
1

sTTAck: Stack Transport Triggered Architecture

Aliaksei V. Chapyzhenka
Belarusian State University of Informatics and Radioelectronics

Department of Computer Engineering
P.Brovky 6, 220027 Minsk, Belarus

alex@radiopage.com.by

Abstract. Simplicity of Forth language allowed to
build Forth based processors. But the common se-
quential computational approach has performance
limitation. The traditional approach to enhance the
performance of processor is to increase the number
of functional units that work concurrently.

In this paper we examine stack's properties and
propose to extend stack paradigm for parallel com-
puting. The main goal of this article is to define new
architecture so-called sTTAck. The main advan-
tages of this architecture are the simplicity and
flexibility of hardware and large freedom of its
software utilisation.
Keywords: Instruction Level Parallelism, VLIW,
Stack, Forth

Introduction
The Forth language has found it's main application
in embedded systems, where the simplicity is the
key property. A number of its principles allows to
construct simple, flexible and scalable hard-
ware/software systems.

The hard requirements are imposed upon modern
embedded systems [PLC97]. The direct hardware
implementation of primitives of Forth [Koo89]
gives a noticeable purchase in performance, but for
further increasing it is necessary to apply an internal
parallelism of algorithms.

However hard requirements to the price, com-
pactness and power consumption allow using multi-
processor implementation only as the last measure.
First of all, it is necessary to trouble of performance
of single processing node by increasing the number
of function units, which operate concurrently.

Two different approaches: superscalar and very
long instruction word (VLIW) [Fish83] are the parts
of unified Instruction Level Parallelism (ILP) the-
ory. VLIW are easier extensible for high perform-
ance ranges because they lack much of the super-
scalar hardware required for scheduling of re-
sources. However all scheduling optimisation func-
tions made at the software level and the binary
compatibility loses.

Applying of the VLIW principles for the Forth
processors requires extending of dual stack model

up to multistack case and building of the paralleling
translator converting sequential intermediate repre-
sentation of code to parallel.

The parallel multistack architecture so-called
sTTAck became a basis for experiments in this area.
The project is based on the principles and frame-
work of transport triggered architecture (TTA)
[Cor98]. The hardware stack machines add some
useful properties to TTA.

1. Primitives of Forth
One foundation of the Forth language speaks that
the all variety of extensions of the dictionary may
be constructed from base set of words - primitives
that are taking into account of all nuances of the
concrete hardware representation.

Primitives can be written in codes of the existing
processor, and the further extension of the diction-
ary will be processor-independent. The base dic-
tionary of the eFORTH translator is the example of
that. The compact kernel of it is realised for some
different processors to ensure program portability at
the source text level. The portability of the code
level can be realised by means of stack virtual ma-
chine.

Processors of the various architectures and the
different destination have the features permitting to
achieve the peak performance for the determined
class of the tasks. It can be both extended computa-
tional functions such as floating point operations
and special mechanisms of data access. The aspira-
tion to use them in the unfoundedly increases num-
ber of primitives granting access to these particular
resources. The result is the unreasonable propaga-
tion of number of primitives and that worse we have
the loss of compatibility at all levels.

Hardware implementation of primitives
Natural path for speed-up of Forth codes execution
is to found the instruction set of the processor on
basis of Forth primitives. Forth-processors follow
this way [Koo89]. The aim is to minimise a set of
primitives has begun a basis of the MISC project
[TiM95]. There are two ways of further enhanced of
the performance of a single processor node.

2

The first way is to execute chain of primitives
concurrently, as it NOVIX makes, grouping them in
one command; or as it is in PicoJava [Way96],
where the special hardware scans an instruction
stream to find the permit combination for concur-
rent execution.

Second way is to try to split primitives on ele-
mentary operation, more workable for the concur-
rent execution. For this goal, it is necessary to ana-
lyse properties of stack as a main data handling
mechanism.

2. Stack's properties
Stack as the data structure is widely used. Further-
more, it is possible to use stack as a local computing
environment. Modern processors of general and
special purpose apply stacks. The hardware stack
support is a main means of the acceleration of the
stack operations. Some RISC processors use the
mechanism of stack frames for access into main
register file.

Another approach is applied in stack machines.
The key property of these machines is the visibility
of all stack operations on the architectural level. In
addition to the hardware stack machines (stack-
processor) the virtual stack machines are widely
used too. There are some properties inseparably
linked with stack:

Restorability is the possibility to return in the
point where current state was stored. Program
counter (PC) is a main variable what determines
current state of program flow. But usually the proc-
essor has other state registers: flags, status and envi-
ronment variables. All these variables may be stored
in stack for later using.

Recursion as a desirable language feature has
been introduced for the subroutine call in the late
50s. The non-recursive languages had a many
problems with a directly or indirectly self calling
and other complex methods of the flow control. The
solution of the recursion problem is in the use of
stacks for storing of the current state. The using of
stacks as a control structure for recursion calls make
possible to realise basic types of control.

Reentrancy is a possibility of multiple uses of
the same code by different threads of control. The
correct decomposition of the program allows re-
ceiving the more compact and effective code.

Locales are the property of all stack allocations.
Stacks also may be calcified by the purpose: re-

turn stack, expression evaluation stack, local vari-
able stack, parameter stack and other.

Stack as the data structure
From a theoretical viewpoint, stacks are important
as the most basic and natural means that can be used
in processing well structured code. The stack allo-
cation order is natural for many dynamical types of
data. Two simple operations are always defined for
stack: pop, push. The action of these operations is
opposite.

Stack as a local computing environment.
In addition to the data storage functionality it is pos-
sible to use of the stack contents as the computing
environment. In principle it is quite enough to add
two operations (read, write) that provide the access
to the upper elements of the stack.

The choosing of hierarchy of stack's memory
The stack represents the certain hierarchy where the
top element has the most operating accessibility in
writing and reading, and the lower element can be
accessible by sequential using of command POP.
Other elements occupy intermediate position. The
problem is in the creation of the effective hierarchy
of stack's memory. Let's esteem three main modes
of accessing to stack elements.

Stack Frame mechanism is applied in some
RISCs [PaS81], when the instruction gives an ac-
cess not to the global registers but to their local
maps, for example:

add L4, L4, L2

When the subroutine is called the new local frame is
allotted. When it's restored the frame is released.
The special logic follows for the exchange between
the register file and the main memory. If the register
file is filled up, the oldest values are unloaded.
When we approach to the low bound of the register
file the logic performs uploading of data from the
memory.

Local variables mechanism differs from the pre-
vious subjects. We see that the memory access of
the stack is carried out by means of instruction
which load the local variable on the top of a stack
and store of the top in a local variables, as it is made
in Java VM [Sun95]. All operations are performed
on the stack's top:

iload_4 iload_3 iadd istore_5

Stack manipulation mechanism is the most ad-
vanced in Forth-processors. Its work is effective
only with two or tree upper elements of stack. The
others is in the local memory and the access to them
is carried out by means of stack manipulations:

>R ROT OVER + -ROT R>

3

The Hardware Stack as Functional Unit
The storing of the procedure's return addresses is the
most typical stack application. Modern machines
usually have some sort of hardware support for re-
turn address stack. If the call/return time is a critical
factor, the stack realises as an independent func-
tional unit.

The Hardware stack support is a main means of
acceleration the stack operation. The hardware
stacks are used both in general-purpose processors,
and in digital signal processors. For example is the
ADSP-21xx [ADSP] which have a four stacks. But
each of them are keep only one special form of the
date. However the instruction set of this processor is
a register based. This is not a stack-processor.

Stack Machine
The machine that use stacks as their primary data
handling mechanism is named Stack Machine
[Koo89]. It is considered that the programming of
the stack machines is easier than conventional ma-
chines, and that stack machines programs run more
reliably than other programs. As shown in [Koo93],
stack machines are also much more efficient in run-
ning certain types of programs than register-based
machines, particularly programs that are well
modularised.

In addition to the hardware stack machines the
virtual stack machines are widely used also. For
example the JavaVM [Sun95] developed by Sun
Microsystems, Inc. that allows to execute the same
code on the different platforms. The JavaVM allows
building the compact portable and reliable code.

The key property of Stack-processors is the visi-
bility of stack operation at the architectural level.
This allows use the stacks as main storage instead of
the registers.

The existent stack-processors are demonstrated
their good properties in the general purpose tasks
but they have a very low performance in the digital
signal processing.

Optimising compilers for register machines per-
form register allocation to improve code efficiency.
Similarly, stack machines would profit from stack
allocation, i.e., mapping variables to the stack
[MaE98].

All modern programming high-level languages
use stacks, but the development of the stack concept
in general is connected with Forth language. The
Forth language openly let to have two stacks (stack
of parameters and stack of returns) as a main uni-
versal operating data structure. The first completely
stack-processor was created for hardware supports
of this language.

Parallel Stack Access.
Stack is a sequential device. For providing higher
bandwidth it is necessary to extend stack paradigm.
The functional units of the ILP processor must have
N-r ports for reading and N-w ports for storing cur-
rent values. One can mark two different approaches
to expanding stack.

First principle consists in representing the stack's
top as multi-port register file. The special unit is
doing operation load/store in main stack's memory
automatically. This mechanism has been repeatedly
used in some processors [MO98]. But the com-
plexities of hardware register file realisation expect
another solutions.

Another solution is multistack architecture.
When the several simple stacks are connecting into
one processor.

3. The sTTAck concept

ILP roots of the architecture
To achieve performance goals, modern processors
use a general class of architectural features known
as Instruction Level Parallelism (ILP) to exploit the
fine-grained parallelism available in most algo-
rithms. In most cases modern DSPs and GPPs has a
non-regular architecture, and consequently is poorly
accommodated to automatic creation of an effective
code [LDK98]. Another processor type has more
regular architecture - Very Long Instruction Word
(VLIW). New processor's generation created on this
base have an increased performance [Tex97],
[Cas94]. The significant successes are reached in
creation of compilers for such processors [SSO97]
too. One VLIW-stack-processor is known [Pay96].

As a further step it is possible to consider the
new class: transport-triggered architecture (TTA).
The key property of TTAs is the visibility of all data
transports (within the processor) at the architectural
level.

Proposed architecture can be classified as modi-
fied TTA, with split read-write network.

The key feature is the hard binding of stacks and
personal transport buses. As the result we deal with
more uniform buses by structure (read-only and
write-only).

4

Component parts of the architecture
The are four types of units in the sTTAck architec-
ture.

Functional units (FUs) aimed for data process-
ing, external access and control operations. The
number of FUs, destination, number of inputs (FUi)
and outputs (FUo) can have wide range. Adding of
inputs and outputs can extend the functionality of
unit. It is necessary to found a compromise between
complicated multifunctional FUs and simple single-
functional units. It is obligatory the control device
(FUc) in any processor.

Stack Units (SUs) are equal and aimed for op-
erative storage and giving an access to local vari-
ables. For what each stack have input and two out-
puts and a possibility to execute stack manipula-
tions. The number of stacks (S) also can be differ-
ent. The internal structure of SU is rather simple.
Two registers: Top and Next element of stack; little
block of stack memory and automatically modified
stack pointer.

S-F Network (SFN) - Interconnection network
connecting SU's outputs to FU's inputs by dimen-
sion 2S*Fui*B, where B - uniform bit precision of
the processor. The network keeps its state itself exe-
cuting switch commands and makes fundamental
rule: only one input line can be connected on every-
one output. In conflict situation oldest connection is
dropped. The connection matrix may be reduced.

F-S Network (FSN) - Interconnection network
connecting FU's outputs to SU's inputs by dimen-
sion S*Fui*B. This network works similarly.

Architectural Interactions
We can mark four interactions in the proposed ar-
chitecture.

Global interaction. Any of FU may have inter-
acted with an outer world. Every port's or memory
interface can be organised as FU. This interaction
has the greatest scale and the time of interchanging
can be much more than time of command cycle.

Network interaction between SU and FU via
SFN and FSN. All units take part in this co-
operation but only unlike unit's types may inter-
change so. Just this interaction defines the command
cycle time.

Stack interaction between elements of stack
without using of interconnection network. This set
of operation includes all typical manipulations with
two top elements and stack memory that can be
pushed or popped. This interaction doesn't modified
data itself but make its distribution easier.

Functional interaction accompanies all function
data changing into FU's. As well as stack manipula-
tions it doesn't use the interconnection network for
work. Each function is characterised the time of
propagation.

Instruction set
Possibly, the matter of the command format must be
study most carefully. While it is possible to offer
only the most common approach.

The long instruction word (LIW) is divided on S
subinstructions, each of them is referred to the de-
termined stack and subnetwork linking it with FUs.
We have some field with different purpose into each
subinstruction. Let's examine, what operating can be
executed concurrently in account on one stack:
a. Connecting of one of FU's output with SU's in-

put line. FUout(i) -> stack.
b. Connecting of output T with FU's input.

T -> FUinp(i)
c. Connecting of output N with FU's input.

N -> FUinp(i)
d. Stack manipulations - steady set of operations

caused movement of data into stack and its
capture through input.
Stack(Memory <-> N <-> T) <-

e. The field of conditional execution. If this field
is enable the state of stack's input determines
whether a subinstruction for is executed or not.

The real instruction format
Direct storage and transferring of microinstructions
may be very expansive. It is necessary to analyse
the redundancy for elaboration of the packed in-
struction format.

Simple decoder or microprogram memory may
be designed in each concrete case.

5

4. Features of the architecture
Let's examine the small example of the implemen-
tation of the word computing the sum of all ele-
ments of a vector (see figure 4.1). Three stacks and
small number of units (figure 4.2) are enough in our
case. In figure 4.3 the implementation of the word
on an assembler is shown. Let's esteem features of
the architecture on this example.

Each line of an assembler text is a single in-
struction. The character | is a separator between
subinstructions for different stacks and the character
|| is the end of an instruction.

Stack0 (first column) is present at any configu-
ration of the processor and has distinctive features.
His top always contains current program counter
(PC) and is used by the control unit. All control op-
erations are referred to this stack:
drop - return
nip - rdrop
cup - call
...

IF statement. In contrast to majority of tradi-
tional architectures where only the branch opera-
tions have a conditional execution mode in sTTAck
architecture (as in TTA) each subinstruction can be
made conditional individuality. IF statement is en-
able the field of the conditional execution.

The commutations are the commands that are re-
sponsible for control operations. Its format is:
outN.outT.inp where names of inputs and out-
puts are indicated through the dot in the right order.

The literal is addressed as the FU with outputs
0,1 … N. It is inexpedient deriving of the large
numbers (more than 32) thus. If the subroutine re-
ceives the address of a data frame on the stack the
short literal can index this frame. Thus, the long
literal and branch addresses can be obtained. The
code, which has not long constants, has the greater
degree of reentrancy. In connection with the larger
number of stacks, the subroutines can re-

ceive/restore more arguments, without complex
stack manipulations. As the parameters can be
passed on any stack, their notation is required.

As it is shown in example there is no complete
analogy between words of a Fort and commands of
the processor, and it is required the special opti-
miser parallelize translator for code generation.

5. Development tools
Mainly the development tools are based on the prin-
ciples of TTA framework [Cor98]. The hardware
and software models have the unified configuration
file and FU libraries. The hardware model is re-
sponsible for ASIC synthesis, and the objective es-
timation of hardware complexity, power consump-
tion and time parameters. Only VHDL model for
FPGA synthesis is carried out now. The software
development tools (assembler, HLL translator and
debugger) are using for generate the code which is
parallel on the instruction level. It gives statistics on
hardware utilisation. The FORTH-based system is
developed now.

The different set of FUs and number of stacks
can be necessary for different applications. The it-
erative process of a configure should power up
analysis of the hardware complication of the synthe-
sized model and outputs of the program.

Implementation of the high-level language
translator is a separate challenge. It is possible to
offer only the main directions of research here.

Translation from intermediate representation.
The application can be compiled in the sequential
representation, be stored and be passed in it. Such
shape can become the convoluted threaded code. At
the node with a specific configuration (number of
stacks and set of units) the translator will convert
the code into a parallel object code. It can be used
JAVA byte-code alternatively. The optimisation of
stack allocation [Mai98], make base-block longer
by use of implementation of the code of often used

6

words, instead of their call, loop unrolling, specula-
tive execution are only brief list of perspective
translator's functions.

Conclusions and Further Work
The persist attempts of hardware implementation of
Forth-processors is the visual proof of vitality of
this idea.

We have presented some of the more interesting
details of sTTAck architecture. The realisation of
proposed architecture and software tools for it are
very interesting field of researches.

The big further work under model lie ahead.
Testing of the model on the FPGA expected. Gen-
eration of efficient machine code for sTTAck de-
mands for new optimisation techniques.

Acknowledgments

References

[PLC97] P.G.Paulin, C.Liem, M.Cornero,
F.Nacabal, and G.Goossens, "Embedded
software in real-time signal processing
systems: Application and architecture
trends," Proc. IEEE, Vol. 85, No. 3.,
pp.419-435.

[Koo89] P.J.Koopman, Stack Computers. Ellis
Horwood, Chichester, 1989.

[Fish83] J.A.Fisher, Very Long Instruction Word
Architectures. 253 Yele University, 1983.

[Cor98] H.Corporaal, Microprocessor Architec-
tures from VLIW to TTA, Wiley&Sons,
Inc., New York, 1998.
http://cs.et.tudelft.nl/~heco/

[TiM95] C.Ting, C.Moore, MuP21 - A High Per-
formance MISC Processor, Forth Dimen-
tions Jan. 1995.
http://www.dnai.com/~jfox/mup21.html

[MaE98] M.Maierhofer, A. Ertl, Local Stack Allo-
cation, Compiler Construction CC'98,
Springer LNCS 1383, pages 189-203.
http://www.complang.tuwien.ac.at/papers/

[Koo93] P.Koopman, Usenet Nuggest: Why Stack
Machines? Computer Architecture News,
Vol.21, No. 1, March 1993.

[Pay96] B.Paysan, A Four Stack Processor, di-
ploma, 1996.
http://www.jwdt.com/~paysan/4stack.html

[Ptsc] Patriot Scientific Corporation, The
PSC1000 ShBoom Processor. See:
www.ptsc.com/shboom/

[Sun95] The Java Virtual Machine Specification,
Sun Microsystems, 1995.
http://java.sun.com/docs/books/vmspec/

[PaS81] D.A.Patterson, C.H.Sequin Proc. Ann.
Symp. Comput. Archit. 8th, Minneapolis,
Minnesota, 443-457, 1981.

[LDK98] S.Liao, S.Devadas, K.Keutzer, S.Tjiang,
S. Wang, Code Optimization Techniques
in Embedded DSP Microprocessors. Klu-
wer Academic Publishers, 1998.

[ADSP] Analog Devices. Various ADSP User's
Manuals. http://www.analog.com

[Tex97] Texas Instruments. TMS320C62xx CPU
and Instruction Set Reference Guide,
1997. http://www.ti.com/sc/docs/dsps/
dsphome.htm

[Cas94] B. Case, Philips Hope to Displace DSPs
with VLIW. Microprocessor Report,
8(16), 5 Dec. 1994, pp.12-15.

[SSO97] R.Sakellariou, E.Stohr, M.F.P.O'Boyle,
Compiling Multimedia Applications on a
VLIW Architecture. 1997.

[Way96] P.Wayner, Sun Gamblets on JAVA Chips.
Byte Magazine, November 1996.

[MO98] H.McGhan, M.O'Connor. PicoJava: A Di-
rect Execution Engine For Java Bytecode.
IEEE Computer, October 1998, pp. 22-30.

