
This ref: Proceedings of the 1994 EuroForth Conference, Winchester, 5th - 8th September 1994. pp17-22
φ note : the author may be now contacted at chrisb@cs.york.ac.uk

The Effects Of Local Variable
Optimisation In A C-Based Stack

Processor Environment.

C. BAILEY, R. SOTUDEH, and
 M. OULD-KHAOUA

SST, University of Teesside, Middlesbrough,
Cleveland, TS1 3BA, UK.

 (email: c.bailey@teesside.ac.uk) φ see note below

ABSTRACT:

Stack based processors, traditionally associated with
the FORTH language, have many advantages not
reflected in contemporary RISC and CISC register
file processors. However, current trends indicate
that high level languages, such as C, may become
important for future real time and distributed
systems. If the advantages of stack processor
hardware are to be retained, the issue of efficient
HLL execution in a stack based context must be
investigated.

Local Variable management, and its efficient
support in hardware, are a prime concern in
developing efficient stack based computation for
HLL's. Recent work by Phil Koopman has suggested
that local variables may be virtually eliminated by
compiler optimisation techniques.

In this paper we present results from an initial
investigation of Koopman`s intra-block algorithm
and examine its impact on the data stack behaviour
of compiled C, an area previously ignored.
Consideration is also given to the application of
generalised data scheduling in a FORTH context.
The results are presented, and their implications for
processor design are discussed.

1. INTRODUCTION

Stack based processors have many advantages that
register file architectures cannot claim to match:
Fast interrupt response, low context switch
overhead, and minimal procedure call penalties all
lend themselves to modular but efficient code
execution. FORTH, a stack based language,
exploits these features to the full, and has all the
added advantages of a low level interpretative
environment for control systems development.

Current trends indicate that high level languages,
such as C, may become important for future real-
time and distributed systems. Future real-time
system environments may demand many of the
concepts found both in C and FORTH. If the
advantages of stack processor hardware are to be
retained in future programming environments, the

issue of hardware support for HLL features must be
addressed. With this objective in mind, our research
programme1 has centred upon the design of a new
stack processor, with enhanced HLL
features[Bail93a],[Bail94a].

Our latest findings are concerned with an initial
investigation of the impact of Koopman`s intra-
block scheduling algorithm, and its effects on
dynamic stack behaviour during program execution.
The impact of scheduling is complex, and its
efficiency is not simply a measurement of net local
variable reduction.

2. INTRA-BLOCK SCHEDULING.

In a recent paper [Koop92], Phil Koopman proposed
two mechanisms by which local variables may be
eliminated from C-code compiled for a stack
processing environment. The 'global' algorithm was
applied only by hand, proposing no clear method for
automation, hence we have yet to implement this
technique. The 'intra-block' algorithm was however
well described, and implementation for our
architecture proved to be relatively easy.

Intra-Block scheduling is an algorithm that attempts
to eliminate local variable references only within the
scope of a basic block. This we define as being
bounded by an assembler label and a block
terminator, such as Exit, Branch, or Call. An
example of code scheduling is given in Fig.1.

@loc 0
!loc 2
lit 0

@loc 1
add
@loc 0
div
!loc 2
exit

@loc 0

@loc 1
add

- - - -

swap
div
!loc 2
exit

dup

- - - -

Locals : 5 Locals : 3

Raw Code Optimised

Instr. : 9 Instr. : 8

- - - -

Fig.1, Example of local elimination for (a+b)/a.

Code is optimised in two ways: If two stores are
made to the same local variable, yet no intervening
use of the 1st stored value is encountered, then a
'dead store' exists. The first store is then replaced by
a drop and later removed by a peephole optimiser.
If any local fetch is preceded by a fetch or store to
the same local, then there is an opportunity to

This ref: Proceedings of the 1994 EuroForth Conference, Winchester, 5th - 8th September 1994. pp17-22
φ note : the author may be now contacted at chrisb@cs.york.ac.uk

duplicate the item on the data stack at the point of
the preceding reference by placing it some way
down the stack. The second reference becomes
redundant and is typically replaced by using swap or
rot to bring the duplicate item to the top of stack.

Previous investigation was limited to an analysis of
local variable counts, and their reduction by
scheduling, yet showed an impressively high level
of redundant local variable elimination.

3. GENERALISED SCHEDULING: FORTH?

Although the intra-block scheduling concept was
proposed as a means of optimising local variables in
a C-oriented programming environment,
generalisations may be made which are applicable
to FORTH and indeed any stack based target code.

The benefit of scheduling is to eliminate repeated
memory access to unchanged data values. We may
generalise this to include both statically declared
variables, and constants, not just variables local to a
C procedure. FORTH variables that are statically
declared can be scheduled in a similar fashion to a
C-code local, and long constants may also benefit
from this approach. An example is given in Fig.2.

Raw Code

: func NumA @ NumB @
 +
 NumA @
 /
 Num3 ! ;

Optimised

: func NumA @ dup NumB @
 +
 Swap
 /
 Num3 ! ;

Repeated
Fetch

Scheduled
data object

Fig.2, Scheduling ((a+b)/a) in a FORTH context.

Repeated use of the statically declared variable
NumA allows application of scheduling. Constants
and long literals can be treated similarly with
potential benefits for speed and code density.

This is of course a trivial case, optimised intuitively
by most FORTH programmers. However, complex
situations may result in missed opportunities, which
a scheduling tool might exploit. Perhaps this is even
more likely with global scheduling techniques.

Even if we assumed that a human programmer will
always better an automated algorithm the effects of
this scheduling upon data stack behaviour, from an
architectural viewpoint, do not normally enter into
the mind of the programmer when evaluating an
optimisation. The result, in a real system, may not
be as expected once the potentially adverse effects
on stack behaviour are accounted for.

4. SCHEDULING TRADE-OFFS

Trade-offs exists with this algorithm that require
some understanding of stack processor hardware.
Since most stack processors maintain some top-of-
stack registers on chip, and minimise stack register
spillage by use of stack buffers [Bail93b],[Stan87],
then keeping copies of local variables on the data
stack may not cost anything in terms of memory
references. In contrast, a direct read or write to a
local variable, which would typically be held in a
memory-resident third stack, incurs a memory
access penalty for every occurrence and a
corresponding loss of performance.

It may seem that placing local variables on the data
stack at all costs would eliminate all memory-
resident local variable accesses. However, we must
be careful to avoid making arbitrarily deep stack
accesses commonplace, this cannot be supported in
hardware without complication of stack processor
data paths, and could result in verbose and
inefficient code. Hence all scheduling opportunities
must limit themselves to a scope of reference equal
to that of the discrete top-of-stack register set, which
is four registers in the case of the University of
Teesside Stack Architecture (UTSA).

5. THE TEESSIDE IMPLEMENTATION OF
INTRA-BLOCK SCHEDULING.

Our research group constructed a 3 phase optimiser
for intra-block scheduling. The phases are:

• Local Fetch Elimination.
• Dead Store Elimination.
• Peephole Optimisation.

Dead store removal must come after local fetch
elimination, in order to preserve the maximum
number of optimisable references for fetch
optimisation. Optimisable variable pairs are ranked
according to Koopman`s criteria. Ranking is
repeated after each individual optimisation.

In most cases each optimisation replaces a single
local reference with 1 or 2 manipulation

This ref: Proceedings of the 1994 EuroForth Conference, Winchester, 5th - 8th September 1994. pp17-22
φ note : the author may be now contacted at chrisb@cs.york.ac.uk

instructions. However, with several optimisations
within a basic block, the new instructions often
cancel each other out after peephole optimisation.

As a result of applying efficient peephole
optimisation, we found that program size increased
by only 1 or 2 % for static code length, with net
increases in dynamic instruction counts ranging
from 2 to 8 % of total instruction path length.

6. SCOPE OF ASSESSMENT.

Of eight programs tested originally, two proved
unoptimisable with intra-block scheduling. A third,
the ackerman benchmark, had too much stack data
to include in our graphs. One unoptimisable
program was kept in the set to avoid biasing results.
The remaining programs studied here are:

• Bubble sort of 100 ranked integers.
• Eratosthenes Sieve algorithm.
• Fibonacci Recursion (20th number).
• Image Smoothing of 100×100 pixels.
• Factorial Recursion (10th factorial).
• Empty Loop (unoptimisable).

Although our test programs are rather limited they
were all automatically generated by a C compiler2,
and contained a reasonable range of local variable
useage. We found an average 3:1 ratio of fetch to
store to be typical. The initial distribtion of locals as
a percentage of static code is shown in Fig.3.

The results were analysed in a number of ways,
reflecting the direct and indirect effects of
scheduling. Dynamic execution statistics were
gathered using the group`s UTSA simulator. The
following sections discuss these results and their
implications for machine design.

0
10
20
30
40
50

fib
sie

ve
elo

op fac
t

im
ge bs

ort

Fetch Local Store Local

Fig.3. Locals as a percentage of program code.

7. DIRECT EFFECTS OF SCHEDULING.

7.1 Static Variable Utilisation.

The most direct measurement of the effects of intra-
block scheduling can be seen in Fig.4, which shows
the static reduction in local variable occurrence.

0

10

20

30

40

50

fib sieve eloop fact imge bsort

Fig.4 Reduction in locals for static code.

Results are not as impressive as Koopman`s own
results (60-80% reduction), but this is both
dependant upon the initial compiler output quality,
and the selection of benchmarks. Setting this aside,
the impact of intra-block scheduling appears to be
significant in some cases at least.

7.2 Dynamic Local Utilisation.

A more realistic measure of performance of the
algorithm is to estimate the reduction in local
variable references actually issued, rather than a
simple count of thier occurrence in a program file.
(see Fig.5).

As might be expected, the overall reduction in local
variable references was not identical to static
figures. The effect of loops and repeated procedure
calls distort the true utilisation of locals. Dynamic
counts of local utilisation show a 10-60% reduction.

0

10

20

30

40

50

60

fib sieve eloop fact imge bsort

Local Access All Mem Access

Fig.5. % Dynamic reduction locals/memory refs.

This ref: Proceedings of the 1994 EuroForth Conference, Winchester, 5th - 8th September 1994. pp17-22
φ note : the author may be now contacted at chrisb@cs.york.ac.uk

Also shown in Fig.5, is the reduction in overall
memory access, which are partly local variable
references, but also array and data accesses.

7.3 Speed-up In Program Execution.

The ultimate goal of scheduling locals is to speed up
program execution. We observed this execution
speed-up for five of the six benchmarks, as indicated
in Fig.6. Empty-loop was the exception, being
unoptimisable with the intra-block algorithm.

Stack buffer effects were not included in the
simulations, but a stack buffer of 16 elements, often
quoted as a good choice [Hayes87], would in any
case eliminate buffer spills in the cases presented.

Execution speed-up ranged from 5-27%, being
highly dependant upon the number of locals
available for optimisation, and the size and
frequency of basic blocks in the program code.

0

5

10

15

20

25

30

fib sieve eloop fact image bsort

Fig.6. % Speed increase.

Programs with long complex basic blocks gain more
than the short simple blocks of programs such as
"empty-loop". More complex benchmarks including
C library code could show more significant gains.

Also our compiler was found to be inefficient in its
code structuring, with frequent unconditional
branches to code fragments that could be removed
by re-ordering the basic blocks generated.

Compiler techniques such as in-line code expansion
of small basic blocks would increase the opportunity
for intra-block scheduling, possibly without
significant increases in code size once peephole
optimisation is applied.

However, we still feel that some form of global
scheduling is ultimately essential to maximise the
efficiency of C-code.

8. INDIRECT EFFECTS OF SCHEDULING.

Phil Koopman`s original study of local variable
scheduling was limited to an analysis of the
algorithm itself, presenting results of its
effectiveness in reducing local variable frequencies.

The absolute effects of local variable reduction are a
clear indication of the effectiveness of the algorithm
in its own right, but do not necessarily imply an
equal performance gain. By changing the nature of
program execution, we may neccesitate a re-
appraisal of hardware for maximum throughput.

In our previous publications we have emphasised
studies of dynamic machine-stack behaviour, and
presented figures for the general behaviour of
programs in a stack based computational
environment [Bail93b],[Bail94a]. It therefore
seemed appropriate to examine the effects of
variable scheduling on the dynamic run-time
behaviour of the program code at a low level.

Several measurements are of importance in terms of
optimum stack processor design, we shall now
discuss them.

8.1 Data Stack Depth Probability.

The characteristic of data stack depth is important
in understanding the behaviour of a buffered stack
system. A high probability of a narrow band of
depth values would represent stack depth variations
that are easy to accommodate in a small stack
buffer. Conversely, a widespread distribution of
stack depths would imply that larger transitions in
stack depth are likely, leading to poorer
performance for stack buffers.

0 1 2 3 4 5 6 7 8 9 1011 12

Unoptimised
Scheduled0

5

10

15

20

Fig.7. Stack depth Probability

Simulating each of our chosen programs, using our
own UTSA simulator tool, allowed us to measure
the stack depth of each program after each

This ref: Proceedings of the 1994 EuroForth Conference, Winchester, 5th - 8th September 1994. pp17-22
φ note : the author may be now contacted at chrisb@cs.york.ac.uk

instruction cycle before and after applying intra-
block scheduling. The results are plotted in Fig.7.

We found that the probability of given stack depth
for unoptimised C-compiler output had a graceful
curve, with the probability of stack depth decaying
with increased size. The major part of program
execution was spent in a stack depth region of 0 to
5, the initial peak of the 'unoptimised' curve (Fig.7).

Application of local variable scheduling to the C-
code modified the stack depth characteristics
considerably. The overall trend remained
downward, but the distribution of stack depths is
much broader and more significant for large depths.

8.2 Impact on stack depth change.

The probability of the data stack being a certain
depth was considered in section 8.1, now we
consider the probability of a change in stack depth
during program execution. Two measurements were
made: the average effect of individual instructions
(atoms), and the effects of a run of stack operators
that increase or decrease stack depth over a series of
instructions (spans).

0

10

20

30

40

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Atom Span

Fig.8a, Stack depth changes for Un-scheduled code.

0

10

20

30

40

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Atom Span

Fig.8b, Stack depth change after Scheduling.

In Fig.8a we can see that the atom changes in stack
depth consist almost exclusively of stack depth
changes of ±1 element. The atom depth change
probability for the scheduled code (Fig.8b) is quite
similar, but the number of operations increasing
stack depth has reduced in favour of operators that
have no net effect on stack depth, such as swap.

The span of stack depth changes tells a more
convincing story of stack scheduling effects.
Whereas the unoptimised code of Fig.8a shows a
distinct excess of stack depth changes with a
magnitude of two, the optimised code (Fig.7b)
shows a far reduced occurrence of that magnitude of
stack depth change.

The change in stack depth spans can be explained:
If, for example, a local fetch and a literal are
executed the result is a stack depth change of +2. If
a local is scheduled on the stack already then stack
depth will change only by +1, as the literal is
pushed to stack. This is not always the case, but
occurs frequently enough to have the marked effect
on the stack characteristics shown in Figs 8a & b..

8.3 Implications and trade-offs for stack-depth.

The stack-depth probability results imply that a
choice of a stack buffer with a capacity of 8
elements, based upon the characteristics of un-
scheduled C-code, could be a mistake. The
application of local variable scheduling could
adversely effect stack behaviour, and degrade stack
buffer performance. Some of the reduced memory
cycles gained by eliminating local accesses could be
lost again due to more frequent stack buffer spills.

2 4 6 8 10 12 14 16

DEMAND FED

CUT K4

SIMPLE

0
15
30
45
60
75

S
pi

l
R

at
e

%

Buffe r Size

Fig.9,Buffer algorithm performance.

A stack buffer chosen to be 16 elements deep would
be sufficient to accommodate both conditions shown
in Fig.7, but this trade-off is further complicated by
the question of increased task switching latencies,
where smaller buffers are more desirable.

Fig.9, shows three buffering algorithms we
originally assessed in [Bail93b], and their effect on
bus traffic spilling ratios with increasing buffer size.
Choice of algorithm, and buffer size may be affected
by aspects of C-code and its optimisation which
would not normally be observed (using FORTH).

This ref: Proceedings of the 1994 EuroForth Conference, Winchester, 5th - 8th September 1994. pp17-22
φ note : the author may be now contacted at chrisb@cs.york.ac.uk

9. CONCLUSIONS.

We have investigated a limited set of benchmarks in
the context of efficient code execution in a stack
based architecture. However, the techniques and
stack effects are tacitly applicable to FORTH and
stack based programming environments in general.

The speed-up and reduction in locals achieved by
intra-block scheduling is modest but valuable in
creating an optimum environment for C-code
execution. But this apparent gain must be weighed
carefully against the impact it has on the data-stack.

Scheduling is not the clear cut issue that we may
have assumed when we began this study, but a
complex one with many implications for machine
design and subtle trade-offs for performance. A
study of global scheduling, and its effects, would be
valuable. This more aggressive approach may show
further pronounced changes in stack behaviour.

Future work we hope to carry out will permit us to
study global scheduling effects, and investigate
extensions to Koopman`s techniques. With access to
a new and comprehensive compilation platform by
1995, we hope to follow up our initial work with a
more comprehensive study and it`s implications for
stack processor design.

REFERENCES

[Bail93a] Bailey, Investigation of Stack Machine
Design for Efficcient HLL Support. Proc. of 1993
Rochester FORTH Conference, June 1993, U.S.A.

[Bail93b] Bailey, C. Quantitative assessment of
machine stack behaviour for better performance.
Proceedings of the ICMCM 1993 Berkerley
California, USA.

[Bail94a] Bailey, HLL Enhancement For Stack
Based Processors. Short-Note Proc.of EuroMicro-
94, Liverpool, England, Sept 5th-8th 1994.

[Hayes87] Hayes, Fraeman, Williams, Zaremba; A
32-Bit FORTH Microprocessor, Proc. of 1987
Rochester FORTH conference.

[Koop92] Koopman, P. A preliminary exploration
of optimised stack code generation. Proc. of 1992
Rochester FORTH conference.

[Stan87] Stanley, T., J., Wedig, R., S. (1987). A
performance analysis of automatically managed
top of stack buffers. Proc. 14th Int. Symp. on
Computer Architecture, June 1987, pp 272-281.

ACKNOWLEDGEMENTS

1. This research is Sponsored by MicroProcessor
Engineering Ltd, Southampton, England.

2. The C compiler used for our study was developed
at the University of Teesside.

