
Alexey Burtsev . Interrupt mechanism for threaded code interpreter. 1

Interrupt mechanism for threaded code interpreter

Alexey A. Burtsev,
 Obninsk, Russia,

 bur@iate.obninsk.ru

Abstract

Various methods to support interrupt mechanism in programming
systems, based on threaded code techniques, are analysed.
Threaded code interpreters, which support interrupt handling at the
level of machine code, have serious demerits. Another method of
interruption for interpreter of threaded code are suggested. It
makes possible to interrupt program only at the level of threaded
code. It means, that body of interrupt handler will be executed not
at the same moment, when the interruption is raised, but just after
that moment, when the interpreter completes execution of its
current command (primitive procedure, which body are defined in
machine code).

Realization of interrupt mechanism according to this
suggested method for DSSP (Forth-like system, developed in Moscow
University) are described. Advantages of new interrupt technique
for threaded code interpreter, especially concerning parallel
programming and exception handling, are explained.

Introduction

Dialogue programming systems [1-4], based on threaded code
interpretation technique and named Forth-like systems, combine high
performance and code compactness of interpreted program with
benefits of high-level programming language. So such systems can be
applied in real-time programming.

Functionality of any Forth-like system is provided by threaded
code interpreter [5,6]. For real-time application this interpreter
have to be able to react qwickly on external and internal events so
that to switch control immediately to the program block, handling
occured event. It means, that such interpreter needs in interrupt
mechanism like that hardware processor has.

Moreover, it is desirable for Forth-like system to have
possibility to define interrupt handler in terms of the same level
language as used for interpreted program. It means, that body of
interrupt handler have to be executed not only as machine code, but
can be interpreted as threaded code.

Let's analyse various methods, which give the threaded code
interpreter such important capability to make interruption of
interpreted program.

1. Threaded code interpreter interrupt mechanism at the level
of machine code

First of all, let's examine an usual technique, which permits
to use built-in hardware interrupt mechanism of base processor for
interruption of interpreted program. For demonstration of this
technique it is necessary at first to review main algorithms of
threaded code interpreter operations.

1.1. Threaded code structure and its interpretation

Alexey BurtsevAlexey Burtsev . Interrupt mechanism for threaded code interpreter. 2

Some varities of threaded code are known [7] : direct,
indirect, token-indirect. For the demonstration let's use that
variant of direct threaded code, which is applied in DSSP-32p,
protected mode version of DSSP [2,3] (Dialogue System of Structured
Programming, developed in Moscow University) for Intel 386
processor.

To describe main interpreter algorithms, using high-level
notation, assume, that :

AP - arithmetic stack (operand stack) pointer ,
AT - top of arithmetic stack ,
CP - control stack (return stack) pointer,
CT - pointer to next location in threaded code body, which is

saved as top of control stack during interpretation of new called
procedure,

are appointed to base processor registers. And CP occupies
system stack pointer register (SP), the same register, that used for
saving return addresses in machine command CALL . So that control
stack of interpreter becomes the same as system stack of base
processor.

Also assume, that other machine registers, used to store
temporary values, are referred as R0,R1,...,Rn ; machine memory is
array M[0..Max]; M[A] means one memory location at adress A and it
is considered as 32-bit value.

Let's agree to use for algorithm description: identifier with
colon as label , assign statement as data transfer machine command,
goto and call statements as control transfer machine commands. For
example :
 Adr: R1:=M[A];M[A]:=R2;R2:=R1; goto Adr; { jump to label Adr }
 if R1=0 then goto (R2); { if R1 equals zero then }
 {jump to location, which address is contained in register R2}

Assume, that arithmetic stack grows in order to increase
address, and control stack grows in inverse order so that they both
go to meet each other. Let's declare main operations on stacks as
macros :
 MACRO APUSH(X): M[AP]:=X; AP:=AP+1; ENDM
 MACRO APOP(Y) : AP:=AP-1; Y:=M[AP]; ENDM
 MACRO CPUSH(X): CP:=CP-1; M[CP]:=X; ENDM
 MACRO CPOP(Y) : Y:=M[CP]; CP:=CP+1; ENDM

Using given assumption, examine main interpreter algorithms :
 MACRO NEXT : R2:=M[CT]; CT:=CT+1; goto (R2); ENDM
 MACRO IBEGIN: CALL Interp; ENDM
 Interp: CPOP(R1); CPUSH(CT); CT:=R1; NEXT;
 IEND : CPOP(CT); NEXT;

IBEGIN operation is applied as header of threaded code body,
which is formed as result of compilation of new procedure, declared
like :
 : <new_procedure_name> <word> ... <word> ;

IBEGIN operation, realized here as macros, is intented to start
interpretation of new procedure body. For this action, it pushes CT
in control stack and assign to CT such new value, that points to the
begining of following threaded code. And then NEXT operation is
executed.

NEXT operation, also realized as macros, is used at the end of
every procedure, defined in machine code. It jumps to body of next
procedure, which reference is placed in following location of
current threaded code body. Exactly CT points to this location.
Thus, NEXT operation is intented to continue interpretation.

Alexey BurtsevAlexey Burtsev . Interrupt mechanism for threaded code interpreter. 3

IEND is completion interpretation operation. Its reference have
to be placed in the end of every interpreted threaded code body.
This operation restores previous value for CT, poping it from
control stack and then performs NEXT action.

This three operations (IBEGIN, NEXT, IEND) are fundamental
operations of threaded code interpreter. Together they make up the
basis of its functionality.

1.2. Threaded code interpretation on interrupt request

To develop real-time program in FORTH-like system it is
desirable to support possibility to form body of interrupt handler
procedure in threaded code. It means, that threaded code body of
interrupt handler have to be interpreted at any moment, at any
location, where program may be interrupted.

Now we'll try to explain, how such possibility was supported in
DSSP-32p before. Body of procedure to be interpreted as interrupt
handler was being formed with special header (let's name it
interrupt header) by means of INT command before procedure
compilation :
 INT : IHANDLER P1 ... PX ;

Then interrupt procedure IHANDLER was appointed to interrupt
vector V by means of command :
 V LINK IHANDLER

Interrupt header consists of machine code for calling
subroutine from address IntHndl. IntHndl block (machine code,
begining at the address IntHndl) is intented to start threaded code
of the body, address of which was placed in the top of control
stack. Let's examine algorithm of IntHndl-block and explain its main
actions :
 IntHndl: { Control stack CS: RA,BA }
 CPUSH(R2); ... CPUSH(Rn); {CS: RA,BA,R2,...,Rn }
 R2:=M[CP+n-1]; { R2:=BA, address of interrupt handler body }
 M[CP+n-1]:=R1;{R1 replaces BA} {CS: RA,R1,R2,...,Rn }
 CPUSH(AT);CPUSH(AP);CPUSH(CT); {CS: RA,R1,R2,...,Rn,AT,AP,CT }
 CT:= adr(ARetInt); { CT:= address of body ARetInt }
 goto (R2);
 ARetInt: adr(RetInt) { address of body RetInt }
 RetInt : { Control stack CS: RA,R1,R2,...,Rn,AT,AP,CT }
 CPOP(CT);CPOP(AP);CPOP(AT); {CS: RA,R1,R2,...,Rn }
 CPOP(Rn);...CPOP(R2);CPOP(R1);{CS: RA }
 IRETURN { return from interrupt to location RA }

When interrupt V occurs at any program location (RA), it calls
interrupt procedure from address of the interrupt header, that was
appointed to it. At this moment address of interruption location
(RA) is pushed in system stack. Then the interrupt header calls
subroutine from address IntHndl, pushing address of following body
(BA) in system stack. So IntHndl-block begins to execute, having two
values in control stack (RA,BA) .

At first, it saves all processor registers (except CP) in
control (system) stack, because they may be corrupted during
interpretation of interrupt handler body. Address (BA) of the body
to be interpreted is poped from control stack to temprorary register
(R2) and then is used to transfer control to the body of interrupt
handler. Before this, CT is assigned to address (ARetInt) of body,
that contains reference to machine code block (RetInt-block), which
is intended to finish interrupt handler interpretation. Control will

Alexey BurtsevAlexey Burtsev . Interrupt mechanism for threaded code interpreter. 4

be transfered to this block, when during NEXT operation value CT
points to ARetInt.

At last, RetInt-block will restore previous values of all saved
registers, poping it from stack, and then perform interrupt return
machine command.

Such technique of interrupt handling (described above) was
being applied in DSSP-32p for a long time (until version 4.41).
According to this technique, interrupt handler, defined as threaded
code procedure, is called at the same time, when interrupt is
raised. As a result, interpreted program is interrupted just after
termination of current machine command. So such interrupt technique
for interpreter of threaded code may be named as interpreter
interrupt mechanism at the level of machine code.

This mechanism has some valueable properties. It permits to
call interrupt handler quickly and to define the handler as high-
level procedure. Unfortunately, it has also some serious demerits.

1.3. Demerits of interrupt mechanism at machine code level

The main uncomfortable habit of interrupt mechanism, desribed
above, is demand to construct interrupt handler only as correct
subroutine. It means, that the only possibility to leave body of
this procedure is to perfom return statement. Other ways to transfer
control to any location out of this procedure is forbidden. In the
case of violation of this demand normal return to interrupted
program can't be assured. So it becomes impossible to use in body of
interrupt procedure such desirable operations as raise exception,
send signal to parallel process, transfer control to coroutine.

Such strict requirement for construction of interrupt procedure
is conditioned by the method, that is applied to invoke interrupt
handler. As above algorithms illustrate, termination of interrupt
procedure have to be accompanied by specific recovery actions, which
modify control stack. So attempt to continue program, escaping this
actions, usually leads to program crash.

By the way, many programing systems have similar interrupt
mechanism, and mentioned above requirement is an old subject for
critics [8]. But for system, based on threaded code interpreter,
this requirement enlarges and concerns any operation, which affect s
not only control stack of interrupted program, but arithmetic stack
too.

It is clear, that attempt to modify control stack of
interrupted program during execution of interrupt handler procedure
can prevent from making normal interrupt return and so this attempt
may lead to unforeseen results. But it is not obvious, why interrupt
handler procedure haven't to modify arithmetic stack of interrupted
program. Let's explain, why such modification may be incorrect
because of unpredictability of interrupt moment.

Assume, that our interrupt handler (CLR2) have to clear (assign
zero value to) top and suptop of the arithmetic stack of
interrupted program every time when interrupt will occur. Suppose,
that interrupt is raised during execution of such operation, that
performs actions with arithmetic stack, for example, exchanges
values of top and subtop (E2 for DSSP or SWAP for FORTH). Let's
examine machine code bodies of following procedures :
 E2a: R1:=M[AP-1];{p1} M[AP-1]:=AT;{p2} AT:=R1; { 1'st variant }
 E2b: R1:=AT;{p1} AT:=M[AP-1];{p2} M[AP-1]:=R1; { 2'nd variant }
 CLR2: M[AP-1]:=0; AT:=0; NEXT;

Alexey BurtsevAlexey Burtsev . Interrupt mechanism for threaded code interpreter. 5

If interrupt will be raised at the point p1 or p2 (in procedure
E2 of any realization variant), then result of interrupt handling by
means of procedure CLR2 will be incorrect: either top or subtop of
arithmetic stack will retain nonzero value (the same, that will be
saved in R1). This is the result of collision between interrupted
program and interrupt handler, both attempting to perform actions
with common data (arithmetic stack) at the same time.

Such collisions is conditioned by the method of calling
interrupt handler just at the moment, when interrupt has been
raised. The interpreted program can be interrupted when it has
already started to execute primitive operation with arithmetic
stack, but hasn't completed it yet. And execution of this current
primitive operation, which has machine code body, will be broken in
time. So it leads to the same conflicts as in parallel program.

To avoid such conflicts , it is necessary to guarantee, that
interpreted program won't be interrupted during execution of any
primitive procedure for performing interrupt handler. Such guarantee
permits to solve problem of mutual exclusion between interrupted
program and interrupt handler, because every primitive operation
will be executed as one indivisible action. Let's examine another
method of interrupt handling, which ensures this capability.

2. Interpreter interrupt mechanism at the level of
threaded code

New interrupt method, which now is described here, for the
first time was suggested by author for DSSP-80 [9]. This method
permits to execute body of interrupt handler not at the same moment,
when the interrupt is raised, but just after that moment, when the
interpreter completes execution of its current command (primitive
procedure, which body are defined in machine code). Let's explain,
how to realize this method.

Unlike previous interrupt method, new method can't be realized
without modification of main operations (IBEGIN, NEXT, IEND) of the
interpreter. Indeed, in order to provide new method it is necessary
to modify algorithm of main interpreter loop so that it became
possible to transfer control to the interrupt handler from some
point inside the main loop, where usually interpreter terminates
current command and starts new one. Note, that such point may be
somewhere in NEXT operation.

NEXT operation is the most important operation of interpreter.
It is executed every time, when interpreter performs primitive
command. In order to provide high performance of interpreted
program, NEXT operation must be as fast as possible. By the way,
machine code of NEXT operation in previous version of DSSP-32p
contains only two machine commands of base processor (Intel 386).
How can we modify NEXT operation effectively in order to perform
control transfer to the handler, when interrupt occurs ? Let's
examine and evaluate the following variants of this modification.

As first variant, we can enable interrupts in the begining and
disable interrupts in the end of NEXT operation in order to
guarantee, that interrupt can be raised only during NEXT operation.
But such variant adds at least two machine command to the NEXT
operation. Also it will requre to perform primitive input/output
operation without using interrupts.

As second variant, we may insert in NEXT operation conditional
statement for checking, if interrupt was already raised or not. For
this purpose, additional logical variable (IntFlag) can be set, when

Alexey BurtsevAlexey Burtsev . Interrupt mechanism for threaded code interpreter. 6

interrupt occurs, and then may be checked during NEXT operation.
Jump to interrupt handler body can be performed after this checking
only if IntFlag became true. But this variant also requires at least
two additional machine commands for NEXT operation.

At last, we can propose the variant, which adds only one
machine command to NEXT operation. First of all, let's explain its
essence. Suppose, that we have modified macrooperation NEXT so that
it contains only one machine command to perform indirect jump, using
content of additional register or memory word (named ITNext). Let
ITNext point to previous machine code of NEXT operation while
interpreter functions without any interrupts. But every time, when
interrupt occurs, ITNext will be changed in order to point to
machine code, which have to start interrupt handler. Thus, now in
order to jump to body of its next command (primitive procedure),
interpreter have to perform one new machine command (indirect jump)
and then to execute machine code of previous NEXT operation (that
consists of two Intel-386 machine commands for DSSP-32p).

Because this last variant is the most effective among examined
above, it was applied in DSSP-32p as new interrupt method for
threaded code interpreter. So let's describe realization of this
interrupt mechanism in detail :
 ITNext - register-pointer, used for indirect jump in NEXT operation
 ITNext:= adr(NextI); { during system initialization }
 MACRO INEXT: R2:=M[CT];CT:=CT+1;goto (R2); ENDM { previous NEXT }
 NextI: INEXT; { machine code, to which ITNext usually points }
 MACRO NEXT: goto(ITNext); ENDM {new NEXT operation for primitives }
 new machine code of interrupt header : CALL IntrSave
 IntrBuf: { location for saving pointer to interrupt handler body }
 IntrSave: { Control stack CS: RA,BA }
 CloseIntr; { disable interrupts }
 CPUSH(R1); R1:=M[CP+1]; { R1:= BA } {CS: RA,BA,R1 }
 IntrBuf:=R1; { save pointer to interrupt handler body }
 ITNext:= adr(IntrHndl); {address of block to start the handler}
 CPOP(R1); CP:=CP+1; {CS: RA }
 IRETURN { return from interrupt to location RA }
 IntrHndl: { this block is intented to start the interrupt handler }
 R2:= IntrBuf; { get address of interrupt handler body }
 ITNext:= adr(NextI); { restore usual value for pointer ITNext }
 OpenIntr; { enable interrupts }
 goto (R2);{ jump to body of interrupt handler }

Subroutine IntrSave is called from machine code of interrupt
header, placed before body of interrupt handler. So when this
subroutine starts, top of control stack points to interrupt handler
body. This pointer is poped from stack to be saved in temporary
variable IntrBuf. Before this action all interrupts have been
disabled. At last, subroutine IntrSave assigns address IntrHndl to
ITNext and performs return from interrupt.

Afterwards, when current primitive procedure will try to
execute NEXT operation, then jump to IntrHndl location will be
performed. Block of machine code, begining from this location, is
intented to start interrupt handler. It gets address of the handler
body from variable IntrBuf, restores usual value for ITNext, then
enables interrupts and, at last, jumps to the interrupt body, using
the address saved in IntrBuf by subroutine IntrSave.

According to suggested method, reaction on interrupt is
accomplished in two stages. At first stage (performed by subroutine
IntrSave) interrupt occurence is only registered. And then at second
stage (started by IntrHndl block) the handler of registered
interrupt is really executed. First stage is short, it acts just at
the moment, when interrupt is raised, and terminates quickly by

Alexey BurtsevAlexey Burtsev . Interrupt mechanism for threaded code interpreter. 7

return from interrupt. Second stage starts only after interpreter
completes its current command. So interrupt handler can't prevent
interrupted program to perform current operation correctly.

Moreover, note, that interrupt handler is executed so as if
interrupted program called it in the point just after completed
current command. In other words, interrupt handler is executed as
usual procedure, but which is called in unpredictable moment. And so
this interrupt method permits to use in interrupt procedure any
operation , that can be used in usual procedure. Exactly this
permission is the most important advantage of suggested interrupt
method.

Conclusion

New suggested interrupt method was realized in DSSP-32p since
version 4.41. Emloyment experience of new version DSSP-32p testified
that general performance of interpreted program didn't decrease
significantly, but new capabilities of its interrupt mechanism
extended the sphere of its application. In general new version of
DSSP-32p became more useful for real-time programming.

Thanks to new interrupt mechanism it became possible in DSSP-
32p to use in body of interrupt handler some desirable operations,
which was forbidden by old interrupt mechanism. And now we have got
opportunity to perform as a reaction on interrupt the following
actions: to transfer control to coroutine, to make context switching
to another parallel process, to start new process, to send signal to
any process, to raise exception in context of current or any other
process.

New capabilities of suggested interrupt method , in particular,
have been required for development of some program modules at the
level of DSSP programming language for supporting parallel
processing. Processes are executed by one processor as coroutines.
In order to switch processor to next process on timer interrupt , it
is necessary to perform coroutine transfer from the inside interrupt
handler body. And this has becomed possible only thanks to new
method of interrupt handling in DSSP .

Note, that we named previous interrupt method of threaded code
interpreter as interpreter interrupt mechanism at the level of
machine code. Comparing new suggested interrupt method with previous
one, we consider, that new interrupt method deserves to be named as
interrupt mechanism for interpreter at the level of threaded code.

References

[1] Leo Brodie. Starting FORTH. An introduction to the FORTH
language and operating system for beginners and professionals.
Prentice-Hall, 1981.

[2] Brusentsov N.P., Zaharov V.B., Rudnev I.A., Sidorov S.A.
Dialogue System of Structured Programming DSSP-80. In book "Dialogue
microcomputer systems", Moscow State University, 1986, pp. 3-21. (in
Russian)

[3] Shumakov M.N., Sidorov S.A. DSSP and Forth : A comparative
analysis. Proceedings of the EuroFORTH'96 Conference, 1996.

[4] Motalygo Valo G. PS - a FORTH-like threaded language.- BYTE,
1981, v.6, No.10, p.462.

[5] Bell J.R. Threaded Code. - Communication of the ACM, 1973,
v.16, No 6., p.370-372.

Alexey BurtsevAlexey Burtsev . Interrupt mechanism for threaded code interpreter. 8

[6] Brusentsov N.P. Structured programming and threaded code. In
book " Arhitecture and software of digital systems", Moscow
University, 1984, pp. 3-9. (in Russian)

[7] Ritter T., Walker G. Varieties of threaded code for language
implementation.- BYTE, 1980, v.5, No.9, p.206.

[8] Hunt J.G. Interrupts.- Software: Practice & Experience, 1980,
v.10, No.7, p.523-530.
 [9] Burtsev A.A. Peripheral monitor as development of DSSP
input/output architecture. In book "Dialogue microcomputer systems",
Moscow State University, 1986, pp. 42-51. (in Russian)

