.H. Ting. Inside F83. Offete Enterprises,
fourth edition, 2013. 7

[Tin13b] C.H. Ting. Systems Guide to figForth. Of-
fete Enterprises, third edition, 2013. 7

[Tin17] C.H. Ting. Footsteps in an Empty Valley.
Offete Enterprises, fourth edition, 2017. 7

[Zec84] Ronald Zech. Die Programmiersprache
FORTH. Franzis, München, first edition,
1984. In German. 7

	Introduction
	Performance pitfalls
	False sharing between I and D-cache
	Return misprediction

	Requirements
	Indirect-threaded code
	Does>

	Alternative implementation techniques
	Avoiding return mispredictions
	Direct-threaded code (ITC style)
	Subroutine-threaded code
	Avoid body
	Trampolines
	Intelligent compile,
	Deferred words
	Native-code address field
	Always have a doesfield
	Double-indirect threaded code

	Measurements
	The original problem
	... and it's execute variant
	Is VFX always fine on compiled code?
	What about iForth?
	Compiled created words are fast
	... but once you execute ...
	What about defer and is?
	... in combination with execute
	What about defer without is?
	... in combination with execute

	Related work
	Conclusion

