Al exey Burtsev . Interrupt mechanismfor threaded code interpreter. 1

I nterrupt nmechani smfor threaded code interpreter

Al exey A. Burtsev,
Gbni nsk, Russi a,
bur @ at e. obni nsk. ru

Abst r act

Various nmethods to support interrupt nmechanism in progranmm ng
syst ens, based on threaded code techniques, are anal ysed.
Threaded code interpreters, which support interrupt handling at the
| evel of nmachi ne code, have serious denerits. Anot her net hod of
interruption for interpreter of threaded code are suggested. It
makes possible to interrupt program only at the level of threaded
code. It means, that body of interrupt handler will be executed not
at the sanme nonment, when the interruption is raised, but just after
that nonent, when the interpreter conpletes execution of its

current command (primtive procedure, which body are defined in
machi ne code).

Realization of interrupt nechanism accor di ng to this
suggested nethod for DSSP (Forth-1like system devel oped in Mscow
Uni versity) are described. Advantages of new interrupt technique
for threaded code interpreter, especially concerning parallel
progranmm ng and exception handling, are expl ai ned.

| nt roducti on

D al ogue programm ng systens [1-4], based on threaded code
interpretation technique and named Forth-1like systens, conbine high
performance and code conpactness of interpreted program wth
benefits of high-level programmi ng |anguage. So such systens can be
applied in real-tinme progranm ng.

Functionality of any Forth-like systemis provided by threaded
code interpreter [5,6]. For real-tinme application this interpreter
have to be able to react gwickly on external and internal events so
that to switch control imediately to the program bl ock, handling

occured event. It nmeans, that such interpreter needs in interrupt
mechani smli ke that hardware processor has.
Moreover, it is desirable for Forth-like system to have

possibility to define interrupt handler in terns of the same |evel
| anguage as used for interpreted program It neans, that body of
interrupt handl er have to be executed not only as machine code, but
can be interpreted as threaded code.

Let's analyse various nethods, which give the threaded code
interpreter such inportant capability to nmake interruption of
i nterpreted program

1. Threaded code interpreter interrupt nechanismat the |evel
of machi ne code

First of all, let's examne an usual technique, which permts
to use built-in hardware interrupt nechanism of base processor for
interruption of interpreted program For denonstration of this
technique it is necessary at first to review nmain algorithnms of
t hreaded code interpreter operations.

1.1. Threaded code structure and its interpretation

Al exey BurtsevAl exey Burtsev . Interrupt nechani smfor threaded code interpreter. 2

Some varities of threaded code are known [7] : direct,
indirect, token-indirect. For the denmpnstration let's use that
variant of direct threaded code, which is applied in DSSP-32p,
protected node version of DSSP [2,3] (Dialogue System of Structured
Progr amm ng, devel oped in Mscow University) for Intel 386
processor.

To describe main interpreter algorithnms, wusing high-Ievel
not ati on, assune, that

AP - arithmetic stack (operand stack) pointer ,

AT - top of arithnetic stack

CP - control stack (return stack) pointer,

CT - pointer to next location in threaded code body, which is
saved as top of control stack during interpretation of new called
procedur e,

are appointed to base processor registers. And CP occupies
system stack pointer register (SP), the sane register, that used for
saving return addresses in machine comand CALL . So that contro
stack of interpreter beconmes the sane as system stack of base
processor.

Al so assune, that other nmachine registers, used to store
tenporary values, are referred as RO,RL,...,Rn ; machine nenory is
array MO..Max]; MA] neans one nenory location at adress A and it
is considered as 32-bit val ue.

Let's agree to use for algorithm description: identifier with
colon as label , assign statenment as data transfer machi ne command
goto and call statements as control transfer nmachine commands. For
exanmpl e :

Adr: RL:=M A]; M A]: =R2; R2: =R1; goto Adr; { junp to |abel Adr }
if RL=0 then goto (R2); { if Rl equals zero then }
{junp to location, which address is contained in register R2}

Assunme, that arithmetic stack grows in order to increase
address, and control stack grows in inverse order so that they both
go to nmeet each other. Let's declare nain operations on stacks as
macros

MACRO APUSH(X): M AP]: =X; AP: =AP+1; ENDM
MACRO APOP(Y) : AP:=AP-1; Y:=M AP]; ENDM
MACRO CPUSH(X): CP:=CP-1; M CP]:=X; ENDM
MACRO CPOP(Y) : Y:=M CP]; CP:=CP+1; ENDM
Usi ng given assunption, examne main interpreter algorithns :
MACRO NEXT : R2:=M CT]; CT:=CT+1; goto (R2); ENDM
MACRO | BEG N: CALL Interp; ENDM
Interp: CPOP(R1); CPUSH(CT); CT:=Rl; NEXT;
| END : CPOP(CT); NEXT;

IBEG N operation is applied as header of threaded code body,
which is formed as result of conpilation of new procedure, declared
like :
| : <new_procedure_name> <word> ... <word> ; |

| BEG N operation, realized here as nmacros, is intented to start
interpretati on of new procedure body. For this action, it pushes CT
in control stack and assign to CT such new value, that points to the
begining of following threaded code. And then NEXT operation is
execut ed.

NEXT operation, also realized as macros, is used at the end of
every procedure, defined in nmachine code. It junps to body of next
procedure, which reference is placed in following |location of
current threaded code body. Exactly CT points to this |ocation.
Thus, NEXT operation is intented to continue interpretation.

Al exey BurtsevAl exey Burtsev . Interrupt mechanismfor threaded code interpreter. 3

IEND is conpletion interpretation operation. Its reference have
to be placed in the end of every interpreted threaded code body.
This operation restores previous value for CT, poping it from
control stack and then perforns NEXT action.

This three operations (IBEAN, NEXT, IEND) are fundanental
operations of threaded code interpreter. Together they nake up the
basis of its functionality.

1.2. Threaded code interpretation on interrupt request

To develop real-tine program in FORTHIlike system it s
desirable to support possibility to form body of interrupt handler
procedure in threaded code. It neans, that threaded code body of
interrupt handler have to be interpreted at any nonent, at any
| ocation, where program may be interrupted.

Now we' Il try to explain, how such possibility was supported in
DSSP- 32p before. Body of procedure to be interpreted as interrupt
handler was being formed wth special header (let's nanme it

interrupt header) by neans of INT command before procedure
conpi l ation :
| INT : IHANDLER P1 ... PX; |

Then interrupt procedure |HANDLER was appointed to interrupt
vector V by neans of conmand :

| V LI NK | HANDLER |

Interrupt header consists of machine code for calling
subroutine from address | ntHndl. | nt Hndl bl ock (machi ne code,
begining at the address IntHndl) is intented to start threaded code
of the body, address of which was placed in the top of control
stack. Let's exam ne algorithm of |ntHndl-block and explain its main
actions :

I nt Hndl : { Control stack CS: RA BA'}
CPUSH(R2); ... CPUSH(Rn); {CS: RABAR,...,Rn}
R2: =M CP+n-1]; { R2:=BA, address of interrupt handl er body }
M CP+n-1]:=R1; {Rl1 repl aces BA} {CS: RARL,R2,...,Rn }
CPUSH(AT) ; CPUSH(AP) ; CPUSH(CT); {CS: RA RLl, R2,...,Rn, AT, AP, CT }
CT:= adr(ARetInt); { CT:= address of body ARetlInt }
goto (R2);

ARet I nt: adr(Retlnt) { address of body Retlnt }

Retlnt : { Control stack CS: RA R1l,R2,...,Rn, AT, AP, CT }
CPOP(CT) ; CPOP(AP) ; CPOP(AT) ; {CS: RARL,R,...,Rn}
CPOP(Rn);...CPOP(R2); CPOP(R1);{Cs: RA}
| RETURN { return frominterrupt to |ocation RA }

When interrupt V occurs at any program location (RA), it calls
interrupt procedure from address of the interrupt header, that was
appointed to it. At this nonent address of interruption |ocation
(RA) is pushed in system stack. Then the interrupt header calls
subroutine from address IntHndl, pushing address of follow ng body
(BA) in system stack. So |IntHndl-bl ock begins to execute, having two
val ues in control stack (RA BA)

At first, it saves all processor registers (except CP) in
control (system) stack, because they nay be corrupted during
interpretation of interrupt handler body. Address (BA) of the body
to be interpreted is poped fromcontrol stack to tenprorary register
(R2) and then is used to transfer control to the body of interrupt
handl er. Before this, CT is assigned to address (ARetlnt) of body,
that contains reference to nachine code block (Retlnt-block), which
is intended to finish interrupt handler interpretation. Control wll

Al exey BurtsevAl exey Burtsev . Interrupt nechani smfor threaded code interpreter. 4

be transfered to this block, when during NEXT operation value CT
points to ARetlnt.

At last, Retlnt-block will restore previous values of all saved
registers, poping it from stack, and then perform interrupt return
machi ne commrand.

Such technique of interrupt handling (described above) was
being applied in DSSP-32p for a long tinme (until version 4.41).
According to this technique, interrupt handler, defined as threaded
code procedure, is called at the same tine, when interrupt is
raised. As a result, interpreted programis interrupted just after
term nation of current nachine command. So such interrupt technique
for interpreter of threaded code may be naned as interpreter
i nterrupt mechani smat the |evel of nachine code.

This mechani sm has sonme valueable properties. It permts to
call interrupt handler quickly and to define the handler as high-
| evel procedure. Unfortunately, it has al so sone serious denerits.

1.3. Denerits of interrupt nmechani smat machi ne code | evel

The main unconfortable habit of interrupt mechani sm desribed
above, is denmand to construct interrupt handler only as correct
subroutine. It neans, that the only possibility to |eave body of
this procedure is to perfomreturn statenent. O her ways to transfer
control to any location out of this procedure is forbidden. In the
case of wviolation of this demand normal return to interrupted
program can't be assured. So it becones inpossible to use in body of
interrupt procedure such desirable operations as raise exception,
send signhal to parallel process, transfer control to coroutine.

Such strict requirenment for construction of interrupt procedure
is conditioned by the method, that is applied to invoke interrupt
handl er. As above algorithns illustrate, termnation of interrupt
procedure have to be acconpani ed by specific recovery actions, which
nodi fy control stack. So attenpt to continue program escaping this
actions, usually leads to program crash.

By the way, many programing systens have sinilar interrupt
nmechani sm and nentioned above requirenment is an old subject for
critics [8]. But for system based on threaded code interpreter,
this requirenment enlarges and concerns any operation, which affects
not only control stack of interrupted program but arithnetic stack
t 0o.

It is <clear, that attenpt to nodify control stack of
interrupted program during execution of interrupt handl er procedure
can prevent from nmaking normal interrupt return and so this attenpt
may | ead to unforeseen results. But it is not obvious, why interrupt
handl er procedure haven't to nodify arithmetic stack of interrupted
program Let's explain, why such nodification may be incorrect
because of unpredictability of interrupt nonent.

Assune, that our interrupt handler (CLR2) have to clear (assign
zero value to) top and suptop of the arithnmetic stack of
interrupted program every time when interrupt wll occur. Suppose
that interrupt is raised during execution of such operation, that
perforns actions wth arithnmetic stack, for exanple, exchanges
values of top and subtop (E2 for DSSP or SWAP for FORTH). Let's
exam ne nmachi ne code bodi es of follow ng procedures

E2a: Rl1:=M AP-1];{pl} M AP-1]:=AT;{p2} AT:=R1; { 1'st variant }
E2b: R1: =AT; {pl} AT:=M AP-1];{p2} MAP-1]:=R1; { 2'nd variant }
CLR2: M AP-1]:=0; AT:=0; NEXT;

Al exey BurtsevAl exey Burtsev . Interrupt mechanismfor threaded code interpreter. 5

If interrupt will be raised at the point pl or p2 (in procedure
E2 of any realization variant), then result of interrupt handling by
means of procedure CLR2 will be incorrect: either top or subtop of
arithnetic stack will retain nonzero value (the same, that wll be
saved in Rl). This is the result of collision between interrupted
program and interrupt handler, both attenpting to perform actions
with conmon data (arithnetic stack) at the sane tine.

Such collisions is conditioned by the nethod of «calling
interrupt handler just at the nonent, when interrupt has been
raised. The interpreted program can be interrupted when it has
already started to execute prinmtive operation wth arithnetic
stack, but hasn't conpleted it yet. And execution of this current

primtive operation, which has nmachine code body, will be broken in
time. So it leads to the sane conflicts as in parallel program
To avoid such conflicts , it is necessary to guarantee, that

interpreted program won't be interrupted during execution of any
primtive procedure for performng interrupt handl er. Such guarantee
permits to solve problem of nutual exclusion between interrupted
program and interrupt handler, because every printive operation
will be executed as one indivisible action. Let's exam ne another
met hod of interrupt handling, which ensures this capability.

2. Interpreter interrupt nechanismat the |evel of
t hr eaded code

New interrupt nethod, which now is described here, for the
first tinme was suggested by author for DSSP-80 [9]. This nethod
permts to execute body of interrupt handler not at the sane nonent,
when the interrupt is raised, but just after that nmonent, when the
interpreter conpletes execution of its current command (primtive
procedure, which body are defined in machine code). Let's explain,
how to realize this method.

Unli ke previous interrupt nethod, new nethod can't be realized
wi thout nodification of main operations (IBEGA N, NEXT, |END) of the
interpreter. Indeed, in order to provide new nethod it is necessary
to nodify algorithm of main interpreter loop so that it becane
possible to transfer control to the interrupt handler from sone
point inside the nmain loop, where usually interpreter termnates
current command and starts new one. Note, that such point may be
somewhere i n NEXT operation.

NEXT operation is the nost inportant operation of interpreter.
It is executed every tinme, when interpreter perforns primtive
command. In order to provide high performance of interpreted
program NEXT operation nust be as fast as possible. By the way,
machi ne code of NEXT operation in previous version of DSSP-32p
contains only two machine commands of base processor (Intel 386).
How can we nodify NEXT operation effectively in order to perform
control transfer to the handler, when interrupt occurs ? Let's
exam ne and evaluate the followi ng variants of this nodification.

As first variant, we can enable interrupts in the begining and
disable interrupts in the end of NEXT operation in order to
guarantee, that interrupt can be raised only during NEXT operation.
But such variant adds at |east two nmachine conmand to the NEXT
operation. Also it wll requre to perform primtive input/output
operation w thout using interrupts.

As second variant, we nmay insert in NEXT operation conditional
statenment for checking, if interrupt was already raised or not. For
this purpose, additional logical variable (IntFlag) can be set, when

Al exey BurtsevAl exey Burtsev . Interrupt mechanismfor threaded code interpreter. 6

interrupt occurs, and then may be checked during NEXT operation.
Junp to interrupt handler body can be perfornmed after this checking
only if IntFlag becane true. But this variant also requires at |east
two additi onal machi ne commands for NEXT operation.

At last, we can propose the variant, which adds only one
machi ne conmmand to NEXT operation. First of all, let's explain its
essence. Suppose, that we have nodified nmacrooperati on NEXT so that
it contains only one nmachine conmand to performindirect junp, using
content of additional register or menory word (named | TNext). Let
| TNext point to previous nachine code of NEXT operation while
interpreter functions without any interrupts. But every tine, when
interrupt occurs, |ITNext wll be changed in order to point to
machi ne code, which have to start interrupt handler. Thus, now in
order to junmp to body of its next comrand (primitive procedure),
interpreter have to perform one new nmachi ne conmmand (indirect junp)
and then to execute machine code of previous NEXT operation (that
consists of two Intel-386 machi ne commands for DSSP-32p).

Because this last variant is the nost effective anong exani ned
above, it was applied in DSSP-32p as new interrupt nethod for
threaded code interpreter. So let's describe realization of this
i nterrupt nmechani smin det ai

| TNext - register-pointer, used for indirect junp in NEXT operation
| TNext: = adr(Nextl); { during systeminitialization }
MACRO | NEXT: R2: =M CT]; CT: =CT+1; goto (R2); ENDM { previous NEXT }
Next|: | NEXT; { machi ne code, to which | TNext usually points }
MACRO NEXT: goto(l TNext); ENDM {new NEXT operation for primtives }
new machi ne code of interrupt header : CALL IntrSave
IntrBuf: { |ocation for saving pointer to interrupt handl er body }
I ntrSave: { Control stack CS: RA BA'}
Closelntr; { disable interrupts }
CPUSH(R1) ; RL:=M CP+1]; { RL:= BA} {CS: RA/BA Rl }
IntrBuf:=R1l; { save pointer to interrupt handl er body }
| TNext: = adr(IntrHndl); {address of block to start the handl er}
CPOP(R1); CP: =CP+1; {CS: RA}
| RETURN { return frominterrupt to | ocati on RA }
IntrHndl : { this block is intented to start the interrupt handl er }
R2: = IntrBuf; { get address of interrupt handl er body }
| TNext: = adr(Nextl); { restore usual value for pointer |ITNext }
penintr; { enable interrupts }
goto (R2);{ junp to body of interrupt handler }

Subroutine IntrSave is called from nachine code of interrupt
header, placed before body of interrupt handler. So when this
subroutine starts, top of control stack points to interrupt handl er
body. This pointer is poped from stack to be saved in tenporary
variable IntrBuf. Before this action all interrupts have been
di sabled. At last, subroutine IntrSave assigns address IntrHndl to
| TNext and perforns return frominterrupt.

Afterwards, when current primtive procedure wll try to
execute NEXT operation, then junp to IntrHndl Ilocation wll be
perfornmed. Block of nachine code, begining from this location, is
intented to start interrupt handler. It gets address of the handler
body from variable IntrBuf, restores usual value for |TNext, then
enables interrupts and, at last, junps to the interrupt body, using
t he address saved in IntrBuf by subroutine IntrSave.

According to suggested nethod, reaction on interrupt s
acconplished in two stages. At first stage (perforned by subroutine
IntrSave) interrupt occurence is only registered. And then at second
stage (started by IntrHndl block) the handler of registered
interrupt is really executed. First stage is short, it acts just at
the nonment, when interrupt is raised, and terminates quickly by

Al exey BurtsevAl exey Burtsev . Interrupt nechani smfor threaded code interpreter. 7

return from interrupt. Second stage starts only after interpreter
conpletes its current commuand. So interrupt handler can't prevent
interrupted programto performcurrent operation correctly.

Moreover, note, that interrupt handler is executed so as if
interrupted program called it in the point just after conpleted
current command. In other words, interrupt handler is executed as
usual procedure, but which is called in unpredictable nonent. And so
this interrupt method pernmits to use in interrupt procedure any
operation , that can be used in wusual procedure. Exactly this
permission is the npbst inportant advantage of suggested interrupt
nmet hod.

Concl usi on

New suggested interrupt nethod was realized in DSSP-32p since
version 4.41. Em oynent experience of new version DSSP-32p testified
that general performance of interpreted program didn't decrease
significantly, but new capabilities of its interrupt nmechanism
extended the sphere of its application. In general new version of
DSSP- 32p becane nore useful for real-tine progranm ng.

Thanks to new interrupt nechanism it becane possible in DSSP-
32p to use in body of interrupt handl er sone desirable operations,
whi ch was forbidden by old interrupt nmechanism And now we have got
opportunity to perform as a reaction on interrupt the follow ng
actions: to transfer control to coroutine, to nake context sw tching
to another parallel process, to start new process, to send signal to
any process, to raise exception in context of current or any other
process.

New capabilities of suggested interrupt nethod , in particular
have been required for devel opnent of sone program nodules at the
| evel of DSSP progranmmng |anguage for supporting parallel
processing. Processes are executed by one processor as coroutines.
In order to switch processor to next process on tinmer interrupt , it
is necessary to performcoroutine transfer fromthe inside interrupt
handl er body. And this has beconed possible only thanks to new
met hod of interrupt handling in DSSP .

Note, that we naned previous interrupt nmethod of threaded code
interpreter as interpreter interrupt nechanism at the level of
machi ne code. Conparing new suggested interrupt nethod with previous
one, we consider, that new interrupt nethod deserves to be nanmed as
interrupt mechanismfor interpreter at the |evel of threaded code.

Ref er ences

[1] Leo Brodie. Starting FORTH. An introduction to the FORTH
| anguage and operating system for beginners and professionals.
Prentice-Hall, 1981.

[2] Brusentsov N P., Zaharov V.B., Rudnev |.A , Sidorov S A
Di al ogue System of Structured Progranmi ng DSSP-80. In book "D al ogue
m croconputer systens", Mscow State University, 1986, pp. 3-21. (in
Russi an)

[3] Shumakov M N., Sidorov S.A DSSP and Forth : A conparative
anal ysis. Proceedi ngs of the EuroFORTH 96 Conference, 1996.

[4] Mtalygo Valo G PS - a FORTHlike threaded |anguage.- BYTE,
1981, v.6, No.10, p.462.

[6] Bell J.R Threaded Code. - Communication of the ACM 1973
v.16, No 6., p.370-372.

Al exey BurtsevAl exey Burtsev . Interrupt mechanismfor threaded code interpreter. 8

[6] Brusentsov N. P. Structured progranm ng and threaded code. In
book " Arhitecture and software of digital systens", Mscow
Uni versity, 1984, pp. 3-9. (in Russian)

[7] Ritter T., Walker G Varieties of threaded code for |anguage
i mpl ementation.- BYTE, 1980, v.5, No.9, p.206.

[8 Hunt J.G Interrupts.- Software: Practice & Experience, 1980,
v. 10, No.7, p.523-530.

[9] Burtsev A A Peripheral nonitor as developnent of DSSP
i nput/output architecture. In book "D al ogue m croconputer systens",
Moscow State University, 1986, pp. 42-51. (in Russian)

