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Abstract. Simplicity of Forth language allowed toup to multistack case and building of the paralleling

build Forth based processors. But the common s$eanslator converting sequential intermediate repre-

guential computational approach has performanaentation of code to parallel.

limitation. The traditional approach to enhance the The parallel multistack architecture so-called

performance of processor is to increase the numltsarT Ack became a basis for experiments in this area.

of functional units that work concurrently. The project is based on the principles and frame-
In this paper we examine stack's properties amrk of transport triggered architectureg(TTA)

propose to extend stack paradigm for parallel corfGor98]. The hardware stack machines add some

puting. The main goal of this article is to define nemseful properties to TTA.

architecture so-called sTTAck. The main advan-

tages of this architecture are the simplicity anfl, Primitives of Forth

flexibility of hardware and large freedom of its

software utilisation. One foundation of the Forth language speaks that
Keywords: Instruction Level Parallelism, VLIW,the all variety of extensions of the dlctlpn_a.ry may
Stack. Forth be constructed from base set of wordsrimitives

that are taking into account of all nuances of the
concrete hardware representation.

Primitives can be written in codes of the existing
The Forth language has found it's main applicatipnocessor, and the further extension of the diction-
in embedded systems, where the simplicity is they will be processor-independent. The base dic-
key property. A number of its principles allows ttionary of the eFORTH translator is the example of
construct simple, flexible and scalable hardhat. The compact kernel of it is realised for some
ware/software systems. different processors to ensure program portability at

The hard requirements are imposed upon modéna source text level. The portability of the code
embedded systems [PLC97]. The direct hardwdesel can be realised by means of stack virtual ma-
implementation of primitives of Forth [Koo89]chine.
gives a noticeable purchase in performance, but forProcessors of the various architectures and the
further increasing it is necessary to apply an intermtifferent destination have the features permitting to
parallelism of algorithms. achieve the peak performance for the determined

However hard requirements to the price, comlass of the tasks. It can be both extended computa-
pactness and power consumption allow using muliisnal functions such as floating point operations
processor implementation only as the last measwuand special mechanisms of data access. The aspira-
First of all, it is necessary to trouble of performand®en to use them in the unfoundedly increases num-
of single processing node by increasing the numlier of primitives granting access to these particular
of function units, which operate concurrently. resources. The result is the unreasonable propaga-

Two different approaches: superscalar &mdy tion of number of primitives and that worse we have
long instruction wordVLIW) [Fish83] are the parts the loss of compatibility at all levels.
of unified Instruction Level Parallelism (ILP) the;

ory. VLIW are easier extensible for high perform'rlardwalre Implementation of primitives

ance ranges because they lack much of the sué\ﬁ‘lural path for _speed—_up of Forth codes execution
scalar hardware required for scheduling of ré to found the instruction set of the processor on
sources. However all scheduling optimisation funBasis of Forth primitives. Forth-processors follow
tions made at the software level and the bindfy)s Way [Koo89]. The aim is to minimise a set of
compatibility loses. primitives has begun a basis of the MISC project
Applying of the VLIW principles for the Forth[TIM95]. There are two ways of further enhanced of

processors requires extending of dual stack moHt Performance of a single processor node.

Introduction



The first way is to execute chain of primitivesStack as the data structure

concurrently, as it NOVIX makes, grouping them ifrom a theoretical viewpoint, stacks are important
one command; or as it is in PicoJava [Way96]s the most basic and natural means that can be used
where the special hardware scans an instructignprocessing well structured code. The stack allo-
stream to find the permit combination for concugation order is natural for many dynamical types of
rent execution. data. Two simple operations are always defined for

Secondway is to try to split primitives on ele-gtack:pop, push The action of these operations is
mentary operation, more workable for the concuspposite.

rent execution. For this goal, it is necessary to ana- _ .
lyse properties of stack as a main data handliféfck as alocal computing environment.

mechanism. In addition to the data storage functionality it is pos-
sible to use of the stack contents as the computing
2. Stack's properties environment. In principle it is quite enough to add

S two operations (read, write) that provide the access
Stack as the data structure is widely used. Furthgfthe upper elements of the stack.

more, it is possible to use stack as a local computing _ .
environment. Modern processors of general ahfe choosing of hierarchy of stack's memory
special purpose apply stacks. The hardware stddie stack represents the certain hierarchy where the
support is a main means of the acceleration of tiogp element has the most operating accessibility in
stack operations. Some RISC processors use \Whiging and reading, and the lower element can be
mechanism of stack frames for access into maiocessible by sequential using of command POP.
register file. Other elements occupy intermediate position. The
Another approach is applied in stack machingxoblem is in the creation of the effective hierarchy
The key property of these machines is the visibilif stack's memory. Let's esteem three main modes
of all stack operations on the architectural level. ¢f accessing to stack elements.
addition to the hardware stack machines (stack- Stack Frame mechanism is applied in some
processor) the virtual stack machines are widdRISCs [PaS81], when the instruction gives an ac-
used too. There are some properties inseparats#gs not to the global registers but to their local
linked with stack: maps, for example:
Restorability is the possibility to return in the add L4, L4, L2
point where current state was stored. Program o .
counter (PC) is a main variable what determin¥¥éhen the subroutine is called the new local frame is
current state of program flow. But usually the pm@]lotted. When _it's restored the frame is released.
essor has other state registers: flags, status and e Special logic follows for the exchange between
ronment variables. All these variables may be stordt® register file and the main memory. If the register
in stack for later using. file is filled up, the oldest values are unloaded.
Recursionas a desirable language feature h¥¥éhen we approach to the low bound of the register
been introduced for the subroutine call in the I the logic performs uploading of data from the
50s. The non-recursive languages had a mdR§mory. _ _
problems with a directly or indirectly self calling ~Local variablesmechanism differs from the pre-
and other complex methods of the flow control. THéOUS subjects. We see that the memory access of
solution of the recursion problem is in the use Bf€ stack is carried out by means of instruction
stacks for storing of the current state. The using ¥fich load the local variable on the top of a stack

stacks as a control structure for recursion calls ma@kd store of the top in a local variables, as it is made
possible to realise basic types of control. in Java VM [Sun95]. All operations are performed

Reentrancyis a possibility of multiple uses ofon the stack'stop:
the same code by different threads of control. The il0ad_4 iload_3 iadd istore_5

correct decomposition of the program allows re- _ _ .
Stack manipulationmechanism is the most ad-

ceiving the more compact and effective code. : , ;
Localesare the property of all stack allocations.Vanced in Forth-processors. Its work is effective
ly with two or tree upper elements of stack. The

Stacks also may be calcified by the purpose: (&)

turn stack, expression evaluation stack, local van€rs is in the local memory and the access to them

able stack, parameter stack and other is carried out by means of stack manipulations:
' ' >R ROT OVER + -ROT R>



The Hardware Stack as Functional Unit Parallel Stack Access.

The storing of the procedure's return addresses is$it@ck is a sequential device. For providing higher
most typical stack application. Modern machindsmndwidth it is necessary to extend stack paradigm.
usually have some sort of hardware support for fEhe functional units of the ILP processor must have
turn address stack. If the call/return time is a critiddlr ports for reading and N-w ports for storing cur-
factor, the stack realises as an independent furent values. One can mark two different approaches
tional unit. to expanding stack.

The Hardware stack support is a main means of First principle consists in representing the stack's
acceleration the stack operation. The hardwdop as multi-port register file. The special unit is
stacks are used both in general-purpose processoig operation load/store in main stack's memory
and in digital signal processors. For example is taetomatically. This mechanism has been repeatedly
ADSP-21xx [ADSP] which have a four stacks. Butsed in some processors [MO98]. But the com-
each of them are keep only one special form of thiexities of hardware register file realisation expect
date. However the instruction set of this processoraisother solutions.

a register based. This is not a stack-processor. Another solution is multistack architecture.
. When the several simple stacks are connecting into
Stack Machine

_ o one processor.
The machine that use stacks as their primary data

handling mechanism is named Stack Machine &R 4w 2RW 2RW 2RW 2RW

4R 2W 4R 2W
[Koo89]. It is considered that the programming of mmuu mu mu l l l l
the stack machines is easier than conventional ma T 21
chines, and that stack machines programs run mere

reliably than other programs. As shown in [Ko093],
stack machines are also much more efficient in run-
ning certain types of programs than register-basec
machines, particularly programs that are qu_ The sTTAck concept
modularised.

In addition to the hardware stack machines th_qD roots of the architecture

virtual stack machines are widely used also. Far hi ¢ | q
example the JavaVM [Sun95] developed by S 0 achieve performance goals, modern processors

Microsystems, Inc. that allows to execute the same’® @ ge”%?fa' class of architectural features _known
code on the different platforms. The JavaVM aIIovx?kS Instruction Level Parallelism (ILP) to exploit the
I

building the compact portable and reliable code. .nhe—grallned paralielism gvall%bslep n ?(();sépalg:]o—
The key property of Stack-processors is the vig|thms. In most cases modern S an S hasa

bility of stack operation at the architectural |eveﬂon—regular architecture, and consequently is poorly

This allows use the stacks as main storage instead mmodated to automatic creation of an effective
the registers. code [LDK98]. Another processor type has more

The existent stack-processors are demonstrale ular architecture - Very Long_lnstruction Worq
their good properties in the general purpose ta IW). New processor's generation created on this

but they have a very low performance in the digit seg 4ha\_/reh an 'F}_Cfeased performance [Tﬁxgﬂ’
signal processing. as94]. The significant successes are reached in

Optimising compilers for register machines pep_reation of compilers for such processors [SSO97]

form register allocation to improve code efficiencf]‘?o' One VLIW—stack—prqcessor_ls known [P§y96].
As a further step it is possible to consider the

Similarly, stack machines would profit from stack . )
y P w class: transport-triggered architecture (TTA).

allocation, i.e., mapping variables to the sta e key property of TTAs is the visibility of all data

[MaE9g]. e ;
All modern programming high-level Ianguag(zganSports (within the processor) at the architectural
l.

use stacks, but the development of the stack con . . .
roposed architecture can be classified as modi-

in general is connected with Forth language. The ) . .
9 guag gﬂﬁéj TTA, with split read-write network.

Forth language openly let to have two stacks (st : S
of parameters and stack of returns) as a main uni—The key feature is the hard binding of stacks and

versal operating data structure. The first completdl§sena! _;ranspkc))rt bus§s. Ats thte result v(\;e d?al W';[jh
stack-processor was created for hardware supp te “rl“ orm buses by structure (read-only an
of this language. write-only).
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Component parts of the architecture Global interaction. Any of FU may have inter-
The are four types of units in the STTAck archite@cted with an outer world. Every port's or memory
ture. interface can be organised as FU. This interaction
has the greatest scale and the time of interchanging
can be much more than time of command cycle.

Network interaction between SU and FU via
SFN and FSN. All units take part in this co-
operation but only unlike unit's types may inter-
change so. Just this interaction defines the command
cycle time.

Stack interaction between elements of stack
without using of interconnection network. This set
of operation includes all typical manipulations with

Functional units (FUs) aimed for data process!© top elements and stack memory that can be
ing, external access and control operations. hed or popped. This interaction doesn't modified

number of FUs, destination, number of inputs (FUR itself but make its distribution easier. _
and outputs (FUO) can have wide range. Adding of Functional interaction accompanies all function
inputs and outputs can extend the functionality é)gta changing into FU's. As well as stack manipula-
unit. It is necessary to found a compromise betwddS it doesn't use the interconnection network for
complicated multifunctional FUs and simple singldV0rk. Each function is characterised the time of
functional units. It is obligatory the control devicE"oPagation.

(FUc) in any processor. Instruction set

Stack Units(SUs) are equal and aimed for opsqggiply, the matter of the command format must be

erative storage and giving an access to local valinqy most carefully. While it is possible to offer
ables. For what each stack have input and two OHFﬂy the most common approach.

puts and a possibility to execute stack manipula— The long instruction word (LIW) is divided on S
tions. The number of stacks (S) also can be diff@;pinstryctions, each of them is referred to the de-
ent. The internal structure of SU is rather simplgymineq stack and subnetwork linking it with FUs.
Two registers: Top andet element of stack; little\yq haye some field with different purpose into each
block of stack memory and automatically modified hinstruction. Let's examine, what operating can be
stack pointer. executed concurrently in account on one stack:

a. Connecting of one of FU's output with SU's in-

put line.FUout(i) -> stack

SU“ SU P SU o FUc

FSNE 38—
4.,.,.,.,.1

stack b. Connecting of output T with FU's input.
memory ; T -> FUinp(i)

_4 N -|- c. Connecting of output N with FU's input.
__________ pointer " | N -> FUinp(i)

d. Stack manipulations - steady set of operations
S-F Network (SFN) - Interconnection network caused movement of data into stack and its
connecting SU's outputs to FU's inputs by dimen- capture through input.
sion 2S*Fui*B, whereB - uniform bit precision of ~ Stack(Memory <-> N <->T ) <-
the processor. The network keeps its state itself eRe- The field of conditional execution. If this field
cuting switch commands and makes fundamental is enable the state of stack's input determines
rule: only one input line can be connected on every- whether a subinstruction for is executed or not.
one outputln conflict situation oldest connection isl’he real instruction format

dropped. The connection matrix may be reduced. Direct st dt orri ¢ microinstruct
F-S Network (FSN) - Interconnection network~''€C! Storage and transterring of microinstructions
ay be very expansive. It is necessary to analyse

connecting FU's outputs to SU's inputs by dime|)- . .
sionS*Fui*B. This network works similarly. H:e rgdundancy for elaboration of the packed in-
struction format.

Architectural Interactions Simple decoder or microprogram memory may

We can mark four interactions in the proposed dre designed in each concrete case.
chitecture.



: Vector.Summ ( A N -- S ) DM 0 int inc
0 SWAP 4 = 7 e
—> I dec
FOR = 2
OVER @ + SWAP CELL+ SWAP pos —»! |, add
NEXT . neg _,| |, sub
NIP ; Figure 4.2
Figure 4.1
1 ( pc ) | (N A ) | pos.neqg.0 ||
2: dup  .dec (Ll pc) | _ int.DM.dec (N A ) | cup DM (0 )L
3: if drop dup ( L1 pc ) | nip cup .inc ( A n') | cup .add (s A1 ) ||
4 ( L1 pc ) | nip cup .dec ( n'A') | 2drop cup .DM ( s' )1
5 2drop T [ 2drop T (s YT
Figure 4.3
ceive/restore more arguments, without complex
4. Features of the architecture stack manipulations. As the parameters can be

. ) ) passed on any stack, their notation is required.
Let's examine the small example of the implemen- A< it is shown in example there is no complete

tation of the word computing the sum of all elegny0gy between words of a Fort and commands of
ments of a vector (see figure 4.1). Three stacks g processor, and it is required the special opti-

small number of units (figure 4.2) are enough in OWfiser parallelize translator for code generation.
case. In figure 4.3 the implementation of the word

on an assembler is s_hown. Let's esteem feature%prevelopment tools
the architecture on this example.

Each line of an assembler text is a single iMainly the development tools are based on the prin-
struction. The character | is a separator betwedples of TTA framework [Cor98]. The hardware
subinstructions for different stacks and the charactard software models have the unified configuration
| is the end of an instruction. file and FU libraries. The hardware model is re-

Stack0 (first column) is present at any configsponsible for ASIC synthesis, and the objective es-
ration of the processor and has distinctive featurémation of hardware complexity, power consump-
His top always contains current program countéon and time parameters. Only VHDL model for
(PC) and is used by the control unit. All control op~PGA synthesis is carried out now. The software

erations are referred to this stack: development tools (assembler, HLL translator and
drop - return debugger) are using for generate the code which is
nip - rdrop parallel on the instruction level. It gives statistics on

cup - call hardware utilisation. The FORTH-based system is

. . developed now.
. IF statement In contrast to majority of tradi- The different set of FUs and number of stacks
tional architectures where only the branch opegl

i h ditional t' de in STTA an be necessary for different applications. The it-
lons have a conditional éxecution mode In s ative process of a configure should power up

arch|tecture_ _(as |n.TT_A) ea(_:h subinstruction can ﬂalysis of the hardware complication of the synthe-
made conditional individuality. IF statement is e, ad model and outputs of the program

able the field of the conditional execution. Implementation of the high-level language
The_ commutationare the co_mmands that are Mranslator is a separate challenge. It is possible to
sponsible for control operations. Its format is;

. . Yfer only the main directions of research here.
outN.outT.inp where names of inputs and out-

puts are indicated through the dot in the right ordef.ranslation from intermediate representation.

The literal is addressed as the FU with outpurie application can be compiled in the sequential
0,1 ... N It is inexpedient deriving of the largaepresentation, be stored and be passed in it. Such
numbers (more than 32) thus. If the subroutine hape can become the convoluted threaded code. At
ceives the address of a data frame on the stacktHee node with a specific configuration (number of
short literal can index this frame. Thus, the longacks and set of units) the translator will convert
literal and branch addresses can be obtained. Tl code into a parallel object code. It can be used
code, which has not long constants, has the grea@i@VA byte-code alternatively. The optimisation of
degree of reentrancy. In connection with the largstack allocation [Mai98], make base-block longer
number of stacks, the subroutines can ey use of implementation of the code of often used
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words, instead of their call, loop unrolling, speculdMaE98] M.Maierhofer, A. Ertl, Local Stack Allo-

tive execution are only brief list of perspective cation, Compiler Construction CC'98,
translator's functions. Springer LNCS 1383, pages 189-203.
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Conclusions and Further Work [Ko093] P.Koopman, Usenet Nuggest: Why Stack
The persist attempts of hardware implementation of Machines? Computer Architecture News,
Forth-processors is the visual proof of vitality of Vol.21, No. 1, March 1993.
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We have presented some of the more interesting ploma, 1996.
details of STTAck architecture. The realisation of http://www.jwdt.com/~paysan/4stack.html
proposed architecture and software tools for it are ) o )
very interesting field of researches. [Ptsc] Patriot Scientific Corporation, The
The big further work under model lie ahead. PSC1000 ShBoom Processor. See:
Testing of the model on the FPGA expected. Gen- www.ptsc.com/shboom/
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