Sergei A.Sidorov Assemblers for firmware systems

Assemblersfor firmware systems

Dr. Sergei A.Sidorov
Computational mathematics and cybernetics dept.,
Moscow State University

sidorov@niisi.msk.ru

One of the most important parts of firmware system is the machine level
debugger. It includes command set, which are standard for the most of
debuggers. set/clear breakpoint, see and modify values in memory or in
processor registers, start and trace program, etc. Nearly all such debuggers
have disassembler, but on-line assemblers occur rarely. Why? Obvioudly, we
use on-line embedded assembler not so often as disassembler, and it is difficult
and bulky task to create more or less full assembler, each time new for new
architecture.

However, careful studying of this task shows that difficulties are overstated in
many cases.

Let’s divide this task into parts. translator «control» part and «executive» part.
Control part includes input/output, errors processing, tables building, and
other, and executive part means machine instructions trandation itself. The
first part is machine independent, the second part depends on processor
architecture. At the same time, executive part includes a lot of universal
procedures of syntactic parsing, table search, and implements, as a rule, the
same set of assembler directives. These procedures may be named «service»
part. As a result, we have three-level construction, where only middle level is
fundamentally architecture-dependent, and others need small modification. In
other words, once created assembler can be adopted by firmware designer to
new architecture in a short time.

Author used this approach in assemblers creation for firmware systems, based
on different architecture - 8080, Z80, 8051, PDP-11, MC68K, MIPS, and it
justified hopes. As a base programming system for firmware designing and
assemblers creation we used DSSP - Dialogue System for Structured
Programming [1, 2, 3], but stated principles are independent of programming
language.

Main assembler features

Sergei A.Sidorov Assemblers for firmware systems

Creating firmware you mostly need to use cross-tranglator, which is not always
available (especidly it was actual before Internet age), too expensive or not
exist yet. So it is useful for firmware designer to have his own cross-assembler,
simple and satisfying his requirements. Two low levels of assembler, executive
and service, are used in firmware embedded debugger. Let’slook main features
of such an assembler.

The first and constitutive in many reasons condition: the language of our
assembler must be a subset of standard assembly language for given
architecture. It is very important requirement. First, it gives opportunity to use
this trandator for different users (in addition to firmware author: hardware
adjusters, operating system designers, first applied programmers) without
studying once more language. Second, early or late the standard trandator
becomes available and usually have many advantages. If we wrote on
standard language, we can start to use new translator very soon. Of coursg, it is
not necessary to implement whole assembly language. What features to omit -
it's up to you, usualy they are: the most part of assembly directives, embedded
macros or even whole class of machine instructions, for example, arithmetic
CO-Processor.

There are some necessary assembly directives. They can be named differently,
but essence is the same:

org Set the origin value to instruction counter
equ Define constant for trandation time
include Include text from another file

word, byte, ... Define variables and memory spaces
align Align instruction counter

Indispensable condition - full label processing, including forward and
backward references. It relates with listing production. Usually it is not
difficult to resolve all the references during the first trandlator pass, but in this
case forward references are not appear in the listing. There are two ways: to
produce code at the first pass and generate listing at the second optional pass,
or make two-pass tranglator. Second way mostly easier and more compact, but
slower if listing is not needed. Besides, on-line assembler can not be two-pass.

As an output the plane binary file is suitable enough. Code in this file must
start from the first address set by org directive. Also it is applied to code
generation in memory buffer.

Sergei A.Sidorov Assemblers for firmware systems

It is a bad idea to be stingy in error diagnostics. Detail message and precise
place pointing save much time during assembler usage. Two variants of
diagnostics are preferred: short for on-line assembler - only error number, and
full for cross-assembler. And what to do if error occurs:. continue or abort
trandation? To reduce re-trandating it is better to process whole text, because
assembler works line by line with program text and lines usually independent
one from another.

Control part

What does the control part of assembler do? The common scheme of assembler
working is: input next program line, process this line, and so on to the end of
program text, and output code.

Input and output streams. For cross-assembler input stream is the sequence of
program lines which are read from files (with included ones). Line numbers
must be separate in each file for precise error diagnostics. In embedded on-line
assembler input stream is a line read from keyboard. In some cases it is useful
to trandlate text from memory buffer (without nesting, of course). Loading
program text to memory buffer isthe individual task.

There are two output streams - code and listing. It is easier to write whole code
at the trandation end. Listing is generated line by line and one program line
can produce several listing lines. Listing lines are output during translation.

Error diagnostics. This procedure is called by executive part when it finds an
error. The single parameter passed is the error number, all other information is
available in global variables: file name, line number, column and program line
itself. Error processing procedure must print message in convenient form. In
on-line assembler text message can be omitted (only error number) but error
position must be pointed exactly.

Tables creation. At least two tables are needed in assembler: instruction
mnemonics table and register names table. Often once more table is added -
instruction modifiers (usually for co-processor). Table of labels and defined
names is formed during trandation. It is alluring idea to make common format
for all the tables and to use universal search procedure, but in case if one-pass
assembling label table structure can be complex, too bulky for mnemonics.
There are many differences ininformation in these tables. In any case special
procedures are needed for tables creation in such a «dynamic» languages as
Forth and DSSP, or data structuresif you use C, with search procedures. Fields
access functions are architecture-dependent and belong to executive part.

Sergei A.Sidorov Assemblers for firmware systems

References resolving. Two-pass trand ation supposes label table creation at the
first pass and using this table at the second pass for code generation. One-pass
trandation assumes temporary collecting of information about forward
reference: destination, source point and format. Using of undefined name
causes creation of new table entry with «undefined» mark and list of places
where thisnameis used. Thislist isused for resolving references when name is
defined. Only reference format is architecture-dependent in this mechanism.

Executive part
In general assembly program line looks like:
<label> <instruction> <operands> <comment>

<label> is a name with «» at the end. <instruction> is a hame or composite
name, i.e. two names linked by «.», for example move.b. <operands> is a
comma separated «phrases», may be complex as alpha@(r2)+. <comment>
isthe rest of line, beginning with character «;», «#», «/» or something like this.
Modern assembly languages often use comments /*...*/ which can occupy more
than one line.

Line processing starts with variables initialization and line text preparing:
transformation to small or capital characters and deletion of comments
(BEGIN-LINE):

: ASM-LINE BEGIN-LINE LAB? INSTRUCTION END-LINE ;

Further, if the first name has «» at the end then it is a label, ese it is
instruction. Label is placed to name table (check redefinition!). One-pass
translation assumes forward references resolving to this label, but it must be
done at the end of line processing (END-LINE). True label value becomes
available only at the end in case, for example, of label at org directive:

m: org 0x100
Instruction name gives the key to all residuary processing. At the step of prior
analysis of instruction set they all are divided on groups according to format.
Usually big groups consist of arithmetic, logical and branch instructions. In
some cases instruction name assumes addressing mode:

add - register,

Sergei A.Sidorov Assemblers for firmware systems

addi - immediate.
Group includes instructions with all the same features except code.

Now we know number and types of operands we expect and we can start
processing. Traditionally it is the most difficult point and the difficulty
depends on processor architecture. Among known to author the most
«involved» architecture was MC68K and the simplest was MIPS. In any case
operand parsing consists of next steps. separate character or word, analyse it
and define more precise operand type, and at the end form part of machine
code. The most number of errors occurs during operand parsing.

In first versions it is admissible to limit expressions in operand with number,
name and string. In future it is easy to change expression processing procedure
to more powerful which allows arithmetic and logical operations, parenthesis.

Very important action in executive part creation is attentive anaysis of
instruction set, groups and instruction table forming. Group must include only
instructions with exactly the same format. For example, MIPS instructions add
and sllv have very similar format

add rd,rs,rt and sliv rd,rt,rs

but they belong to different groups. At the same time processing procedures
consist of identical parts (in Forth or DSSP):

: ADD SETRD KNXT, SETRS KNXT, SETRT ,KOP ;
: SLLV SETRD KNXT, SETRT KNXT, SETRS ,KOP ;

SETRXx gets from input line the next word, checks it for register name and puts
it number to one of three fields in instruction code. KNXT, kills comma
between operands, and ,KOP writes ready instruction code.

Register table is easy. It keeps register names, numbers and, may be, co-
processor number. It is useful to allow redefinition of register name, for
example, with directive

renr <old name> <new name>

Service part

Sergei A.Sidorov Assemblers for firmware systems

Syntactical analysis of assembly language is easy enough. All the information
we can get from input line. There is the pointer to first unprocessed character.
Syntactical analysis is based on several procedures which are enough for
parser:

SKIP-SP (--) Skip all spaces
NXTS (--c) Push next character and move pointer
?NXTS (--flag) Push next character without pointer

movement (peep)

KNXTS (--) Skip next character

KNXT, (--) Check comma and skip it
@NAME (--al) Get next name

@EXPR (--al) Get next expression

EOL? (--flag) Check end of line

FIND-INSTR (-- group) Findinstruction intable by name
FIND-REG (--num) Find register in table by name

Next level procedures do more complex actions:

?LAB (--) Read the first name, check for label and put
it into table

EVAL-EXPR (al--p) Evaluate expression. Expresson value is
put into variable(s) and p means:

1 - new name,

2 - known name (number or name value),
3 - text string,

4 - used but undefined name,

DO-LAB (--) Process label at the end of line processing:
assign true value and resolve references to
thislabel.

ORG (--) Do assuming actions. The same directives

EQU can have different names in assemblers.

SPACE

BYTE (--) Define data of given size. Operands are the

WORD comma separated list of expressions.

LONG

Sergei A.Sidorov Assemblers for firmware systems

It is obvious that service procedures do the main part of bulky and tedious
work. They are independent of computer architecture, but sometimes small
tuning is needed (add or remove data format, use quotation marks or
apostrophes for test strings, etc).

References

1. Sidorov S.A., Shumakov M.N. DSSP and Forth. Compare analysis. // 12th EuroFORTH
conference on the FORTH programming language and FORTH processors. St.Peterburg,
Russia. 1996 (11 pp.).

2. Sidorov SA. Data in DSSP - prefix access in postfix language. // EuroFORTH’97.
Conference proceedings.- Oxford, England, 1997 (7 pp.).

3. Sidorov S.A. Top-down Thinking and Top-down Writing in DSSP. // EuroFORTH’ 98:
14th Euroforth Conference, Schloss Dagstuhl, Germany, 1998 (5 pp.).

